结构化输出 (original) (raw)

跳至主要内容

结构化输出

您可以将 Gemini 模型配置为生成符合所提供 JSON 架构的回答。此功能可保证结果的可预测性和可解析性,确保格式和类型安全,实现以程序化方式检测拒绝,并简化提示。

使用结构化输出非常适合各种应用:

除了在 REST API 中支持 JSON 架构之外,Google GenAI SDK for Python 和 JavaScript 还分别支持使用 PydanticZod 轻松定义对象架构。以下示例演示了如何从符合代码中定义的架构的非结构化文本中提取信息。

此示例演示了如何使用 objectarraystringinteger 等基本 JSON 架构类型从文本中提取结构化数据。

Python

from google import genai
from pydantic import BaseModel, Field
from typing import List, Optional

class Ingredient(BaseModel):
    name: str = Field(description="Name of the ingredient.")
    quantity: str = Field(description="Quantity of the ingredient, including units.")

class Recipe(BaseModel):
    recipe_name: str = Field(description="The name of the recipe.")
    prep_time_minutes: Optional[int] = Field(description="Optional time in minutes to prepare the recipe.")
    ingredients: List[Ingredient]
    instructions: List[str]

client = genai.Client()

prompt = """
Please extract the recipe from the following text.
The user wants to make delicious chocolate chip cookies.
They need 2 and 1/4 cups of all-purpose flour, 1 teaspoon of baking soda,
1 teaspoon of salt, 1 cup of unsalted butter (softened), 3/4 cup of granulated sugar,
3/4 cup of packed brown sugar, 1 teaspoon of vanilla extract, and 2 large eggs.
For the best part, they'll need 2 cups of semisweet chocolate chips.
First, preheat the oven to 375°F (190°C). Then, in a small bowl, whisk together the flour,
baking soda, and salt. In a large bowl, cream together the butter, granulated sugar, and brown sugar
until light and fluffy. Beat in the vanilla and eggs, one at a time. Gradually beat in the dry
ingredients until just combined. Finally, stir in the chocolate chips. Drop by rounded tablespoons
onto ungreased baking sheets and bake for 9 to 11 minutes.
"""

response = client.models.generate_content(
    model="gemini-2.5-flash",
    contents=prompt,
    config={
        "response_mime_type": "application/json",
        "response_json_schema": Recipe.model_json_schema(),
    },
)

recipe = Recipe.model_validate_json(response.text)
print(recipe)

JavaScript

import { GoogleGenAI } from "@google/genai";
import { z } from "zod";
import { zodToJsonSchema } from "zod-to-json-schema";

const ingredientSchema = z.object({
  name: z.string().describe("Name of the ingredient."),
  quantity: z.string().describe("Quantity of the ingredient, including units."),
});

const recipeSchema = z.object({
  recipe_name: z.string().describe("The name of the recipe."),
  prep_time_minutes: z.number().optional().describe("Optional time in minutes to prepare the recipe."),
  ingredients: z.array(ingredientSchema),
  instructions: z.array(z.string()),
});

const ai = new GoogleGenAI({});

const prompt = `
Please extract the recipe from the following text.
The user wants to make delicious chocolate chip cookies.
They need 2 and 1/4 cups of all-purpose flour, 1 teaspoon of baking soda,
1 teaspoon of salt, 1 cup of unsalted butter (softened), 3/4 cup of granulated sugar,
3/4 cup of packed brown sugar, 1 teaspoon of vanilla extract, and 2 large eggs.
For the best part, they'll need 2 cups of semisweet chocolate chips.
First, preheat the oven to 375°F (190°C). Then, in a small bowl, whisk together the flour,
baking soda, and salt. In a large bowl, cream together the butter, granulated sugar, and brown sugar
until light and fluffy. Beat in the vanilla and eggs, one at a time. Gradually beat in the dry
ingredients until just combined. Finally, stir in the chocolate chips. Drop by rounded tablespoons
onto ungreased baking sheets and bake for 9 to 11 minutes.
`;

const response = await ai.models.generateContent({
  model: "gemini-2.5-flash",
  contents: prompt,
  config: {
    responseMimeType: "application/json",
    responseJsonSchema: zodToJsonSchema(recipeSchema),
  },
});

const recipe = recipeSchema.parse(JSON.parse(response.text));
console.log(recipe);

Go

package main

import (
    "context"
    "fmt"
    "log"

    "google.golang.org/genai"
)

func main() {
    ctx := context.Background()
    client, err := genai.NewClient(ctx, nil)
    if err != nil {
        log.Fatal(err)
    }

    prompt := `
  Please extract the recipe from the following text.
  The user wants to make delicious chocolate chip cookies.
  They need 2 and 1/4 cups of all-purpose flour, 1 teaspoon of baking soda,
  1 teaspoon of salt, 1 cup of unsalted butter (softened), 3/4 cup of granulated sugar,
  3/4 cup of packed brown sugar, 1 teaspoon of vanilla extract, and 2 large eggs.
  For the best part, they'll need 2 cups of semisweet chocolate chips.
  First, preheat the oven to 375°F (190°C). Then, in a small bowl, whisk together the flour,
  baking soda, and salt. In a large bowl, cream together the butter, granulated sugar, and brown sugar
  until light and fluffy. Beat in the vanilla and eggs, one at a time. Gradually beat in the dry
  ingredients until just combined. Finally, stir in the chocolate chips. Drop by rounded tablespoons
  onto ungreased baking sheets and bake for 9 to 11 minutes.
  `
    config := &genai.GenerateContentConfig{
        ResponseMIMEType: "application/json",
        ResponseJsonSchema: map[string]any{
            "type": "object",
            "properties": map[string]any{
                "recipe_name": map[string]any{
                    "type":        "string",
                    "description": "The name of the recipe.",
                },
                "prep_time_minutes": map[string]any{
                    "type":        "integer",
                    "description": "Optional time in minutes to prepare the recipe.",
                },
                "ingredients": map[string]any{
                    "type": "array",
                    "items": map[string]any{
                        "type": "object",
                        "properties": map[string]any{
                            "name": map[string]any{
                                "type":        "string",
                                "description": "Name of the ingredient.",
                            },
                            "quantity": map[string]any{
                                "type":        "string",
                                "description": "Quantity of the ingredient, including units.",
                            },
                        },
                        "required": []string{"name", "quantity"},
                    },
                },
                "instructions": map[string]any{
                    "type":  "array",
                    "items": map[string]any{"type": "string"},
                },
            },
            "required": []string{"recipe_name", "ingredients", "instructions"},
        },
    }

    result, err := client.Models.GenerateContent(
        ctx,
        "gemini-2.5-flash",
        genai.Text(prompt),
        config,
    )
    if err != nil {
        log.Fatal(err)
    }
    fmt.Println(result.Text())
}

REST

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:generateContent" \
    -H "x-goog-api-key: $GEMINI_API_KEY" \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [{
        "parts":[
          { "text": "Please extract the recipe from the following text.\nThe user wants to make delicious chocolate chip cookies.\nThey need 2 and 1/4 cups of all-purpose flour, 1 teaspoon of baking soda,\n1 teaspoon of salt, 1 cup of unsalted butter (softened), 3/4 cup of granulated sugar,\n3/4 cup of packed brown sugar, 1 teaspoon of vanilla extract, and 2 large eggs.\nFor the best part, they will need 2 cups of semisweet chocolate chips.\nFirst, preheat the oven to 375°F (190°C). Then, in a small bowl, whisk together the flour,\nbaking soda, and salt. In a large bowl, cream together the butter, granulated sugar, and brown sugar\nuntil light and fluffy. Beat in the vanilla and eggs, one at a time. Gradually beat in the dry\ningredients until just combined. Finally, stir in the chocolate chips. Drop by rounded tablespoons\nonto ungreased baking sheets and bake for 9 to 11 minutes." }
        ]
      }],
      "generationConfig": {
        "responseMimeType": "application/json",
        "responseJsonSchema": {
          "type": "object",
          "properties": {
            "recipe_name": {
              "type": "string",
              "description": "The name of the recipe."
            },
            "prep_time_minutes": {
                "type": "integer",
                "description": "Optional time in minutes to prepare the recipe."
            },
            "ingredients": {
              "type": "array",
              "items": {
                "type": "object",
                "properties": {
                  "name": { "type": "string", "description": "Name of the ingredient."},
                  "quantity": { "type": "string", "description": "Quantity of the ingredient, including units."}
                },
                "required": ["name", "quantity"]
              }
            },
            "instructions": {
              "type": "array",
              "items": { "type": "string" }
            }
          },
          "required": ["recipe_name", "ingredients", "instructions"]
        }
      }
    }'

示例回答

{
  "recipe_name": "Delicious Chocolate Chip Cookies",
  "ingredients": [
    {
      "name": "all-purpose flour",
      "quantity": "2 and 1/4 cups"
    },
    {
      "name": "baking soda",
      "quantity": "1 teaspoon"
    },
    {
      "name": "salt",
      "quantity": "1 teaspoon"
    },
    {
      "name": "unsalted butter (softened)",
      "quantity": "1 cup"
    },
    {
      "name": "granulated sugar",
      "quantity": "3/4 cup"
    },
    {
      "name": "packed brown sugar",
      "quantity": "3/4 cup"
    },
    {
      "name": "vanilla extract",
      "quantity": "1 teaspoon"
    },
    {
      "name": "large eggs",
      "quantity": "2"
    },
    {
      "name": "semisweet chocolate chips",
      "quantity": "2 cups"
    }
  ],
  "instructions": [
    "Preheat the oven to 375°F (190°C).",
    "In a small bowl, whisk together the flour, baking soda, and salt.",
    "In a large bowl, cream together the butter, granulated sugar, and brown sugar until light and fluffy.",
    "Beat in the vanilla and eggs, one at a time.",
    "Gradually beat in the dry ingredients until just combined.",
    "Stir in the chocolate chips.",
    "Drop by rounded tablespoons onto ungreased baking sheets and bake for 9 to 11 minutes."
  ]
}

流式

您可以对结构化输出进行流式传输,这样一来,您就可以在生成回答时开始处理回答,而无需等待整个输出完成。这有助于提升应用的感知性能。

流式传输的块将是有效的部分 JSON 字符串,可以连接起来形成最终的完整 JSON 对象。

Python

from google import genai
from pydantic import BaseModel, Field
from typing import Literal

class Feedback(BaseModel):
    sentiment: Literal["positive", "neutral", "negative"]
    summary: str

client = genai.Client()
prompt = "The new UI is incredibly intuitive and visually appealing. Great job. Add a very long summary to test streaming!"

response_stream = client.models.generate_content_stream(
    model="gemini-2.5-flash",
    contents=prompt,
    config={
        "response_mime_type": "application/json",
        "response_json_schema": Feedback.model_json_schema(),
    },
)

for chunk in response_stream:
    print(chunk.candidates[0].content.parts[0].text)

JavaScript

import { GoogleGenAI } from "@google/genai";
import { z } from "zod";
import { zodToJsonSchema } from "zod-to-json-schema";

const ai = new GoogleGenAI({});
const prompt = "The new UI is incredibly intuitive and visually appealing. Great job! Add a very long summary to test streaming!";

const feedbackSchema = z.object({
  sentiment: z.enum(["positive", "neutral", "negative"]),
  summary: z.string(),
});

const stream = await ai.models.generateContentStream({
  model: "gemini-2.5-flash",
  contents: prompt,
  config: {
    responseMimeType: "application/json",
    responseJsonSchema: zodToJsonSchema(feedbackSchema),
  },
});

for await (const chunk of stream) {
  console.log(chunk.candidates[0].content.parts[0].text)
}

借助 Gemini 3,您可以将结构化输出与内置工具(包括依托 Google 搜索进行接地网址上下文代码执行)结合使用。

Python

from google import genai
from pydantic import BaseModel, Field
from typing import List

class MatchResult(BaseModel):
    winner: str = Field(description="The name of the winner.")
    final_match_score: str = Field(description="The final match score.")
    scorers: List[str] = Field(description="The name of the scorer.")

client = genai.Client()

response = client.models.generate_content(
    model="gemini-3-pro-preview",
    contents="Search for all details for the latest Euro.",
    config={
        "tools": [
            {"google_search": {}},
            {"url_context": {}}
        ],
        "response_mime_type": "application/json",
        "response_json_schema": MatchResult.model_json_schema(),
    },  
)

result = MatchResult.model_validate_json(response.text)
print(result)

JavaScript

import { GoogleGenAI } from "@google/genai";
import { z } from "zod";
import { zodToJsonSchema } from "zod-to-json-schema";

const ai = new GoogleGenAI({});

const matchSchema = z.object({
  winner: z.string().describe("The name of the winner."),
  final_match_score: z.string().describe("The final score."),
  scorers: z.array(z.string()).describe("The name of the scorer.")
});

async function run() {
  const response = await ai.models.generateContent({
    model: "gemini-3-pro-preview",
    contents: "Search for all details for the latest Euro.",
    config: {
      tools: [
        { googleSearch: {} },
        { urlContext: {} }
      ],
      responseMimeType: "application/json",
      responseJsonSchema: zodToJsonSchema(matchSchema),
    },
  });

  const match = matchSchema.parse(JSON.parse(response.text));
  console.log(match);
}

run();

REST

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-3-pro-preview:generateContent" \
  -H "x-goog-api-key: $GEMINI_API_KEY" \
  -H 'Content-Type: application/json' \
  -X POST \
  -d '{
    "contents": [{
      "parts": [{"text": "Search for all details for the latest Euro."}]
    }],
    "tools": [
      {"googleSearch": {}},
      {"urlContext": {}}
    ],
    "generationConfig": {
        "responseMimeType": "application/json",
        "responseJsonSchema": {
            "type": "object",
            "properties": {
                "winner": {"type": "string", "description": "The name of the winner."},
                "final_match_score": {"type": "string", "description": "The final score."},
                "scorers": {
                    "type": "array",
                    "items": {"type": "string"},
                    "description": "The name of the scorer."
                }
            },
            "required": ["winner", "final_match_score", "scorers"]
        }
    }
  }'

JSON 架构支持

如需生成 JSON 对象,请将生成配置中的 response_mime_type 设置为 application/json,并提供 response_json_schema。该架构必须是有效的 JSON 架构,用于描述所需的输出格式。

然后,模型会生成一个在语法上有效的 JSON 字符串,该字符串与提供的架构相匹配。使用结构化输出时,模型将按照架构中键的顺序生成输出。

Gemini 的结构化输出模式支持 JSON 架构规范的子集。

支持以下 type 值:

这些描述性属性有助于引导模型:

特定于类型的属性

对于 object

对于 string

对于 numberinteger

对于 array

模型支持

以下模型支持结构化输出:

型号 结构化输出
Gemini 3 Pro 预览版 ✔️
Gemini 2.5 Pro ✔️
Gemini 2.5 Flash ✔️
Gemini 2.5 Flash-Lite ✔️
Gemini 2.0 Flash ✔️*
Gemini 2.0 Flash-Lite ✔️*

* 请注意,Gemini 2.0 需要在 JSON 输入中明确指定 propertyOrdering 列表,以定义首选结构。您可以在此实战宝典中找到示例。

结构化输出与函数调用

结构化输出和函数调用都使用 JSON 架构,但用途不同:

功能 主要使用场景
结构化输出 设置最终用户响应的格式。如果您希望模型的_回答_采用特定格式(例如,从文档中提取数据以保存到数据库),请使用此参数。
函数调用 在对话期间采取行动。如果模型需要_询问您_是否要执行某项任务(例如,“获取当前天气”)才能提供最终答案。

最佳做法

限制

如未另行说明,那么本页面中的内容已根据知识共享署名 4.0 许可获得了许可,并且代码示例已根据 Apache 2.0 许可获得了许可。有关详情,请参阅 Google 开发者网站政策。Java 是 Oracle 和/或其关联公司的注册商标。

最后更新时间 (UTC):2025-12-10。