DoubleML: Double Machine Learning in R (original) (raw)
Implementation of the double/debiased machine learning framework of Chernozhukov et al. (2018) <doi:10.1111/ectj.12097> for partially linear regression models, partially linear instrumental variable regression models, interactive regression models and interactive instrumental variable regression models. 'DoubleML' allows estimation of the nuisance parts in these models by machine learning methods and computation of the Neyman orthogonal score functions. 'DoubleML' is built on top of 'mlr3' and the 'mlr3' ecosystem. The object-oriented implementation of 'DoubleML' based on the 'R6' package is very flexible. More information available in the publication in the Journal of Statistical Software: <doi:10.18637/jss.v108.i03>.
Version: | 1.0.1 |
---|---|
Depends: | R (≥ 3.5.0) |
Imports: | R6 (≥ 2.4.1), data.table (≥ 1.12.8), stats, checkmate, mlr3 (≥ 0.5.0), mlr3tuning (≥ 0.3.0), mvtnorm, utils, clusterGeneration, readstata13, mlr3learners (≥ 0.3.0), mlr3misc |
Suggests: | knitr, rmarkdown, testthat, covr, patrick (≥ 0.1.0), paradox (≥ 0.4.0), dplyr, glmnet, lgr, ranger, sandwich, AER, rpart, bbotk, mlr3pipelines |
Published: | 2024-06-05 |
DOI: | 10.32614/CRAN.package.DoubleML |
Author: | Philipp Bach [aut, cre], Victor Chernozhukov [aut], Malte S. Kurz [aut], Martin Spindler [aut], Klaassen Sven [aut] |
Maintainer: | Philipp Bach <philipp.bach at uni-hamburg.de> |
BugReports: | https://github.com/DoubleML/doubleml-for-r/issues |
License: | MIT + file |
URL: | https://docs.doubleml.org/stable/index.html,https://github.com/DoubleML/doubleml-for-r/ |
NeedsCompilation: | no |
Citation: | DoubleML citation info |
Materials: | README |
In views: | CausalInference, Econometrics, MachineLearning |
CRAN checks: | DoubleML results |
Documentation:
Downloads:
Reverse dependencies:
Linking:
Please use the canonical formhttps://CRAN.R-project.org/package=DoubleMLto link to this page.