conjurer: A Parametric Method for Generating Synthetic Data (original) (raw)

Generates synthetic data distributions to enable testing various modelling techniques in ways that real data does not allow. Noise can be added in a controlled manner such that the data seems real. This methodology is generic and therefore benefits both the academic and industrial research.

Version: 1.7.1
Depends: R (≥ 2.10)
Imports: jsonlite (≥ 1.8.0), httr (≥ 1.4.2), methods
Suggests: knitr, rmarkdown
Published: 2023-01-18
DOI: 10.32614/CRAN.package.conjurer
Author: Sidharth Macherla ORCID iD [aut, cre]
Maintainer: Sidharth Macherla
BugReports: https://github.com/SidharthMacherla/conjurer/issues
License: MIT + file
URL: https://www.foyi.co.nz/posts/documentation/documentationconjurer/
NeedsCompilation: no
Citation: conjurer citation info
Materials: NEWS
CRAN checks: conjurer results

Documentation:

Reference manual: conjurer.pdf
Vignettes: Industry Example Introduction to conjurer

Downloads:

Package source: conjurer_1.7.1.tar.gz
Windows binaries: r-devel: conjurer_1.7.1.zip, r-release: conjurer_1.7.1.zip, r-oldrel: conjurer_1.7.1.zip
macOS binaries: r-release (arm64): conjurer_1.7.1.tgz, r-oldrel (arm64): conjurer_1.7.1.tgz, r-release (x86_64): conjurer_1.7.1.tgz, r-oldrel (x86_64): conjurer_1.7.1.tgz
Old sources: conjurer archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=conjurerto link to this page.