doi:10.48550/arXiv.1609.08144>) tokenization to input text, given an appropriate vocabulary. The 'BERT' (<doi:10.48550/arXiv.1810.04805>) tokenization conventions are used by default.">

wordpiece: R Implementation of Wordpiece Tokenization (original) (raw)

Apply 'Wordpiece' (<doi:10.48550/arXiv.1609.08144>) tokenization to input text, given an appropriate vocabulary. The 'BERT' (<doi:10.48550/arXiv.1810.04805>) tokenization conventions are used by default.

Version: 2.1.3
Depends: R (≥ 3.3.0)
Imports: dlr (≥ 1.0.0), fastmatch (≥ 1.1), memoise (≥ 2.0.0), piecemaker (≥ 1.0.0), rlang, stringi (≥ 1.0), wordpiece.data (≥ 1.0.2)
Suggests: covr, knitr, rmarkdown, testthat (≥ 3.0.0)
Published: 2022-03-03
DOI: 10.32614/CRAN.package.wordpiece
Author: Jonathan Bratt ORCID iD [aut, cre], Jon Harmon ORCID iD [aut], Bedford Freeman & Worth Pub Grp LLC DBA Macmillan Learning [cph]
Maintainer: Jonathan Bratt <jonathan.bratt at macmillan.com>
BugReports: https://github.com/macmillancontentscience/wordpiece/issues
License: Apache License (≥ 2)
URL: https://github.com/macmillancontentscience/wordpiece
NeedsCompilation: no
Materials: README NEWS
CRAN checks: wordpiece results

Documentation:

Downloads:

Reverse dependencies:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=wordpieceto link to this page.