The polynomial method over varieties (original) (raw)

References

  1. Barone, S., Basu, S.: Refined bounds on the number of connected components of sign conditions on a variety. Discrete Comput. Geom. 47(3), 577–597 (2012)
    Article MathSciNet Google Scholar
  2. Barone, S., Basu, S.: On a real analog of Bezout inequality and the number of connected components of sign conditions. Proc. Lond. Math. Soc. 3(112), 115–145 (2016)
    Article MathSciNet Google Scholar
  3. Basu, S., Pollack, R., Roy, M.-F.: Betti number bounds, applications and algorithms. Current trends in combinatorial and computational geometry: papers from the special program at MSRI, MSRI Publications, vol. 52, pp. 87-97. Cambridge University Press, Cambridge (2005)
  4. Basu, S., Sombra, M.: Polynomial partitioning on varieties of codimension two and point-hypersurface incidences in four dimensions. Discrete Comput. Geom. 55(1), 158–184 (2016)
    Article MathSciNet Google Scholar
  5. Bombieri, E., Pila, J.: The number of integral points on arcs and ovals. Duke Math. J. 59(2), 337–357 (1989)
    Article MathSciNet Google Scholar
  6. Bochnak, J., Coste, M., Roy, M.-F.: Real Algebraic Geometry. Ergebnisse der Mathematik und ihrer Grenzgebiete, 2nd edn. Springer, Berlin (1998)
    Book Google Scholar
  7. Bohman, T., Keevash, P.: The early evolution of the H-free process. Invent. Math. 181, 291–336 (2010)
    Article MathSciNet Google Scholar
  8. Bollobás, B.: VI.2 Complete Subgraphs of r-partite Graphs. Extremal Graph Theory, pp. 309–326. Dover Publications Inc., Mineola (2004)
    Google Scholar
  9. Brass, P., Knauer, C.: On counting point-hyperplane incidences. Comput. Geom. Theory Appl. 25(1–2), 13–20 (2003)
    Article MathSciNet Google Scholar
  10. Chardin, M.: Une majoration de la fonction de Hilbert et ses conséquences pour l’interpolation algébrique. Bull. Soc. Math. Fr. 117, 305–318 (1989)
    Article Google Scholar
  11. Chardin, M., Philippon, P.: Régularité et interpolation. J. Algebr. Geom. 8, 471–481 (1999)
    MATH Google Scholar
  12. Clarkson, K., Edelsbrunner, H., Guibas, L., Sharir, M., Welzl, E.: Combinatorial complexity bounds for arrangements of curves and surfaces. Discrete Comput. Geom. 5, 99–160 (1990)
    Article MathSciNet Google Scholar
  13. Do, T., Sheffer, A.: A general incidence bound in \({\mathbb{R}}^d\) and related problems, arXiv:1806.04230
  14. Dvir, Z.: On the size of Kakeya sets in finite fields. J. Am. Math. Soc. 22(4), 1093–1097 (2009)
    Article MathSciNet Google Scholar
  15. Dvir, Z.: Incidence theorems and their applications. Found. Trends Theor. Comput. Sci. 6, 257–393 (2012)
    Article MathSciNet Google Scholar
  16. Elekes, G., Szabo, E.: How to find groups? (and how to use them in Erdös geometry?). Combinatorica 32(5), 537–571 (2012)
    Article MathSciNet Google Scholar
  17. Fox, J., Pach, J., Sheffer, A., Suk, A., Zahl, J.: Zarankiewicz’s problem for semi-algebraic hypergraphs. J. Eur. Math. Soc. (JEMS) 19(6), 1785–1810 (2017)
    Article MathSciNet Google Scholar
  18. Guth, L.: The polynomial Method in Combinatorics. University Lecture Series. American Mathematical Society, Providence (2016)
    Book Google Scholar
  19. Guth, L.: The endpoint case of the Bennett-Carbery-Tao multilinear Kakeya conjecture. Acta Math. 205(2), 263–286 (2010)
    Article MathSciNet Google Scholar
  20. Guth, L.: Polynomial partitioning for a set of varieties. Math. Proc. Camb. Philos. Soc. 159, 459–469 (2015)
    Article MathSciNet Google Scholar
  21. Guth, L.: A restriction estimate using polynomial partitioning. J. Am. Math. Soc. 29(2), 371–413 (2016)
    Article MathSciNet Google Scholar
  22. Guth, L., Katz, N.: On the Erdös distinct distance problem in the plane. Ann. Math. 181(1), 155–190 (2015)
    Article MathSciNet Google Scholar
  23. Guth, L., Zahl, J.: Curves in \({\mathbb{R}}^4\) and two-rich points. Discrete Comput. Geom. 58, 232–253 (2017)
    Article MathSciNet Google Scholar
  24. Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, No. 52. Springer, Heidelberg (1977)
  25. Heath-Brown, D.R.: The density of rational points on curves and surfaces. Ann. Math. 155(2), 553–595 (2002)
    Article MathSciNet Google Scholar
  26. Kaplan, H., Matousek, J., Sharir, M.: Simple proofs of classical theorems in discrete geometry via the Guth-Katz polynomial partitioning technique. Discrete Comput. Geom. 48, 499–517 (2012)
    Article MathSciNet Google Scholar
  27. Kaplan, H., Matousek, J., Safernova, Z., Sharir, M.: Unit distances in three dimensions. Comb. Probab. Comput. 21, 597–610 (2012)
    Article MathSciNet Google Scholar
  28. Kövári, T., Sós, V., Turán, P.: On a problem of K. Zarankiewicz. Colloq. Math. 3, 50–57 (1954)
    Article MathSciNet Google Scholar
  29. Lund, B., Sheffer, A., De Zeeuw, F.: Bisector energy and few distinct distances. Discrete Comput. Geom. 56, 337–356 (2016)
    Article MathSciNet Google Scholar
  30. Milnor, J.: On the Betti numbers of real varieties. Proc. Am. Math. Soc. 15, 275–280 (1964)
    Article MathSciNet Google Scholar
  31. Matousek, J., Patáková, Z.: Multilevel polynomial partitions and simplified range searching. Discrete Comput. Geom. 54(1), 22–41 (2015)
    Article MathSciNet Google Scholar
  32. Oleinik, O.A., Petrovskii, I.G.: On the topology of real algebraic surfaces. Izv. Akad. Nauk SSSR Ser. Mat. 13, 389–402 (1949)
    MathSciNet Google Scholar
  33. Pach, J., Sharir, M.: On the number of incidences between points and curves. Comb. Probab. Comput. 7, 121–127 (1998)
    Article MathSciNet Google Scholar
  34. Sharir, M., Sheffer, A., Solomon, N.: Incidences with curves in \({\mathbb{R}}^d\). Electron. J. Comb. 23, 4–16 (2016)
    MATH Google Scholar
  35. Solymosi, J., Tao, T.: An incidence theorem in higher dimensions. Discrete Comput. Geom. 48, 255–280 (2012)
    Article MathSciNet Google Scholar
  36. Szemerédi, E., Trotter, W.T.: Extremal problems in discrete geometry. Combinatorica 3, 381–392 (1983)
    Article MathSciNet Google Scholar
  37. Tao, T.: Algebraic combinatorial geometry: the polynomial method in arithmetic combinatorics, incidence combinatorics, and number theory. EMS Surv. Math. Sci. 1, 1–46 (2014)
    Article MathSciNet Google Scholar
  38. Thom, R.: Sur l’homologie des variétés algébriques réelles. In: Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), pp. 255–265, Princeton University Press (1965)
  39. Walsh, M.: Characteristic subsets and the polynomial method. In: Proceedings of the International Congress of Mathematicians (2018)
  40. Walsh, M.: Concentration estimates for algebraic intersections, arXiv:1906.05843
  41. Zahl, J.: An improved bound on the number of point-surface incidences in three dimensions. Contrib. Discrete Math. 8, 100–121 (2013)
    MathSciNet MATH Google Scholar
  42. Zarankiewicz, K.: Problem P 101. Colloq. Math. 2, 301 (1951)
    Google Scholar

Download references