Arivizhivendhan KV, Mahesh M, Boopathy R, Sekaran G (2016) A novel method for the extraction of prodigiosin from bacterial fermenter integrated with sequential batch extraction reactor using magnetic iron oxide. Process Biochem 51:1731–1737. https://doi.org/10.1016/j.procbio.2016.07.012 ArticleCAS Google Scholar
Bae J, Moon H, Oh KK, Kim CH, Lee DS, Kim SW, Hong SI (2001) A novel bioreactor with an internal adsorbent for integrated fermentation and recovery of prodigiosin-like pigment produced from Serratia sp. KH-95. Biotechnol Lett 23:1315–1319. https://doi.org/10.1023/A:10105734 ArticleCAS Google Scholar
Chiappori AA, Schreeder MT, Moezi MM, Stephenson JJ, Blakely J, Salgia R, Chu QS, Ross HJ (2012) A phase I trial of pan-Bcl-2 antagonist obatoclax administered as a 3-h or a 24-h infusion in combination with carboplatin and etoposide in patients with extensive-stage small cell lung cancer. Br J Cancer 106:839–845. https://doi.org/10.1038/bjc.2012.21 ArticleCASPubMedPubMed Central Google Scholar
Danevčič T, Vezjak MB, Tabor M, Zorec M, Stopar D (2016b) Prodigiosin induces autolysins in actively grown Bacillus subtilis cells. Front Microbiol 7. https://doi.org/10.3389/fmicb.2016.00027
Dauenhauer SA, Hull RA, Williams RP (1984) Cloning and expression in Escherichia coli of Serratia marcescens genes encoding prodigiosin biosynthesis. J Bacteriol 158:1128–1132 CASPubMedPubMed Central Google Scholar
Davis JT (2010) Anion binding and transport by prodigiosin and its analog. In: Gale P, Dehaen W (eds) Anion recognition in supramolecular chemistry. Topics in heterocyclic chemistry, vol 24. Springer, Berlin, Heidelberg, pp 145–176 Chapter Google Scholar
Domrose A, Klein AS, Hage-Huismann J, Thies S, Svensson V, Classen T, Pietruszka J, Jaegar K, Drepper T, Loeschcke A (2015) Efficient recombinant production of prodigiosin in Pseudomonas putida. Front Microbiol 6. https://doi.org/10.3389/fmicb.2015.00972
Dozie-Nwachukwu SO, Danyuo Y, Obayemi JD, Odusanya OS, Malatesta K, Soboyejo WO (2017) Extraction and encapsulation of prodigiosin in chitosan microsphere for targeted drug delivery. Mater Sci Eng C 71:268–278. https://doi.org/10.1016/j.msec.2016.09.078 ArticleCAS Google Scholar
Drink E, Dugourd P, Dumont E, Aronssohn N, Antoine R, Loison C (2015) Optical properties of prodigiosin and obatoclax. Action spectroscopy and theorectical calculations. Phys Chem Chem Phys 17:25946–25955. https://doi.org/10.1039/C5CP01498K ArticleCASPubMed Google Scholar
Duzhak AB, Panfilova ZI, Duzhak TG, Vasyunina EA, Shternshis MV (2012) Role of prodigiosin and chitinases in antagonistic activity of the bacterium Serratia marcescens against the fungus Didymella applanata. Biochemistry 77:910–916. https://doi.org/10.1134/S0006297912080123 ArticleCASPubMed Google Scholar
Elkenawy NM, Yassin AS, Elhifnawy HN, Amin MA (2017) Optimization of prodigiosin production by Serratia marcescens using crude glycerol and enhancing production using gamma radiation. Biotechnol Rep 14:47–53. https://doi.org/10.1016/j.btre.2017.04.001 Article Google Scholar
Fender JE, Bender CM, Stella NA, Lahr RM, Kalivoda EJ, Shanks RMQ (2012) Serratia marcescens quinoprotein glucose dehydrogenase activity mediates acidification and inhibition of prodigiosin production by glucose. Appl Environ Microbiol 78:6225–6235. https://doi.org/10.1128/AEM.01778-12 ArticleCASPubMedPubMed Central Google Scholar
Figueiredo AC, Barroso JG, Pedro LG, Scheffer JJC (2008) Factors affecting secondary metabolite production in plants: volatile components and essential oils. Flavour Fragr J 23:213–226. https://doi.org/10.1002/ffj.1875 ArticleCAS Google Scholar
Garneau-Tsodikova S, Dorrestein P, Kelleher NL, Walsh CT (2006) Protein assembly line components in prodigiosin biosynthesis: characterization of PigA, G, H, I, J. J Am Chem Soc 128:12600–12601. https://doi.org/10.1021/ja063611l ArticleCASPubMed Google Scholar
Gulani C, Bhattacharya S, Das A (2012) Assessment of process parameters influencing the enhanced production of prodigiosin from Serratia marcescens and evaluation of its antimicrobial, antioxidant and dyeing potential. Malays J Microbiol 8:116–122. https://doi.org/10.21161/mjm.03612 ArticleCAS Google Scholar
Haddix PL, Werner TF (2000) Spectrophotometric assay of gene expression: Serratia marcescens pigmentation. Bioscene 26:3–13 Google Scholar
Harris APK, Williamson NR, Slater H, Cox A, Abbasi S, Foulds I, Simonsen HT, Leeper FJ, Salmond GP (2004) The Serratia gene cluster encoding biosynthesis of the red antibiotic, prodigiosin, shows species- and strain-dependent genome context variation. Microbiology 150:3547–3560. https://doi.org/10.1099/mic.0.27222-0 ArticleCASPubMed Google Scholar
Hong B, Prabhu VV, Zhang S, van den Heuvel AP, Dicker DT, Kopelovich L, El-Deiry WS (2014) Prodigiosin rescues deficient p53 signaling and anti-tumor effects via up-regulating p73 and disrupting its interaction with mutant p53. Cancer Res 74:1153–1165. https://doi.org/10.1158/0008-5472.CAN-13-0955 ArticleCASPubMed Google Scholar
Ibrahim D, Nazari TF, Kassim J, Lim SH (2014) Prodigiosin-an antibacterial red pigment produced by Serratia marcescens IBRL USM 84 associated with a marine sponge Xestospongia testudinaria. J Appl Pharm Sci 4:1–6. https://doi.org/10.7324/JAPS.2014.40101 ArticleCAS Google Scholar
Kavitha R, Aiswariya S, Ratnavali CMG (2010) Anticancer activity of red pigment from Serratia marcescens in human cervix carcinoma. Int J Pharmtech Res 2:784–787 CAS Google Scholar
Kim D, Park YK, Lee JS, Kim JF, Jeong H, Kim BS, Lee CH (2006) Analysis of a prodigiosin biosynthetic gene cluster from the marine bacterium Hahella chejuensis KCTC 2396. J Microbiol Biotechnol 16:1912–1918 CAS Google Scholar
Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, Han L, He J, He S, Shoemaker BA, Wang J, Yu B, Zhang J, Bryant SH (2016) PubChem substance and compound databases. Nucleic Acids Res 44:D1202–D1213. https://doi.org/10.1093/nar/gkv951 ArticleCASPubMed Google Scholar
Kimyon O, Das T, Ibugo AI, Kutty SK, Ho KK, Tebben J, Kumar N, Manefield M (2016) Serratia secondary metabolite prodigiosin inhibits Pseudomonas aeruginosa biofilm development by producing reactive oxygen species that damage biological molecules. Front Microbiol 7. https://doi.org/10.3389/fmicb.2016.00972
Kwon SK, Park YK, Kim JF (2010) Genome-wide screening and identification of factors affecting the biosynthesis of prodigiosin by Hahella chejuensis, using Escherichia coli as a surrogate host. Appl Environ Microbiol 76:1661–1668. https://doi.org/10.1128/AEM.01468-09 ArticleCASPubMed Google Scholar
Lapenda JC, Maciel CCS, Xavier HS, Alves da Silva CA, Campos-Takaki CM (2014) Production and toxicology evaluation of prodigiosin from Serratia marcescens UCP/WFCC1549 on mannitol solid medium. Int J Appl Res Nat Prod 7:32–38 Google Scholar
Lee JS, Kim YS, Park S, Kim J, Kang SJ, Lee MH, Ryu S, Choi JM, Oh TK, Yoon JH (2011) Exceptional production of both prodigiosin and cycloprodigiosin as major metabolic constituents by a novel marine bacterium, Zooshikella rubidus S1-1. Appl Environ Microbiol 77:4967–4973. https://doi.org/10.1128/AEM.01986-10 ArticleCASPubMedPubMed Central Google Scholar
Li PP, Kwok AHY, Jiang JW, Ran TT, Xu DQ, Wang WW, Leung FC (2015) Comparative genome analyses of Serratia marcescens FS14 reveals its high antagonistic potential. PLoS One 10. https://doi.org/10.1371/journal.pone.0123061
Nakashima T, Tamura T, Kurachi M, Yamaguchi K, Oda T (2005) Apoptosis-mediated cytotoxicity of prodigiosin-like red pigments produced by gamma-Proteobacterium and its multiple bioactivities. Biol Pharm Bull 28:2289–2295. https://doi.org/10.1248/bpb.28.2289 ArticleCASPubMed Google Scholar
Neidle S (2013) Prodigiosin. In: Neidle S (ed) Cancer drug design and discovery. School of Pharmacy, University College London, London, pp 104–105 Google Scholar
O’ Brien SM, Claxton DF, Crump M, Faderi S, Kipps T, Keating MJ, Viallet J, Cheson BD (2009) Phase I study of obatoclax mesylate (GX15-070), a small molecule pan-Bcl-2 family antagonist, in patients with advanced chronic lymphocytic leukemia. Blood 113:299–305. https://doi.org/10.1182/blood-2008-02-137943 ArticleCAS Google Scholar
Park G, Tomlinson JT, Melvin MS, Wright MW, Day CS, Manderville RA (2003) Zinc and copper complexes of prodigiosin: implications for copper-mediated double-strand DNA cleavage. Org Lett 5:113–116. https://doi.org/10.1021/ol027165s ArticleCASPubMed Google Scholar
Patil CD, Patil SV, Salunke BK, Salunkhe RB (2011) Prodigiosin produced by Serratia marcescens NMCC46 as a mosquito larvicidal agent against Aedes aegypti and Anopheles stephensi. Parasitol Res 109:1179–1187. https://doi.org/10.1007/s00436-011-2365-9 ArticlePubMed Google Scholar
Raj DN, Dhanasekaran D, Thajuddin N, Panneerselvam A (2009) Production of prodigiosin from Serratia marcescens and its cytotoxicity activity. J Pharm Res 2:590–593 CAS Google Scholar
Ramani D, Nair A, Krithika K (2014) Optimization of cultural conditions for the production of prodigiosin by Serratia marcescens and screening of the antimicrobial activity of prodigiosin. Int J Pharm Bio Sci 5:383–392 Google Scholar
Solovyev V, Salamov A (2011) Automatic annotation of microbial genomes and metagenomic sequences. In: Li RW (ed) Metagenomics and its applications in agriculture, biomedicine and environmental studies. Nova Science Publishers, New York, pp 61–78 Google Scholar
Song MJ, Bae J, Lee DS, Kim CH, Kim JS, Kim SW, Hong SI (2006) Purification and characterization of prodigiosin produced by integrated bioreactor from Serratia sp. KH-95. J Biosci Bioeng 101:157–161. https://doi.org/10.1263/jbb.101.157 ArticleCASPubMed Google Scholar
Sumathi C, MohanaPriya D, Swarnalatha S, Dinesh MG, Sekaran G (2014) Production of prodigiosin using tannery fleshing and evaluating its pharmacological effects. ScientificWorldJournal 2014:1–8. https://doi.org/10.1155/2014/290327 ArticleCAS Google Scholar
Urtishak KA, Edwards AY, Wang LS, Hudome A, Robinson BW, Barrett JS, Cao K, Cory L, Moore JS, Bantly AD, Yu QC, Chen IM, Atlas SR, Willman CL, Kundu M, Carroll AJ, Heerema NA, Devidas M, Hilden JM, Dreyer ZE, Hunger SP, Reaman GH, Felix CA (2013) Potent obatoclax cytotoxicity and activation of triple death mode killing across infant acute lymphoblastic leukemia. Blood 121:2689–2703. https://doi.org/10.1182/blood-2012-04-425033 ArticleCASPubMedPubMed Central Google Scholar
Venil CK, Velmurugam P, Lakshmanaperumalsamy P (2009) Genomic environment of _cue_R and _cop_A genes for prodigiosin biosynthesis by Serratia marcescens SB08. Rom Biotechnol Lett 14:4812–4819 CAS Google Scholar
Wang B, Lin L, Lu L, Chen W (2012a) Optimization of β-carotene production by newly isolated Serratia marcescens strain. Electron J Biotechnol 15. https://doi.org/10.2225/vol15-issue6-fulltext-4
Wang F, Luo HL, Song GH, Liu C, Wang JG, Xu JL, Su XH, Ma XY (2013) Prodigiosin found in Serratia marcescens y2 initiates phototoxicity in the cytomembrane. Electron J Biotechnol 16. https://doi.org/10.2225/vol16-issue4-fulltext-7
Wilft NM, Salmond GPC (2012) The stationary phase sigma factor, RpoS, regulates the production of a carbapenem antibiotic, a bioactive prodigiosin and virulence in the enterobacterial pathogen Serratia sp. ATCC 39006. Microbiology 158:648–658. https://doi.org/10.1099/mic.0.055780-0 ArticleCAS Google Scholar
Williamson NR, Simonsen HT, Ahmed RAA, Goldet G, Slater H, Woodley L, Leeper FJ, Salmond GP (2005) Biosynthesis of the red antibiotic, prodigiosin, in Serratia: identification of a novel 2-methyl-3-n-amyl-pyrrole (MAP) assembly pathway, definition of the terminal condensing enzyme, and implications for undecylprodigiosin biosynthesis in Streptomyces. Mol Microbiol 56:971–989. https://doi.org/10.1111/j.1365-2958.2005.04602.x ArticleCASPubMed Google Scholar
Williamson NR, Simonsen HT, Harris AKP, Leeper FJ, Salmond GPC (2006b) Disruption of the copper efflux pump (CopA) of Serratia marcescens ATCC 274 pleiotropically affects copper sensitivity and production of the tripyrrole secondary metabolite, prodigiosin. J Ind Microbiol Biotechnol 33:151–158. https://doi.org/10.1007/s10295-005-0040-9 ArticleCASPubMed Google Scholar
Yip CH, Yarkoni O, Ajioka J, Wan KL, Nathan S (2018) Development of a codon optimization strategy using the eforRED reporter gene as a test case. AIP Conf Proc 1940:020080. https://doi.org/10.1063/1.5027995 ArticleCAS Google Scholar
Yip CH, Yarkoni O, Mario J, Ajioka J, Wan KL, Nathan S (in press) The Escherichia coli motA flagellar gene as a potential integration site for large synthetic DNA. Sains Malays