Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels (original) (raw)

References

  1. Lin, Y. L. & Blaschek, H. P. Butanol production by a butanol-tolerant strain of Clostridium acetobutylicum in extruded corn broth. Appl. Environ. Microbiol. 45, 966–973 (1983)
    CAS PubMed PubMed Central Google Scholar
  2. Nair, R. V., Bennett, G. N. & Papoutsakis, E. T. Molecular characterization of an aldehyde/alcohol dehydrogenase gene from Clostridium acetobutylicum ATCC 824. J Bacteriol. 176, 871–885 (1994)
    Article CAS Google Scholar
  3. Ingram, L. O. et al. Enteric bacterial catalysts for fuel ethanol production. Biotechnol. Prog. 15, 855–866 (1999)
    Article CAS Google Scholar
  4. Sentheshanuganathan, S. The mechanism of the formation of higher alcohols from amino acids by Saccharomyces cerevisiae . Biochem. J. 74, 568–576 (1960)
    Article CAS Google Scholar
  5. Dickinson, J. R. et al. A 13C nuclear magnetic resonance investigation of the metabolism of leucine to isoamyl alcohol in Saccharomyces cerevisiae . J. Biol. Chem. 272, 26871–26878 (1997)
    Article CAS Google Scholar
  6. Dickinson, J. R., Harrison, S. J. & Hewlins, M. J. An investigation of the metabolism of valine to isobutyl alcohol in Saccharomyces cerevisiae . J. Biol. Chem. 273, 25751–25756 (1998)
    Article CAS Google Scholar
  7. Dickinson, J. R., Harrison, S. J., Dickinson, J. A. & Hewlins, M. J. An investigation of the metabolism of isoleucine to active Amyl alcohol in Saccharomyces cerevisiae . J. Biol. Chem. 275, 10937–10942 (2000)
    Article CAS Google Scholar
  8. Dickinson, J. R. et al. The catabolism of amino acids to long chain and complex alcohols in Saccharomyces cerevisiae . J. Biol. Chem. 278, 8028–8034 (2003)
    Article CAS Google Scholar
  9. Farmer, W. R. & Liao, J. C. Improving lycopene production in Escherichia coli by engineering metabolic control. Nature Biotechnol. 18, 533–537 (2000)
    Article CAS Google Scholar
  10. Khosla, C. & Keasling, J. D. Metabolic engineering for drug discovery and development. Nature Rev. Drug Discov. 2, 1019–1025 (2003)
    Article CAS Google Scholar
  11. Barbirato, F., Grivet, J. P., Soucaille, P. & Bories, A. 3-Hydroxypropionaldehyde, an inhibitory metabolite of glycerol fermentation to 1,3-propanediol by enterobacterial species. Appl. Environ. Microbiol. 62, 1448–1451 (1996)
    CAS PubMed PubMed Central Google Scholar
  12. Zhu, M. M., Lawman, P. D. & Cameron, D. C. Improving 1,3-propanediol production from glycerol in a metabolically engineered Escherichia coli by reducing accumulation of sn-glycerol-3-phosphate. Biotechnol. Prog. 18, 694–699 (2002)
    Article CAS Google Scholar
  13. Pitera, D. J., Paddon, C. J., Newman, J. D. & Keasling, J. D. Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli . Metab. Eng. 9, 193–207 (2007)
    Article CAS Google Scholar
  14. Sentheshanmuganathan, S. & Elsden, S. R. The mechanism of the formation of tyrosol by Saccharomyces cerevisiae . Biochem. J. 69, 210–218 (1958)
    Article CAS Google Scholar
  15. Konig, S. Subunit structure, function and organisation of pyruvate decarboxylases from various organisms. Biochim. Biophys. Acta 1385, 271–286 (1998)
    Article CAS Google Scholar
  16. Hohmann, S. Characterization of PDC6, a third structural gene for pyruvate decarboxylase in Saccharomyces cerevisiae . J. Bacteriol. 173, 7963–7969 (1991)
    Article CAS Google Scholar
  17. Vuralhan, Z., Morais, M. A., Tai, S. L., Piper, M. D. & Pronk, J. T. Identification and characterization of phenylpyruvate decarboxylase genes in Saccharomyces cerevisiae . Appl. Environ. Microbiol. 69, 4534–4541 (2003)
    Article CAS Google Scholar
  18. de la Plaza, M., Fernandez de Palencia, P., Pelaez, C. & Requena, T. Biochemical and molecular characterization of α-ketoisovalerate decarboxylase, an enzyme involved in the formation of aldehydes from amino acids by Lactococcus lactis . FEMS Microbiol. Lett. 238, 367–374 (2004)
    CAS PubMed Google Scholar
  19. Russell, D. W., Smith, M., Williamson, V. M. & Young, E. T. Nucleotide sequence of the yeast alcohol dehydrogenase II gene. J. Biol. Chem. 258, 2674–2682 (1983)
    CAS PubMed Google Scholar
  20. Lutz, R. & Bujard, H. Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1–I2 regulatory elements. Nucleic Acids Res. 25, 1203–1210 (1997)
    Article CAS Google Scholar
  21. Gollop, N., Damri, B., Chipman, D. M. & Barak, Z. Physiological implications of the substrate specificities of acetohydroxy acid synthases from varied organisms. J. Bacteriol. 172, 3444–3449 (1990)
    Article CAS Google Scholar
  22. Woods, D. R. The genetic engineering of microbial solvent production. Trends Biotechnol. 13, 259–264 (1995)
    Article CAS Google Scholar
  23. Bogosian, G. et al. Biosynthesis and incorporation into protein of norleucine by Escherichia coli . J. Biol. Chem. 264, 531–539 (1989)
    CAS PubMed Google Scholar
  24. Calhoun, D. H., Rimerman, R. A. & Hatfield, G. W. Threonine deaminase from Escherichia coli. I. Purification and properties. J. Biol. Chem. 248, 3511–3516 (1973)
    CAS PubMed Google Scholar
  25. Charon, N. W., Johnson, R. C. & Peterson, D. Amino acid biosynthesis in the spirochete Leptospira: evidence for a novel pathway of isoleucine biosynthesis. J. Bacteriol. 117, 203–211 (1974)
    CAS PubMed PubMed Central Google Scholar
  26. Howell, D. M., Xu, H. & White, R. H. (R)-citramalate synthase in methanogenic archaea. . J. Bacteriol. 181, 331–333 (1999)
    CAS PubMed PubMed Central Google Scholar
  27. Xu, H. et al. Isoleucine biosynthesis in Leptospira interrogans serotype lai strain 56601 proceeds via a threonine-independent pathway. J. Bacteriol. 186, 5400–5409 (2004)
    Article CAS Google Scholar
  28. Flint, D. H., Emptage, M. H., Finnegan, M. G., Fu, W. & Johnson, M. K. The role and properties of the iron-sulfur cluster in Escherichia coli dihydroxy-acid dehydratase. J. Biol. Chem. 268, 14732–14742 (1993)
    CAS PubMed Google Scholar
  29. Miwa, K. et al. Construction of L-threonine overproducing strains of Escherichia coli K-12 using recombinant DNA techniques. Agric. Biol. Chem. 47, 2329–2334 (1983)
    CAS Google Scholar
  30. Alper, H., Moxley, J., Nevoigt, E., Fink, G. R. & Stephanopoulos, G. Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314, 1565–1568 (2006)
    Article ADS CAS Google Scholar

Download references