Ahmed RK, Biberfeld G, Thorstensson R (2005) Innate immunity in experimental SIV infection and vaccination. Mol Immunol 42:251–258 ArticlePubMedCAS Google Scholar
Altmeyer A, Maki RG, Feldweg AM, Heike M, Protopopov VP, Masur SK, Srivastava PK (1996) Tumor-specific cell surface expression of the-KDEL containing, endoplasmic reticular heat shock protein gp96. Int J Cancer 69: 340–349 ArticlePubMedCAS Google Scholar
Arispe N, De Maio A (2000) ATP and ADP modulate a cation channel formed by Hsc70 in acidic phospholipid membranes. J Biol Chem 275:30839–30843 ArticlePubMedCAS Google Scholar
Arispe N, Doh M, Simakova O, Kurganov B, De Maio A (2004) Hsc70 and Hsp70 interact with phosphatidylserine on the surface of PC12 cells resulting in a decrease of viability. FASEB J 18:1636–1645 ArticlePubMedCAS Google Scholar
Arnold-Schild D, Hanau D, Spehner D, Schmid C, Rammensee HG, de la Salle H, Schild H (1999) Cutting edge: receptor-mediated endocytosis of heat shock proteins by professional antigen-presenting cells. J Immunol 162: 3757–3760 PubMedCAS Google Scholar
Asea A, Kraeft SK, Kurt-Jones EA, Stevenson MA, Chen LB, Finberg RW, Koo GC, Calderwood SK (2000) HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 6:435–442 ArticlePubMedCAS Google Scholar
Asea A, Rehli M, Kabingu E, Boch JA, Bare O, Auron PE, Stevenson MA, Calderwood SK (2002) Novel signal transduction pathway utilized by extracellularHSP70: role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem 277: 15028–15034 ArticlePubMedCAS Google Scholar
Barreto A, Gonzalez JM, Kabingu E, Asea A, Fiorentino S (2003) Stress-induced release of HSC70 from human tumors. Cell Immunol 222:97–104 ArticlePubMedCAS Google Scholar
Basu S, Binder RJ, Ramalingham T, Srivastava PK (2001) CD91: a receptor for heat shock proteins gp96, hsp90, and calreticulin. Immunity 14:303–313 ArticlePubMedCAS Google Scholar
Bauer S, Groh V, Wu J, Steinle A, Phillips JH, Lanier LL, Spies T (1999) Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285:727–729 ArticlePubMedCAS Google Scholar
Bausinger H, Lipsker D, Ziylan U, Manie S, Briand JP, Cazenave JP, Muller S, Haeuw JF, Ravanat C, de la SH, Hanau D (2002) Endotoxin-free heat-shock protein 70 fails to induce APC activation. Eur J Immunol 32: 3708–3713 ArticlePubMedCAS Google Scholar
Becker T, Hartl FU, Wieland F (2002) CD40, an extracellular receptor for binding and uptake of Hsp70-peptide complexes. J Cell Biol 158:1277–1285 ArticlePubMedCAS Google Scholar
Beresfold PJ, Jaju M, Friedman RS, Yoon MJ, Liebermann J (1988) A role for heat shock protein 27 in CTL-mediated cell death. J Immunol 161:161–167 Google Scholar
Berwin B, Hart JP, Rice S, Gass C, Pizzo SV, Post SR, Nicchitta CV (2003) Scavenger receptor-A mediates gp96/GRP94 and calreticulin internalizationbyantigen-presenting cells. EMBO J 22:6127–6136 ArticlePubMedCAS Google Scholar
Binder RJ, Harris ML, Menoret A, Srivastava PK (2000a) Saturation, competition, and specificity in interaction of heat shock proteins (hsp) gp96, hsp90, and hsp70 with CD11b+ cells. J Immunol 165:2582–258 PubMedCAS Google Scholar
Binder RJ, Han DK, Srivastava PK (2000b) CD91: a receptor for heat shock protein gp96. Nat Immunol 1: 151–155 ArticlePubMedCAS Google Scholar
Binder RJ, Vatner R, Srivastava P (2004) The heat-shock protein receptors: some answers and more questions. Tissue Antigens 64:442–451 ArticlePubMedCAS Google Scholar
Binder RJ, Srivastava PK (2004) Essential role of CD91 in re-presentation of gp96-chaperoned peptides. Proc Natl Acad Sci U S A 101:6128–6133 ArticlePubMedCAS Google Scholar
Biragyn A, Ruffini PA, Leifer CA, Klyushnenkova E, Shakhov A, Chertov O, Shirakawa AK, Farber JM, Segal DM, Oppenheim JJ, Kwak LW (2002) Toll-like receptor 4-dependent activation of dendritic cells by beta-defensin 2. Science 298:1025–1029 ArticlePubMedCAS Google Scholar
Blachere NE, Li Z, Chandawarkar RY, Suto R, Jaikaria NS, Basu S, Udono H, Srivastava PK (1997) Heat shock protein-peptide complexes, reconstituted in vitro, elicit peptidespecific cytotoxic T lymphocyte response and tumor immunity. J Exp Med 186:1315–1322 ArticlePubMedCAS Google Scholar
Bogers WM, Bergmeier LA, Oostermeijer H, ten Haaft P, Wang Y, Kelly CG, Singh M, Heeney JL, Lehner T (2004) CCR5 targeted SIV vaccination strategy preventing or inhibiting SIV infection. Vaccine 22:2974–2984 ArticlePubMedCAS Google Scholar
Botzler C, Kolb HJ, Issels RD, Multhoff G (1996) Noncytotoxic alkyl-lysophospholipid treatment increases sensitivity of leukemic K562 cells to lysis by natural killer (NK) cells. Int J Cancer 65:633–638 ArticlePubMedCAS Google Scholar
Botzler C, Li G, Issels RD, Multhoff G (1998) Definition of extracellular localized epitopes of Hsp70 involved in an NK immune response. Cell Stress Chaperones 3:6–11 ArticlePubMedCAS Google Scholar
Braud VM, Allan DS, O’Callaghan CA, Soderstrom K, D’Andrea A, Ogg GS, Lazetic S, Young NT, Bell JI, Phillips JH, Lanier LL, McMichael AJ (1998) HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature 391:795–799 ArticlePubMedCAS Google Scholar
Breloer M, Marti T, Fleischer B, von Bonin A (1998) Isolation of processed, H-2Kb-binding ovalbumin-derived peptides associated with the stress proteins HSP70 and gp96. Eur J Immunol 28:1016–1021 ArticlePubMedCAS Google Scholar
Broquet AH, Thomas G, Masliah J, Trugnan G, Bachelet M (2003) Expression of the molecular chaperone Hsp70 in detergent-resistant microdomains correlates with its membrane delivery and release. J Biol Chem 278: 21601–21606 ArticlePubMedCAS Google Scholar
Castelli C, Rivoltini L, Rini F, Belli F, Testori A, Maio M, Mazzaferro V, Coppa J, Srivastava PK, Parmiani G (2004) Heat shock proteins: biological functions and clinical application as personalized vaccines for human cancer. Cancer Immunol Immunother 53:227–233 ArticlePubMedCAS Google Scholar
Chandawarkar RY, Wagh MS, Kovalchin JT, Srivastava P (2004) Immune modulation with high-dose heat-shock protein gp96: therapy of murine autoimmune diabetes and encephalomyelitis. Int Immunol 16:615–624 ArticlePubMedCAS Google Scholar
Chen X, Tao Q, Yu H, Zhang L, Cao X (2002) Tumor cell membrane-bound heat shock protein 70 elicits antitumor immunity. Immunol Lett 84:81–87 ArticlePubMedCAS Google Scholar
Chu NR, Wu HB, Wu TC, Boux LJ, Mizzen LA, Siegel MI (2000) Immunotherapy of a human papillomavirus type 16 E7-expressing tumor by administration of fusion protein comprised of Mycobacterium bovis BCG Hsp65 and HPV16 E7. Cell Stress Chaperones 5:401–405 ArticlePubMedCAS Google Scholar
Ciocca DR, Rozados VR, Cuello Carrion FD, Gervasoni SI, Matar P, Scharovsky OG (2003) Hsp25 and Hsp70 in rodent tumors treated with doxorubicin and lovastatin. Cell Stress Chaperones 8:26–36 ArticlePubMedCAS Google Scholar
Ciupitu AM, Petersson M, O’Donnell CL, Williams K, Jindal S, Kiessling R, Welsh RM (1998) Immunization with a lymphocytic choriomeningitis virus peptide mixed with heat shock protein 70 results in protective antiviral immunity and specific cytotoxic T lymphocytes. J Exp Med 187:685–691 ArticlePubMedCAS Google Scholar
Cosman D, Mullberg J, Fanslow W, Armitage R, Chin W, Cassiano I (2004) The human cytomegalovirus (HCMV) glycoprotein, UL16, binds to theMHC class I-related protein, MICB/PERB11, and to two novel, MHC class I related molecules ULBP1 and ULBP2. FASEB J 14:1018–1023 Google Scholar
Csermely P (2001) A nonconventional role of molecular chaperones: involvement in the cytoarchitecture. News Physiol Sci 16:123–126 PubMedCAS Google Scholar
Delneste Y, Magistrelli G, Gauchat J, Haeuw J, Aubry J, Nakamura K, Kawakami-Honda N, Goetsch L, Sawamura T, Bonnefoy J, Jeannin P (2002) Involvement of LOX-1 in dendritic cell-mediated antigen cross-presentation. Immunity 17:353–362 ArticlePubMedCAS Google Scholar
Di Cesare S, Poccia F, Mastino A, Colizzi V (1992) Surface expressed heat-shock proteins by stressed or human immunodeficiency virus (HIV)-infected lymphoid cells represent the target for antibody-dependent cellular cytotoxicity. Immunology 76:341–343 PubMed Google Scholar
Doody AD, Kovalchin JT, Mihalyo MA, Hagymasi AT, Drake CG, Adler AJ (2004) Glycoprotein 96 can chaperone both MHC class I-and class II-restricted epitopes for in vivo presentation, but selectively primes CD8+ T cell effector function. J Immunol 172:6087–6092 PubMedCAS Google Scholar
Feige U, Gasser J (1994) Therapeutic intervention with mycobacterial 65 kDa heat shock protein peptide 180-188 in adjuvant arthritis in Lewis rats. Immunobiol 191:281–288 Google Scholar
Fuller KJ, Issels RD, Slosman DO, Guillet JG, Soussi T, Polla BS (1994) Cancer and the heat shock response. Eur J Cancer 30:1884–1891 Article Google Scholar
Gastpar R, Gross C, Rossbacher L, Ellwart J, Riegger J, Multhoff G (2004) The cell surface-localized heat shock protein 70 epitope TKD induces migration and cytolytic activity selectively in human NK cells. J Immunol 172: 972–980 PubMedCAS Google Scholar
Gehrmann M, Pfister K, Hutzler P, Gastpar R, Margulis B, Multhoff G (2002) Effects of anti-neoplastic agents on cytoplasmic and membrane-bound heat shock protein 70 (Hsp70) levels. Biol Chem 383:1715–1725 ArticlePubMedCAS Google Scholar
Gehrmann M, Schmetzer H, Eissner G, Haferlach T, Hiddemann W, Multhoff G (2003) Membrane-bound heat shock protein 70 (Hsp70) in acute myeloid leukemia: a tumor specific recognition structure for the cytolytic activity of autologous NK cells. Haematologica 88:474–476 PubMed Google Scholar
Gehrmann M, Brunner M, Pfister K, Reichle A, Kremmer E, Multhoff G (2004) Differential up-regulation of cytosolic and membrane-bound heat shock protein 70 in tumor cells by anti-inflammatory drugs. Clin Cancer Res 10: 3354–3364 ArticlePubMedCAS Google Scholar
Gehrmann M, Marienhagen J, Eichholtz-Wirth H, Fritz E, Ellwart J, Jaattela M, Zilch T, Multhoff G (2005) Dual function of membrane-bound heat shock protein 70 (Hsp70), Bag-4, and Hsp40: protection against radiation-induced effects and target structure for natural killer cells. Cell Death Differ 12:38–51 ArticlePubMedCAS Google Scholar
Graeff-Meeder ER, van Eden W, Rijkers GT, Prakken BJ, Kuis W, Voorhorst-Ogink MM, van der ZR, Schuurman HJ, Helders PJ, Zegers BJ (1995) Juvenile chronic arthritis: T cell reactivity to human HSP60 in patients with a favorable course of arthritis. J Clin Invest 95:934–940 ArticlePubMed Google Scholar
Gross C, Hansch D, Gastpar R, Multhoff G (2003a) Interaction of heat shock protein 70 peptide with NK cells involves the NK receptor CD94. Biol Chem 384:267–279 ArticlePubMedCAS Google Scholar
Gross C, Schmidt-Wolf IG, Nagaraj S, Gastpar R, Ellwart J, Kunz-Schughart LA, Multhoff G (2003b) Heat shock protein 70-reactivity is associated with increased cell surface density of CD94/CD56 on primary natural killer cells. Cell Stress Chaperones 8:348–360 ArticlePubMedCAS Google Scholar
Gross C, Koelch W, DeMaio A, Arispe N, Multhoff G (2003c) Cell surface-bound heat shock protein 70 (Hsp70) mediates perforin-independent apoptosis by specific binding and uptake of granzyme B. J Biol Chem 278: 41173–41181 ArticlePubMedCAS Google Scholar
Guillot L, Balloy V, McCormack FX, Golenbock DT, Chignard M, Si-Tahar M (2002) Cutting edge: the immunostimulatory activity of the lung surfactant protein-A involves Toll-like receptor 4. J Immunol 168: 5989–5992 PubMedCAS Google Scholar
Habich C, Baumgart K, Kolb H, Burkart V (2002) The receptor for heat shock protein 60 on macrophages is saturable, specific, and distinct from receptors for other heat shock proteins. J Immunol 168:569–576 PubMedCAS Google Scholar
Hanna J, Bechtel P, Zhai Y, Youssef F, McLachlan K, Mandelboim O (2004) Novel insights on human NK cells’ immunological modalities revealed by gene expression profiling. J Immunol 173:6547–6563 PubMedCAS Google Scholar
Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852–1858 ArticlePubMedCAS Google Scholar
Hickman-Miller HD, Hildebrand WH (2004) The immune response under stress: the role of HSP-derived peptides. Trends Immunol 25:427–433 ArticlePubMedCAS Google Scholar
Hightower LE (1980) Cultured animal cells exposed to amino acid analogues or puromycin rapidly synthesize several polypeptides. J Cell Physiol 102:407–427 ArticlePubMedCAS Google Scholar
Hoos A, Levey DL (2003) Vaccination with heat shock protein-peptide complexes: from basic science to clinical applications. Expert Rev Vaccines 2:369–379 ArticlePubMedCAS Google Scholar
Huang Q, Richmond JF, Suzue K, Eisen HN, Young RA (2000) In vivo cytotoxic T lymphocyte elicitation by mycobacterial heat shock protein 70 fusion proteins maps to a discrete domain and is CD4(+) T cell independent. J Exp Med 191:403–408 ArticlePubMedCAS Google Scholar
Hunter-Lavin C, Davies EL, Bacelar MM, Marshall MJ, Andrew SM, Williams JH (2004) Hsp70 release from peripheral blood mononuclear cells. Biochem Biophys Res Commun 324:511–517 ArticlePubMedCAS Google Scholar
Johnson GB, Brunn GJ, Kodaira Y, Platt JL (2002) Receptor-mediated monitoring of tissue well-being via detection of soluble heparan sulfate by Toll-like receptor 4. J Immunol 168:5233–5239 PubMedCAS Google Scholar
Kol A, Lichtman AH, Finberg RW, Libby P, Kurt-Jones EA (2000) Cutting edge: heat shock protein (HSP) 60 activates the innate immune response: CD14 is an essential receptor for HSP60 activation of mononuclear cells. J Immunol 164:13–17 PubMedCAS Google Scholar
Kuppner MC, Gastpar R, Gelwer S, Nossner E, Ochmann O, Scharner A, Issels RD (2001) The role of heat shock protein (hsp70) in dendritic cell maturation: hsp70 induces the maturation of immature dendritic cells but reduces DC differentiation from monocyte precursors. Eur J Immunol 31:1602–1609 ArticlePubMedCAS Google Scholar
Lamb JR, Bal V, Mendez-Samperio P, Mehlert A, So A, Rothbard J, Jindal S, Young RA, Young DB (1989) Stress proteins may provide a link between the immune response to infection and autoimmunity. Int Immunol 1:191–196 ArticlePubMedCAS Google Scholar
Lammert E, Arnold D, Nijenhuis M, Momburg F, Hammerling GJ, Brunner J, Stevanovic S, Rammensee HG, Schild H (1997) The endoplasmic reticulum-resident stress protein gp96 binds peptides translocated by TAP. Eur J Immunol 27:923–927 ArticlePubMedCAS Google Scholar
Lanier LL, Ruitenberg JJ, Phillips JH (1988) Functional and biochemical analysis of CD16 antigen on natural killer cells and granulocytes. J Immunol 141:3478–3485 PubMedCAS Google Scholar
Lanier LL, Corliss B, Wu J, Phillips JH (1998) Association of DAP12 with activating CD94/NKG2C NK cell receptors. Immunity 8:693–701 ArticlePubMedCAS Google Scholar
Lehner T, Wang Y, Whittall T, McGowan E, Kelly CG, Singh M (2004) Functional domains of HSP70 stimulate generation of cytokines and chemokines, maturation of dendritic cells and adjuvanticity. Biochem Soc Trans 32: 629–632 ArticlePubMedCAS Google Scholar
Ljunggren HG, Karre K (1990) In search of the ‘missing self’: MHC molecules and NK cell recognition. Immunol Today 11:237–244 ArticlePubMedCAS Google Scholar
Long EO (1999) Regulation of immune responses through inhibitory receptors. Annu Rev Immunol 17:875–904 ArticlePubMedCAS Google Scholar
Lukacs KV, Lowrie DB, Stokes RW, Colston MJ (1993) Tumor cells transfected with a bacterial heat-shock gene lose tumorigenicity and induce protection against tumors. J Exp Med 178:343–348 ArticlePubMedCAS Google Scholar
Massa C, Guiducci C, Arioli I, Parenza M, Colombo MP, Melani C (2004) Enhanced efficacy of tumor cell vaccines transfected with secretable hsp70. Cancer Res 64:1502–1508 ArticlePubMedCAS Google Scholar
Matzinger P (2002) The danger model: a renewed sense of self. cience 296:301–305 CAS Google Scholar
Medzhitov R, Preston-Hurlburt P, Janeway CA Jr (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388:394–397 ArticlePubMedCAS Google Scholar
Menoret A, Patry Y, Burg C, Le Pendu J (1995) Co-segregation of tumor immunogenicity with expression of inducible but not constitutive hsp70 in rat colon carcinomas. J Immunol 155:740–747 PubMedCAS Google Scholar
Menoret A, Chandawarkar R (1998) Heat-shock protein-based anticancer immunotherapy: an idea whose time has come. Semin Oncol 25:654–660 PubMedCAS Google Scholar
Michaelsson J, Teixeira DM, Achour A, Lanier LL, Karre K, Soderstrom K (2002) A signal peptide derived from hsp60 binds HLA-E and interferes with CD94/NKG2A recognition. J Exp Med 196:1403–1414 ArticlePubMedCAS Google Scholar
Milarski KL, Welch WJ, Morimoto RI (1989) Cell cycle-dependent association of HSP70 with specific cellular proteins. J Cell Biol 108:413–423 ArticlePubMedCAS Google Scholar
Mizzen L (1998) Immune responses to stress proteins: applications to infectious disease and cancer. Biotherapy 10:173–189 ArticlePubMedCAS Google Scholar
Moretta A, Bottino C, Vitale M, Pende D, Cantoni C, Mingari MC, Biassoni R, Moretta L (2001) Activating receptors and co-receptors involved in human natural killer cell-mediated cytolysis. Annu Rev Immunol 19: 197–223 ArticlePubMedCAS Google Scholar
Morimoto RI (1993) Cells in stress: transcriptional activation of heat shock genes. Science 259:1409–1410 ArticlePubMedCAS Google Scholar
Multhoff G, Botzler C, Wiesnet M, Muller E, Meier T, Wilmanns W, Issels RD (1995a) A stress-inducible 72-kDa heat-shock protein (HSP72) is expressed on the surface of human tumor cells, but not on normal cells. Int J Cancer 61:272–279 ArticlePubMedCAS Google Scholar
Multhoff G, Botzler C, Wiesnet M, Eissner G, Issels R (1995b) CD3-large granular lymphocytes recognize a heat-inducible immunogenic determinant associated with the 72-kD heat shock protein on human sarcoma cells. Blood 86:1374–1382 PubMedCAS Google Scholar
Multhoff G, Botzler C, Jennen L, Ellwart J, Issels R (1997) Heat shock protein cell surface expression on colon carcinoma cells correlates with the sensitivity to lysis mediated by NK cells. J Immunol 158:4341–4350 PubMedCAS Google Scholar
Multhoff G, Mizzen L, Winchester CC, Milner CM, Wenk S, Eissner G, Kampinga HH, Laumbacher B, Johnson J (1999) Heat shock protein 70 (Hsp70) stimulates proliferation and cytolytic activity of natural killer cells. Exp Hematol 27:1627–1636 ArticlePubMedCAS Google Scholar
Multhoff G, Pfister K, Botzler C, Jordan A, Scholz R, Schmetzer H, Burgstahler R, Hiddemann W (2000) Adoptive transfer of human natural killer cells in mice with severe combined immunodeficiency inhibits growth of Hsp70-expressing tumors. Int J Cancer 88:791–797 ArticlePubMedCAS Google Scholar
Nicchitta CV (1998) Biochemical, cell biological and immunological issues surrounding the endoplasmic reticulum chaperone GRP94/gp96. Curr Opin Immunol 10:103–109 ArticlePubMedCAS Google Scholar
Nieland TJ, Tan MC, Monne-van Muijen M, Koning F, Kruisbeek AM, van Bleek GM (1996) Isolation of an immunodominant viral peptide that is endogenously bound to the stress protein GP96/GRP94. Proc Natl Acad Sci U S A 93:6135–6139 ArticlePubMedCAS Google Scholar
Nylandsted J, Gyrd-Hansen M, Danielewicz A, Fehrenbacher N, Lademann U, Hoyer-Hansen M, Weber E, Multhoff G, Rohde M, Jaattela M (2004) Heat shock protein 70 promotes cell survival by inhibiting lysosomal membrane permeabilization. J Exp Med 200:425–435 ArticlePubMedCAS Google Scholar
Nylandsted J, Rohde M, Brand K, Bastholm L, Elling F, Jaattela M (2000) Selective depletion of heat shock protein 70 (Hsp70) activates a tumor-specific death program that is independent of caspases and bypasses Bcl-2. Proc Natl Acad Sci U S A 97:7871–7876 ArticlePubMedCAS Google Scholar
Ogden CA, de Cathelineau A, Hoffmann PR, Bratton D, Ghebrehiwet B, Fadok VA, Henson PM (2001) C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells. J Exp Med 194:781–795 ArticlePubMedCAS Google Scholar
Oglesbee MJ, Pratt M, Carsillo T (2002) Role for heat shock proteins in the immune response to measles virus infection. Viral Immunol 15:399–416 ArticlePubMedCAS Google Scholar
Okamura Y, Watari M, Jerud ES, Young DW, Ishizaka ST, Rose J, Chow JC, Strauss JF III (2001) The extra domain A of fibronectin activates Toll-like receptor 4. J Biol Chem 276:10229–10233 ArticlePubMedCAS Google Scholar
Panjwani NN, Popova L, Srivastava PK (2002) Heat shock proteins gp96 and hsp70 activate the release of nitric oxide by APCs. J Immunol 168:2997–3003 PubMedCAS Google Scholar
Park JS, Svetkauskaite D, He Q, Kim JY, Strassheim D, Ishizaka A, Abraham E (2004) Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J Biol Chem 279:7370–7377 ArticlePubMedCAS Google Scholar
Phipps PA, Stanford MR, Sun JB, Xiao BG, Holmgren J, Shinnick T, Hasan A, Mizushima Y, Lehner T (2003) Prevention of mucosally induced uveitis with a HSP60-derived peptide linked to cholera toxin B subunit. Eur J Immunol 33:224–232 ArticlePubMedCAS Google Scholar
Pierce SK (1994) Molecular chaperones in the processing and presentation of antigen to helper T cells. Experientia 50:1026–1030 ArticlePubMedCAS Google Scholar
Pockley AG (2003) Heat shock proteins as regulators of the immune response. Lancet 362:469–476 ArticlePubMedCAS Google Scholar
Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B, Beutler B (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282:2085–2088 ArticlePubMedCAS Google Scholar
Ritossa FM (1962) A new puffing pattern induced by a temperature shock and DNP in Drosophila. Experientia 18:571–573 ArticleCAS Google Scholar
Sarge KD, Murphy SP, Morimoto RI (1993) Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Mol Cell Biol 13:1392–1407 PubMedCAS Google Scholar
Schild H, Rammensee HG (2000) gp96—the immune system’s Swiss army knife. Nat Immunol 1: 100–101 ArticlePubMedCAS Google Scholar
SenGupta D, Norris PJ, Suscovich TJ, Hassan-Zahraee M, Moffett HF, Trocha A, Draenert R, Goulder PJ, Binder RJ, Levey DL, Walker BD, Srivastava PK, Brander C (2004) Heat shock protein-mediated cross-presentation of exogenous HIV antigen on HLA class I and class II. J Immunol 173:1987–1993 PubMedCAS Google Scholar
Shin BK, Wang H, Yim AM, Le Naour F, Brichory F, Jang JH, Zhao R, Puravs E, Tra J, Michael CW, Misek DE, Hanash SM (2003) Global profiling of the cell surface proteome of cancer cells uncovers an abundance of proteins with chaperone function. J Biol Chem 278:7607–7616 ArticlePubMedCAS Google Scholar
Singh-Jasuja H, Toes RE, Spee P, Munz C, Hilf N, Schoenberger SP, Ricciardi-Castagnoli P, Neefjes J, Rammensee HG, Arnold-Schild D, Schild H (2000) Cross-presentation of glycoprotein 96-associated antigens on major histocompatibility complex class Imolecules requires receptor-mediated endocytosis. J Exp Med 191:1965–1974 ArticlePubMedCAS Google Scholar
Smiley ST, King JA, Hancock WW (2001) Fibrinogen stimulates macrophage chemokine secretion through toll-like receptor 4. J Immunol 167:2887–2894 PubMedCAS Google Scholar
Spee P, Neefjes J (1997) TAP-translocated peptides specifically bind proteins in the endoplasmic reticulum, including gp96, protein disulfide isomerase and calreticulin. Eur J Immunol 27:2441–2449 ArticlePubMedCAS Google Scholar
Srivastava PK (1994) Heat shock proteins in immune response to cancer: the fourth paradigm. Experientia 50: 1054–1060 ArticlePubMedCAS Google Scholar
Srivastava PK, Menoret A, Basu S, Binder RJ, McQuade KL (1998) Heat shock proteins come of age: primitive functions acquire new roles in an adaptive world. Immunity 8:657–665 ArticlePubMedCAS Google Scholar
Stanford M, Whittall T, Bergmeier LA, Lindblad M, Lundin S, Shinnick T, Mizushima Y, Holmgren J, Lehner T (2004) Oral tolerization with peptide 336-351 linked to cholera toxin B subunit in preventing relapses of uveitis in Behçet’s disease. Clin Exp Immunol 137:201–208 ArticlePubMedCAS Google Scholar
Suzue K, Zhou X, Eisen HN, Young RA (1997) Heat shock fusion proteins as vehicles for antigen delivery into themajor histocompatibility complex class I presentation pathway. Proc Natl Acad Sci U S A 94:13146–13151 ArticlePubMedCAS Google Scholar
Tanaka S, Kimura Y, Mitani A, Yamamoto G, Nishimura H, Spallek R, Singh M, Noguchi T, Yoshikai Y (1999a) Activation of T cells recognizing an epitope of heat-shock protein 70 can protect against rat adjuvant arthritis. J Immunol 163:5560–5565 PubMedCAS Google Scholar
Tanaka T, Yamakawa N, Koike N, Suzuki J, Mizuno F, Usui M (1999b) Behçet’s disease and antibody titers to various heat-shock protein 60s. Ocul Immunol Inflamm 7:69–74 ArticlePubMedCAS Google Scholar
Termeer C, Benedix F, Sleeman J, Fieber C, Voith U, Ahrens T, Miyake K, Freudenberg M, Galanos C, Simon JC (2002) Oligosaccharides of hyaluronan activate dendritic cells via toll-like receptor 4. J Exp Med 195: 99–111 ArticlePubMedCAS Google Scholar
Tobian AA, Canaday DH, Boom WH, Harding CV (2004) Bacterial heat shock proteins promote CD91-dependent class I MHC cross-presentation of chaperoned peptide to CD8+ T cells by cytosolic mechanisms in dendritic cells versus vacuolar mechanisms in macrophages. J Immunol 172:5277–5286 PubMedCAS Google Scholar
Todryk SM, Gough MJ, Pockley AG (2003) Facets of heat shock protein 70 show immunotherapeutic potential. Immunology 110:1–9 ArticlePubMedCAS Google Scholar
Triantafilou M, Triantafilou K (2004) Heat-shock protein 70 and heat-shock protein 90 associate with Toll-like receptor 4 in response to bacterial lipopolysaccharide. Biochem Soc Trans 32:636–639 ArticlePubMedCAS Google Scholar
Udono H, Levey DL, Srivastava PK (1994) Cellular requirements for tumor-specific immunity elicited by heat shock proteins: tumor rejection antigen gp96 primes CD8+ T cells in vivo. Proc Natl Acad Sci U S A 91:3077–3081 ArticlePubMedCAS Google Scholar
Udono H, Srivastava PK (1993) Heat shock protein 70-associated peptides elicit specific cancer immunity. J Exp Med 178:1391–1396 ArticlePubMedCAS Google Scholar
Uittenbogaard A, Ying Y, Smart EJ (1998) Characterization of a cytosolic heat shock protein-caveolin chaperone complex. Involvement in cholesterol trafficking. J Biol Chem 273:6525–6532 ArticlePubMedCAS Google Scholar
Vabulas RM, Ahmad-Nejad P, Da Costa C, Miethke T, Kirschning CJ, Hacker H, Wagner H (2001) Endocytosed HSP60s use toll-like receptor 2 (TLR2) and TLR4 to activate the toll/interleukin-1 receptor signaling pathway in innate immune cells. J Biol Chem 276:31332–31339 ArticlePubMedCAS Google Scholar
Vabulas RM, Braedel S, Hilf N, Singh-Jasuja H, Herter S, Ahmad-Nejad P, Kirschning CJ, Da Costa C, Rammensee HG, Wagner H, Schild H (2002) The endoplasmic reticulum-resident heat shock protein Gp96 activates dendritic cells via the Toll-like receptor 2/4 pathway. J Biol Chem 277:20847–20853 ArticlePubMedCAS Google Scholar
Van Eden W, Thole JE, van der Zee R, Noordzij A, van Embden JD, Hensen EJ, Cohen IR (1988) Cloning of the mycobacterial epitope recognized by T lymphocytes in adjuvant arthritis. Nature 331:171–173 ArticlePubMed Google Scholar
Van Eden W, Anderton SM, van der Zee R, Prakken BJ, Broeren CP, Wauben MH (1996) (Altered) self peptides and the regulation of self reactivity in the peripheral T cell pool. Immunol Rev 149:55–73 ArticlePubMed Google Scholar
Van Eden W, Koets A, van Kooten P, Prakken B, van der ZR (2003) Immunopotentiating heat shock proteins: negotiators between innate danger and control of autoimmunity. Vaccine 21:897–901 ArticlePubMed Google Scholar
Wang XY, Kaneko Y, Repasky E, Subjeck JR (2000) Heat shock proteins and cancer immunotherapy. Immunol Invest 29:131–137 ArticlePubMedCAS Google Scholar
Wang XY, Kazim L, Repasky EA, Subjeck JR (2001) Characterization of heat shock protein 110 and glucose-regulated protein 170 as cancer vaccines and the effect of fever-range hyperthermia on vaccine activity. J Immunol 166: 490–497 PubMedCAS Google Scholar
Wang Y, Kelly CG, Singh M, McGowan EG, Carrara AS, Bergmeier LA, Lehner T (2002) Stimulation of Th1-polarizing cytokines, CC chemokines, maturation of dendritic cells, and adjuvant function by the peptide binding fragment of heat shock protein 70. J Immunol 169:2422–2429 PubMedCAS Google Scholar
Wang M-H, Grossman ME, Young CYE (2004) Forced expression of Hsp70 increases the secretion of Hsp70 and provides protection against tumor growth. Br J Cancer 90:926–931 ArticlePubMedCAS Google Scholar
Wells AD, Malkovsky M (2000) Heat shock proteins, tumor immunogenicity and antigen presentation: an integrated view. Immunol Today 21:129–132 ArticlePubMedCAS Google Scholar
Wendling U, Paul L, van der Zee R, Prakken B, Singh M, van Eden W (2000) A conserved mycobacterial heat shock protein (hsp) 70 sequence prevents adjuvant arthritis upon nasal administration and induces IL-10-producing T cells that cross-react with the mammalian self-hsp70 homologue. J Immunol 164:2711–2717 PubMedCAS Google Scholar
Zheng H, Li Z (2004) Cutting edge: cross-presentation of cell-associated antigens to MHC class I molecule is regulated by a major transcription factor for heat shock proteins. J Immunol 173:5929–5933 PubMedCAS Google Scholar
Zugel U, Sponaas AM, Neckermann J, Schoel B, Kaufmann SH (2001) gp96-peptide vaccination of mice against intracellular bacteria. Infect Immun 69:4164–4167 ArticlePubMedCAS Google Scholar