Pharmacological Inhibition of Endocytic Pathways: Is It Specific Enough to Be Useful? (original) (raw)
References
1. Conner, S.D., and Schmid, S.L. (2003) Regulated portals of entry into the cell. Nature422, 37–44. ArticleCASPubMed Google Scholar
2. Marsh, M., and McMahon, H.T. (1999) The structural era of endocytosis. Science285, 215–220. ArticleCASPubMed Google Scholar
3. Parton, R.G., and Richards, A.A. (2003) Lipid rafts and caveolae as portals for endocytosis: new insights and common mechanisms. Traffic4, 724–738. ArticleCASPubMed Google Scholar
4. Amyere, M., Mettlen, M., Van Der Smissen, P., et al. (2002) Origin, originality, functions, subversions and molecular signalling of macropinocytosis. Int. J. Med. Microbiol. 291, 487–494. ArticleCASPubMed Google Scholar
5. Niedergang, F., and Chavrier, P. (2004) Signaling and membrane dynamics during phagocytosis: many roads lead to the phagos(R)ome. Curr. Opin. Cell Biol. 16, 422–428. ArticleCASPubMed Google Scholar
7. Davies, P.J., Davies, D.R., Levitzki, A., et al. (1980) Transglutaminase is essential in receptor-mediated endocytosis of alpha 2-macroglobulin and polypeptide hormones. Nature283, 162–167. ArticleCASPubMed Google Scholar
8. Larkin, J.M., Brown, M.S., Goldstein, J.L., and Anderson, R.G. (1983) Depletion of intracellular potassium arrests coated pit formation and receptor-mediated endocytosis in fibroblasts. Cell33, 273–285. ArticleCASPubMed Google Scholar
9. Daukas, G., and Zigmond, S.H. (1985) Inhibition of receptor-mediated but not fluid-phase endocytosis in polymorphonuclear leukocytes. J. Cell Biol. 101, 1673–1679. ArticleCASPubMed Google Scholar
10. Hansen, S.H., Sandvig, K., and van Deurs, B. (1993) Clathrin and HA2 adaptors: effects of potassium depletion, hypertonic medium, and cytosol acidification. J. Cell Biol. 121, 61–72. ArticleCASPubMed Google Scholar
11. Inal, J., Miot, S., and Schifferli, J.A. (2005) The complement inhibitor, CRIT, undergoes clathrin-dependent endocytosis. Exp. Cell Res. 310, 54–65. ArticleCASPubMed Google Scholar
12. Tulapurkar, M.E., Schafer, R., Hanck, T., et al. (2005) Endocytosis mechanism of P2Y2 nucleotide receptor tagged with green fluorescent protein: clathrin and actin cytoskeleton dependence. Cell. Mol. Life Sci. 62, 1388–1399. ArticleCASPubMed Google Scholar
13. Yao, D., Ehrlich, M., Henis, Y.I., and Leof, E.B. (2002) Transforming growth factor-β receptors interact with AP2 by direct binding to β2 subunit. Mol. Biol. Cell13, 4001–4012. ArticleCASPubMed Google Scholar
14. Carpentier, J.L., Sawano, F., Geiger, D., et al. (1989) Potassium depletion and hypertonic medium reduce “non-coated” and clathrin-coated pit formation, as well as endocytosis through these two gates. J. Cell Physiol. 138, 519–526. ArticleCASPubMed Google Scholar
15. Bradley, J.R., Johnson, D.R., and Pober, J.S. (1993) Four different classes of inhibitors of receptor-mediated endocytosis decrease tumor necrosis factor-induced gene expression in human endothelial cells. J. Immunol. 150, 5544–5555. CASPubMed Google Scholar
16. Synnes, M., Prydz, K., Lovdal, T., Brech, A., and Berg, T. (1999) Fluid phase endocytosis and galactosyl receptor-mediated endocytosis employ different early endosomes. Biochim. Biophys. Acta1421, 317–328. ArticleCASPubMed Google Scholar
17. Page, E., Winterfield, J., Goings, G., Bastawrous, A., and Upshaw-Earley, J. (1998) Water channel proteins in rat cardiac myocyte caveolae: osmolarity-dependent reversible internalization. Am. J. Physiol. 274, H1988–H2000. CASPubMed Google Scholar
18. Malek, A.M., Xu, C., Kim, E.S., and Alper, S.L. (2006) Hypertonicity triggers RhoA-dependent assembly of myosin-containing striated polygonal actin networks in endothelial cells. Am. J. Physiol. Cell Physiol. 292, C1645–C1659. ArticlePubMedCAS Google Scholar
19. Bustamante, M., Roger, F., Bochaton-Piallat, M.L., et al. (2003) Regulatory volume increase is associated with p38 kinase-dependent actin cytoskeleton remodeling in rat kidney MTAL. Am. J. Physiol. Renal Physiol. 285, F336–F347. CASPubMed Google Scholar
20. Liu, J., Kesiry, R., Periyasamy, S.M., et al. (2004) Ouabain induces endocytosis of plasmalemmal Na/K-ATPase in LLC-PK1 cells by a clathrin-dependent mechanism. Kidney Int. 66, 227–241. ArticleCASPubMed Google Scholar
21. Idkowiak-Baldys, J., Becker, K.P., Kitatani, K., and Hannun, Y.A. (2006) Dynamic sequestration of the recycling compartment by classical protein kinase C. J. Biol. Chem. 281, 22321–22331. ArticleCASPubMed Google Scholar
22. Cupers, P., Veithen, A., Kiss, A., Baudhuin, P., and Courtoy, P.J. (1994) Clathrin polymerization is not required for bulk-phase endocytosis in rat fetal fibroblasts. J. Cell Biol. 127, 725–735. ArticleCASPubMed Google Scholar
23. Yumoto, R., Nishikawa, H., Okamoto, M., et al. (2006) Clathrin-mediated endocytosis of FITC-albumin in alveolar type II epithelial cell line RLE-6TN. Am. J. Physiol. Lung Cell Mol. Physiol. 290, L946–L955. ArticleCASPubMed Google Scholar
24. Altankov, G., and Grinnell, F. (1993) Depletion of intracellular potassium disrupts coated pits and reversibly inhibits cell polarization during fibroblast spreading. J. Cell Biol. 120, 1449–1459. ArticleCASPubMed Google Scholar
25. Rajasekaran, S.A., Palmer, L.G., Moon, S.Y., et al. (2001) Na,K-ATPase activity is required for formation of tight junctions, desmosomes, and induction of polarity in epithelial cells. Mol. Biol. Cell12, 3717–3732. CASPubMed Google Scholar
26. Cosson, P., de Curtis, I., Pouyssegur, J., Griffiths, G., and Davoust, J. (1989) Low cytoplasmic pH inhibits endocytosis and transport from the _trans_-Golgi network to the cell surface. J. Cell Biol. 108, 377–387. ArticleCASPubMed Google Scholar
27. Ivanov, A.I., Nusrat, A., and Parkos, C.A. (2004) Endocytosis of epithelial apical junctional proteins by a clathrin-mediated pathway into a unique storage compartment. Mol. Biol. Cell15, 176–188. ArticleCASPubMed Google Scholar
28. Sandvig, K., Olsnes, S., Petersen, O.W., and van Deurs, B. (1987) Acidification of the cytosol inhibits endocytosis from coated pits. J. Cell Biol. 105, 679–689. ArticleCASPubMed Google Scholar
29. Eker, P., Holm, P.K., van Deurs, B., and Sandvig, K. (1994) Selective regulation of apical endocytosis in polarized Madin–Darby canine kidney cells by mastoparan and cAMP. J. Biol. Chem. 269, 18607–18615. CASPubMed Google Scholar
30. Suzuki, K., and Namiki, H. (2007) Cytoplasmic pH-dependent spreading of polymorphonuclear leukocytes: regulation by pH of PKC subcellular distribution and F-actin assembly. Cell Biol. Int. 31, 279–288. ArticleCASPubMed Google Scholar
31. Huotari, V., Vaaraniemi, J., Lehto, V.P., and Eskelinen, S. (1996) Regulation of the disassembly/assembly of the membrane skeleton in Madin–Darby canine kidney cells. J. Cell Physiol. 167, 121–130. ArticleCASPubMed Google Scholar
32. Wang, L.H., Rothberg, K.G., and Anderson, R.G. (1993) Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation. J. Cell Biol. 123, 1107–1117. ArticleCASPubMed Google Scholar
33. Elferink, J.G. (1979) Chlorpromazine inhibits phagocytosis and exocytosis in rabbit polymorphonuclear leukocytes. Biochem. Pharmacol. 28, 965–968. ArticleCASPubMed Google Scholar
34. Watanabe, S., Hirose, M., Miyazaki, A., et al. (1988) Calmodulin antagonists inhibit the phagocytic activity of cultured Kupffer cells. Lab. Invest. 59, 214–218. CASPubMed Google Scholar
35. Ogiso, T., Iwaki, M., and Mori, K. (1981) Fluidity of human erythrocyte membrane and effect of chlorpromazine on fluidity and phase separation of membrane. Biochim. Biophys. Acta649, 325–335. ArticleCASPubMed Google Scholar
36. Giocondi, M.C., Mamdouh, Z., and Le Grimellec, C. (1995) Benzyl alcohol differently affects fluid phase endocytosis and exocytosis in renal epithelial cells. Biochim. Biophys. Acta1234, 197–202. ArticlePubMed Google Scholar
37. Walenga, R.W., Opas, E.E., and Feinstein, M.B. (1981) Differential effects of calmodulin antagonists on phospholipases A2 and C in thrombin-stimulated platelets. J. Biol. Chem. 256, 12523–12528. CASPubMed Google Scholar
38. Wells, A., Ware, M.F., Allen, F.D., and Lauffenburger, D.A. (1999) Shaping up for shipping out: PLCγ signaling of morphology changes in EGF-stimulated fibroblast migration. Cell Motil. Cytoskeleton44, 227–233. ArticleCASPubMed Google Scholar
39. Amyere, M., Payrastre, B., Krause, U., et al. (2000) Constitutive macropinocytosis in oncogene-transformed fibroblasts depends on sequential permanent activation of phosphoinositide 3-kinase and phospholipase C. Mol. Biol. Cell11, 3453–3467. CASPubMed Google Scholar
40. Veithen, A., Cupers, P., Baudhuin, P., and Courtoy, P.J. (1996) _v_-Src induces constitutive macropinocytosis in rat fibroblasts. J. Cell Sci. 109, 2005–2012. CASPubMed Google Scholar
41. Panicker, A.K., Buhusi, M., Erickson, A., and Maness, P.F. (2006) Endocytosis of β1 integrins is an early event in migration promoted by the cell adhesion molecule L1. Exp. Cell Res. 312, 299–307. CASPubMed Google Scholar
42. Wang, J., and Liu, X.J. (2003) A G protein-coupled receptor kinase induces Xenopus oocyte maturation. J. Biol. Chem. 278, 15809–15814. ArticleCASPubMed Google Scholar
43. Nandi, P.K., Van Jaarsveld, P.P., Lippoldt, R.E., and Edelhoch, H. (1981) Effect of basic compounds on the polymerization of clathrin. Biochemistry20, 6706–6710. ArticleCASPubMed Google Scholar
44. Leu, R.W., Herriott, M.J., Moore, P.E., et al. (1982) Enhanced transglutaminase activity associated with macrophage activation. Possible role in Fc-mediated phagocytosis. Exp. Cell Res. 141, 191–199. ArticleCASPubMed Google Scholar
45. Thompson, K., Rogers, M.J., Coxon, F.P., and Crockett, J.C. (2006) Cytosolic entry of bisphosphonate drugs requires acidification of vesicles after fluid-phase endocytosis. Mol. Pharmacol. 69, 1624–1632. ArticleCASPubMed Google Scholar
46. Schlegel, R., Dickson, R.B., Willingham, M.C., and Pastan, I.H. (1982) Amantadine and dansylcadaverine inhibit vesicular stomatitis virus uptake and receptor-mediated endocytosis of alpha 2-macroglobulin. Proc. Natl. Acad. Sci. U. S. A. 79, 2291–2295. ArticleCASPubMed Google Scholar
47. Mishra, S., and Murphy, L.J. (2004) Tissue transglutaminase has intrinsic kinase activity: identification of transglutaminase 2 as an insulin-like growth factor-binding protein-3 kinase. J. Biol. Chem. 279, 23863–23868. ArticleCASPubMed Google Scholar
48. Singh, U.S., Pan, J., Kao, Y.L., et al. (2003) Tissue transglutaminase mediates activation of RhoA and MAP kinase pathways during retinoic acid-induced neuronal differentiation of SH-SY5Y cells. J. Biol. Chem. 278, 391–399. ArticleCASPubMed Google Scholar
49. Kang, S.J., Shin, K.S., Song, W.K., et al. (1995) Involvement of transglutaminase in myofibril assembly of chick embryonic myoblasts in culture. J. Cell Biol. 130, 1127–1136. ArticleCASPubMed Google Scholar
50. Gibson, A.E., Noel, R.J., Herlihy, J.T., and Ward, W.F. (1989) Phenylarsine oxide inhibition of endocytosis: effects on asialofetuin internalization. Am. J. Physiol. 257, C182–C184. CASPubMed Google Scholar
51. Sturrock, A., Alexander, J., Lamb, J., et al. (1990) Characterization of a transferrin-independent uptake system for iron in HeLa cells. J. Biol. Chem. 265, 3139–3145. CASPubMed Google Scholar
52. Frost, S.C., Lane, M.D., and Gibbs, E.M. (1989) Effect of phenylarsine oxide on fluid phase endocytosis: further evidence for activation of the glucose transporter. J. Cell Physiol. 141, 467–474. ArticleCASPubMed Google Scholar
53. Massol, P., Montcourrier, P., Guillemot, J.C., and Chavrier, P. (1998) Fc receptor-mediated phagocytosis requires Cdc42 and Rac1. EMBO J. 17, 6219–6229. ArticleCASPubMed Google Scholar
54. Frost, S.C., and Lane, M.D. (1985) Evidence for the involvement of vicinal sulfhydryl groups in insulin-activated hexose transport by 3T3-L1 adipocytes. J. Biol. Chem. 260, 2646–2652. CASPubMed Google Scholar
55. Retta, S.F., Barry, S.T., Critchley, D.R., et al. (1996) Focal adhesion and stress fiber formation is regulated by tyrosine phosphatase activity. Exp. Cell Res. 229, 307–317. ArticleCASPubMed Google Scholar
56. Gerhard, R., John, H., Aktories, K., and Just, I. (2003) Thiol-modifying phenylarsine oxide inhibits guanine nucleotide binding of Rho but not of Rac GTPases. Mol. Pharmacol. 63, 1349–1355. ArticleCASPubMed Google Scholar
57. Smart, E.J., and Anderson, R.G. (2002) Alterations in membrane cholesterol that affect structure and function of caveolae. Methods Enzymol. 353, 131–139. ArticleCASPubMed Google Scholar
58. Liao, J.K., and Laufs, U. (2005) Pleiotropic effects of statins. Annu. Rev. Pharmacol. Toxicol. 45, 89–118. ArticleCASPubMed Google Scholar
59. Tobert, J.A. (2003) Lovastatin and beyond: the history of the HMG-CoA reductase inhibitors. Nat. Rev. Drug Discov. 2, 517–526. ArticleCASPubMed Google Scholar
60. Sidaway, J.E., Davidson, R.G., McTaggart, F., et al. (2004) Inhibitors of 3-hydroxy-3-methylglutaryl-CoA reductase reduce receptor-mediated endocytosis in opossum kidney cells. J. Am. Soc. Nephrol. 15, 2258–2265. ArticleCASPubMed Google Scholar
61. Chan, P.C., Lafreniere, R., and Parsons, H.G. (1997) Lovastatin increases surface low density lipoprotein receptor expression by retarding the receptor internalization rate in proliferating lymphocytes. Biochem. Biophys. Res. Commun. 235, 117–122. ArticleCASPubMed Google Scholar
62. Loike, J.D., Shabtai, D.Y., Neuhut, R., et al. (2004) Statin inhibition of Fc receptor-mediated phagocytosis by macrophages is modulated by cell activation and cholesterol. Arterioscler. Thromb. Vasc. Biol. 24, 2051–2056. ArticleCASPubMed Google Scholar
63. Desnoyers, L., Anant, J.S., and Seabra, M.C. (1996) Geranylgeranylation of Rab proteins. Biochem. Soc. Trans. 24, 699–703. CASPubMed Google Scholar
64. Cordle, A., Koenigsknecht-Talboo, J., Wilkinson, B., et al. (2005) Mechanisms of statin-mediated inhibition of small G-protein function. J. Biol. Chem. 280, 34202–34209. ArticleCASPubMed Google Scholar
65. Irie, T., Fukunaga, K., and Pitha, J. (1992) Hydroxypropylcyclodextrins in parenteral use. I: Lipid dissolution and effects on lipid transfers in vitro. J. Pharm. Sci. 81, 521–523. ArticleCASPubMed Google Scholar
66. Kilsdonk, E.P., Yancey, P.G., Stoudt, G.W., et al. (1995) Cellular cholesterol efflux mediated by cyclodextrins. J. Biol. Chem. 270, 17250–17256. ArticleCASPubMed Google Scholar
67. Westermann, M., Steiniger, F., and Richter, W. (2005) Belt-like localization of caveolin in deep caveolae and its re-distribution after cholesterol depletion. Histochem. Cell Biol. 123, 613–620. ArticleCASPubMed Google Scholar
68. Lu, L., Khan, S., Lencer, W., and Walker, W.A. (2005) Endocytosis of cholera toxin by human enterocytes is developmentally regulated. Am. J. Physiol. Gastrointest. Liver Physiol. 289, G332–G341. ArticleCASPubMed Google Scholar
69. Shigematsu, S., Watson, R.T., Khan, A.H., and Pessin, J.E. (2003) The adipocyte plasma membrane caveolin functional/structural organization is necessary for the efficient endocytosis of GLUT4. J. Biol. Chem. 278, 10683–10690. ArticleCASPubMed Google Scholar
70. Maniatis, N.A., Brovkovych, V., Allen, S.E., et al. (2006) Novel mechanism of endothelial nitric oxide synthase activation mediated by caveolae internalization in endothelial cells. Circ. Res. 99, 870–877. ArticleCASPubMed Google Scholar
71. Rodal, S.K., Skretting, G., Garred, O., et al. (1999) Extraction of cholesterol with methyl-beta-cyclodextrin perturbs formation of clathrin-coated endocytic vesicles. Mol. Biol. Cell10, 961–974. CASPubMed Google Scholar
72. Liu, N.Q., Lossinsky, A.S., Popik, et al. (2002) Human immunodeficiency virus type 1 enters brain microvascular endothelia by macropinocytosis dependent on lipid rafts and the mitogen-activated protein kinase signaling pathway. J. Virol. 76, 6689–6700. ArticleCASPubMed Google Scholar
73. Lu, H., Sun, T.X., Bouley, R., et al. (2004) Inhibition of endocytosis causes phosphorylation (S256)-independent plasma membrane accumulation of AQP2. Am. J. Physiol. Renal Physiol. 286, F233–F243. ArticleCASPubMed Google Scholar
74. Kanzaki, M., and Pessin, J.E. (2002) Caveolin-associated filamentous actin (Cav-actin) defines a novel F-actin structure in adipocytes. J. Biol. Chem. 277, 25867–25869. ArticleCASPubMed Google Scholar
75. Pike, L.J., and Miller, J.M. (1998) Cholesterol depletion delocalizes phosphatidylinositol bisphosphate and inhibits hormone-stimulated phosphatidylinositol turnover. J. Biol. Chem. 273, 22298–22304. ArticleCASPubMed Google Scholar
76. Kranenburg, O., Verlaan, I., and Moolenaar, W.H. (2001) Regulating c-Ras function. cholesterol depletion affects caveolin association, GTP loading, and signaling. Curr. Biol. 11, 1880–1884. ArticleCASPubMed Google Scholar
77. Kitajima, Y., Sekiya, T., and Nozawa, Y. (1976) Freeze-fracture ultrastructural alterations induced by filipin, pimaricin, nystatin and amphotericin B in the plasmia membranes of Epidermophyton, Saccharomyces and red complex-induced membrane lesions. Biochim. Biophys. Acta455, 452–465. ArticleCASPubMed Google Scholar
78. Ros-Baro, A., Lopez-Iglesias, C., Peiro, S., et al. (2001) Lipid rafts are required for GLUT4 internalization in adipose cells. Proc. Natl. Acad. Sci. U. S. A. 98, 12050–12055. ArticleCASPubMed Google Scholar
79. Rothberg, K.G., Ying, Y.S., Kamen, B.A., and Anderson, R.G. (1990) Cholesterol controls the clustering of the glycophospholipid-anchored membrane receptor for 5-methyltetrahydrofolate. J. Cell Biol. 111, 2931–2938. ArticleCASPubMed Google Scholar
80. Orlandi, P.A., and Fishman, P.H. (1998) Filipin-dependent inhibition of cholera toxin: evidence for toxin internalization and activation through caveolae-like domains. J. Cell Biol. 141, 905–915. ArticleCASPubMed Google Scholar
81. Singh, R.D., Puri, V., Valiyaveettil, J.T., et al. (2003) Selective caveolin-1-dependent endocytosis of glycosphingolipids. Mol. Biol. Cell14, 3254–3265. ArticleCASPubMed Google Scholar
82. Monis, G.F., Schultz, C., Ren, R., et al. (2006) Role of endocytic inhibitory drugs on internalization of amyloidogenic light chains by cardiac fibroblasts. Am. J. Pathol. 169, 1939–1952. ArticleCASPubMed Google Scholar
83. Milhaud, J. (1992) Permeabilizing action of filipin III on model membranes through a filipin-phospholipid binding. Biochim. Biophys. Acta1105, 307–318. ArticleCASPubMed Google Scholar
84. Harder, T., Kellner, R., Parton, R.G., and Gruenberg, J. (1997) Specific release of membrane-bound annexin II and cortical cytoskeletal elements by sequestration of membrane cholesterol. Mol. Biol. Cell8, 533–545. CASPubMed Google Scholar
85. MacLachlan, J., Wotherspoon, A.T., Ansell, R.O., and Brooks, C.J. (2000) Cholesterol oxidase: sources, physical properties and analytical applications. J. Steroid Biochem. Mol. Biol. 72, 169–195. ArticleCASPubMed Google Scholar
86. Smart, E.J., Ying, Y.S., Conrad, P.A., and Anderson, R.G. (1994) Caveolin moves from caveolae to the Golgi apparatus in response to cholesterol oxidation. J. Cell Biol. 127, 1185–1197. ArticleCASPubMed Google Scholar
87. Thyberg, J. (2003) Cholesterol oxidase and the hydroxymethylglutaryl coenzyme A reductase inhibitor mevinolin perturb endocytic trafficking in cultured vascular smooth muscle cells. J. Submicrosc. Cytol. Pathol. 35, 457–468. CASPubMed Google Scholar
88. Brasaemle, D.L., and Attie, A.D. (1990) Rapid intracellular transport of LDL-derived cholesterol to the plasma membrane in cultured fibroblasts. J. Lipid Res. 31, 103–112. CASPubMed Google Scholar
89. Lange, Y. (1992) Tracking cell cholesterol with cholesterol oxidase. J. Lipid Res. 33, 315–321. CASPubMed Google Scholar
90. Okamoto, Y., Ninomiya, H., Miwa, S., and Masaki, T. (2000) Cholesterol oxidation switches the internalization pathway of endothelin receptor type A from caveolae to clathrin-coated pits in Chinese hamster ovary cells. J. Biol. Chem. 275, 6439–6446. ArticleCASPubMed Google Scholar
91. Piehl, M., Lehmann, C., Gumpert, A., et al. (2007) Internalization of large double-membrane intercellular vesicles by a clathrin-dependent endocytic process. Mol. Biol. Cell18, 337–347. ArticleCASPubMed Google Scholar
92. Veiga, E., and Cossart, P. (2006) The role of clathrin-dependent endocytosis in bacterial internalization. Trends Cell Biol. 16, 499–504. ArticleCASPubMed Google Scholar
93. West, M.A., Bretscher, M.S., and Watts, C. 1989. Distinct endocytotic pathways in epidermal growth factor-stimulated human carcinoma A431 cells. J. Cell Biol. 109, 2731–2739. ArticleCASPubMed Google Scholar
94. Marechal, V., Prevost, M.C., Petit, C., et al. (2001) Human immunodeficiency virus type 1 entry into macrophages mediated by macropinocytosis. J. Virol. 75, 11166–11177. ArticleCASPubMed Google Scholar
95. Nakase, I., Niwa, M., Takeuchi, T., et al. (2004) Cellular uptake of arginine-rich peptides: roles for macropinocytosis and actin rearrangement. Mol. Ther. 10, 1011–1022. ArticleCASPubMed Google Scholar
96. von Delwig, A., Bailey, E., Gibbs, D.M., and Robinson, J.H. (2002) The route of bacterial uptake by macrophages influences the repertoire of epitopes presented to CD4 T cells. Eur. J. Immunol. 32, 3714–3719. Article Google Scholar
97. Fretz, M., Jin, J., Conibere, R., et al. (2006) Effects of Na+/H+ exchanger inhibitors on subcellular localisation of endocytic organelles and intracellular dynamics of protein transduction domains HIV-TAT peptide and octaarginine. J. Control Release116, 247–254. ArticleCASPubMed Google Scholar
98. Meier, O., Boucke, K., Hammer, S.V., et al. (2002) Adenovirus triggers macropinocytosis and endosomal leakage together with its clathrin-mediated uptake. J. Cell Biol. 158, 1119–1131. ArticleCASPubMed Google Scholar
99. Wadia, J.S., Stan, R.V., and Dowdy, S.F. (2004) Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat. Med. 10, 310–315. ArticleCASPubMed Google Scholar
100. Lagana, A., Vadnais, J., Le, P.U., et al. (2000) Regulation of the formation of tumor cell pseudopodia by the Na+/H+ exchanger NHE1. J. Cell Sci. 113, 3649–3662. CASPubMed Google Scholar
101. Peterson, J.R., and Mitchison, T.J. (2002) Small molecules, big impact: a history of chemical inhibitors and the cytoskeleton. Chem. Biol. 9, 1275–1285. ArticleCASPubMed Google Scholar
102. Dharmawardhane, S., Schurmann, A., Sells, M.A., et al. 2000. Regulation of macropinocytosis by p21-activated kinase-1. Mol. Biol. Cell11, 3341–3352. CASPubMed Google Scholar
103. Mettlen, M., Platek, A., Van Der Smissen, P., et al. (2006) Src triggers circular ruffling and macropinocytosis at the apical surface of polarized MDCK cells. Traffic 7:589–603. ArticleCAS Google Scholar
104. Montaner, L.J., da Silva, R.P., Sun, J., et al. (1999) Type 1 and type 2 cytokine regulation of macrophage endocytosis: differential activation by IL-4/IL-13 as opposed to IFN-γ or IL-10. J. Immunol. 162, 4606–4613. CASPubMed Google Scholar
105. Kaksonen, M., Toret, C.P., and Drubin, D.G. (2006) Harnessing actin dynamics for clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 7, 404–414. ArticleCASPubMed Google Scholar
106. Merrifield, C.J. (2004) Seeing is believing: imaging actin dynamics at single sites of endocytosis. Trends Cell Biol. 14, 352–358. ArticleCASPubMed Google Scholar
107. Takenawa, T., and Itoh, T. (2001) Phosphoinositides, key molecules for regulation of actin cytoskeletal organization and membrane traffic from the plasma membrane. Biochim. Biophys. Acta1533, 190–206. CASPubMed Google Scholar
108. Araki, N., Johnson, M.T., and Swanson, J.A. (1996) A role for phosphoinositide 3-kinase in the completion of macropinocytosis and phagocytosis by macrophages. J. Cell Biol. 135, 1249–1260. ArticleCASPubMed Google Scholar
109. Roth, M.G. (2004) Phosphoinositides in constitutive membrane traffic. Physiol. Rev. 84, 699–730. ArticleCASPubMed Google Scholar
110. Jess, T.J., Belham, C.M., Thomson, F.J., (1996) Phosphatidylinositol 3′-kinase, but not p70 ribosomal S6 kinase, is involved in membrane protein recycling: wortmannin inhibits glucose transport and downregulates cell-surface transferrin receptor numbers independently of any effect on fluid-phase endocytosis in fibroblasts. Cell Signal. 8, 297–304. ArticleCASPubMed Google Scholar
111. Hill, T., Odell, L.R., Edwards, J.K., et al. (2005) Small molecule inhibitors of dynamin I GTPase activity: development of dimeric tyrphostins. J. Med. Chem. 48, 7781–7788. ArticleCASPubMed Google Scholar
112. Macia, E., Ehrlich, M., Massol, R., et al. (2006) Dynasore, a cell-permeable inhibitor of dynamin. Dev. Cell10, 839–850. ArticleCASPubMed Google Scholar