Belt-like localisation of caveolin in deep caveolae and its re-distribution after cholesterol depletion (original) (raw)
Ahmed SN, Brown DA, London E (1997) On the origin of sphingolipid/cholesterol-rich detergent-insoluble cell membranes: physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid ordered lipid phase in model membranes. Biochemistry 36:10944–10953 ArticleCASPubMed Google Scholar
Brown DA, London E (1997) Structure of detergent-resistant membrane domains: does phase separation occur in biological membranes? Biochem Biophys Res Commun 240:1–7 ArticleCASPubMed Google Scholar
Brown DA, London E (1998) Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 14:111–136 CASPubMed Google Scholar
Couet J, Li S, Okamoto T, Scherer P S, Lisanti MP (1997) Molecular and cellular biology of caveolae: paradoxes and plasticities. Trends Cardiovasc Med 7:103–110 ArticleCAS Google Scholar
Dietzen DJ, Hastings WR, Lubin DM (1995) Caveolin is palmitoylated on multiple cysteine residues. Palmitoylation is not necessary for localization of caveolin to caveolae. J Biol Chem 270:6838–6842 ArticleCASPubMed Google Scholar
Dubochet J, Sartori Blanc N (2001) The cell in absence of aggregation artefacts. Micron 32:91–99 CASPubMed Google Scholar
Dupree P, Parton RG, Raposo G Kurzchalia TV, Simons K (1993) Caveolae and sorting in trans-Golgi-network of epithelial cells. EMBO J 12:1597–1605 CASPubMed Google Scholar
Fernandez I, Ying Y, Albanesi J, Anderson RG (2002) Mechanism of caveolin filament assembly. Proc Natl Acad Sci USA 99(17):11193–11898 ArticleCASPubMed Google Scholar
Fra AM, Williamson E, Simons K, Parton RG (1995) De novo formation of caveolae in lymphocytes by expression of VIP21-caveolin. Proc Natl Acad Sci USA 92(19):8655–8659 CASPubMed Google Scholar
Fujimoto K (1995) Freeze-fracture replica electron microscopy combined with SDS digestion for cytochemical labeling of integral membrane proteins. Application to the immunogold labeling of intercellular junctional complexes. J Cell Sci 108:3443–3449 CASPubMed Google Scholar
Fujimoto K (1997) SDS-digested freeze-fracture replica labeling electron microscopy to study the two-dimensional distribution of integral membrane proteins and phospholipids in biomembranes: practical procedure, interpretation and application. Histochem Cell Biol 107(2):87–96 ArticleCASPubMed Google Scholar
Fujimoto T, Kogo H, Nomura R, Une T (2000) Isoforms of caveolin-1 and caveolar structure. J Cell Sci 19:3509–35017 Google Scholar
Hope HR, Pike LJ (1986) Phosphoinositides and phosphoinositide-utilizing enzymes in detergent-insoluble lipid domains. Mol Biol Cell 7:843–851 Google Scholar
Irie T, Fukunaga K, Pitha JJ (1992) Hydroxypropylcyclodextrins in parenteral use. I: lipid dissolution and effects on lipid transfers in vitro. J Pharmacol Sci 81:521–523 CAS Google Scholar
Klein U, Gimpl G, Fahrenholz F (1995) Alteration of the myometrial plasma membrane cholesterol content with ß-cyclodextrin modulates the binding affinity of the oxytocin receptor. Biochemistry 34:13784–13793 ArticleCASPubMed Google Scholar
Kurzchalia TV, Dupree P, Parton RG, Kellner R, Virta H, Lehnert M, Simons K (1992) VIP21, a 21KD membrane protein is an integral component of trans-Golgi network-derived transport vesicles. J Cell Biol 118:1003–1014 ArticleCASPubMed Google Scholar
Kurzchalia TV, Parton RG (1996) And still they are moving ... Dynamic properties of caveolae. FEBS Lett 389:52–54 CASPubMed Google Scholar
Li S, Couet J, Lisanti MP (1996) Src tyrosine kinases, Gα subunits, and H-Ras share a common membrane-anchored scaffolding protein, caveolin. Caveolin binding negatively regulates the auto-activation of Src tyrosine kinases. J Biol Chem 271:29182–29190 CASPubMed Google Scholar
Meyer HW, Westermann M, Stumpf M, Richter W, Ulrich AS, Hoischen C (1998) Minimal radius of curvature of lipid bilayers in the gel phase state corresponds to the dimension of biomembrane structures “caveolae”. J Struct Biol 124:77–87 ArticleCASPubMed Google Scholar
Monier S, Parton RG, Vogel F, Henske A, Kurzchalia TV (1995) VIP21-caveolin, a membrane protein constituent of the caveolar coat, forms high molecular mass oligomers in vivo and in vitro. Mol Biol Cell 6:911–927 CASPubMed Google Scholar
Montesano R, Roth J, Robert A, Orci L (1982) Non-coated membrane invaginations are involved in binding and internalization of cholera and tetanus toxins. Nature 296:651–653 CASPubMed Google Scholar
Murata M, Kurzchalia T, Peranen J, Schreiner R, Wieland FT, Kurzchalia T, Simons K (1995) VIP21-caveolin is a cholesterol binding protein. Proc Natl Acad Sci USA 92:10339–10343 CASPubMed Google Scholar
Murk JL, Posthuma G, Koster AJ, Geuze HJ, Verkleij AJ, Kleijmeer MJ, Humbel BM (2003) Influence of aldehyde fixation on the morphology of endosomes and lysosomes: quantitative analysis and electron tomography. J Microsc 212:81–90 CASPubMedMathSciNet Google Scholar
Oh P, McIntosh DP, Schnitzer JE (1998) Dynamin at the neck of caveolae mediates their budding to form transport vesicles by GTP-driven fission from the plasma membrane of endothelium. J Cell Biol 141:101–114 CASPubMed Google Scholar
Ohtani Y, Irie T, Uekama K, Fukunaga K, Pitha J (1989) Differential effects of alpha-, beta- and gamma-cyclodextrins on human erythrocytes. Eur J Biochem 186:17–22 ArticleCASPubMed Google Scholar
Palade GE (1953) Fine structure of blood capillaries. J Appl Physics 24:1424 Google Scholar
Parton RG (1994) Ultrastructural localization of gangliosides; GM1 is concentrated in caveolae. J Histochem Cytochem 42:155–166 CASPubMed Google Scholar
Parton RG, Joggerst B, Simons K (1994) Regulated internalisation of caveolae. J Cell Biol 127:1199–1215 ArticleCASPubMed Google Scholar
Peters K-R, Carley WW, Palade GE (1985) Endothelial plasmalemmal vesicles have a characteristic striped bipolar surface structure. J Cell Biol 101:2233–2238 ArticleCASPubMed Google Scholar
Pitha J, Irie T, Sklar PB, Nye JS (1988) Drug solubilizers to aid pharmacologists: amorphous cyclodextrin derivatives. Life Sci 43:493–502 ArticleCASPubMed Google Scholar
Pley U, Parham P (1993) Clathrin: its role in receptor-mediated vesicular transport and specialized functions in neurons. Crit Rev Biochem Mol Biol 28:431–464 CASPubMed Google Scholar
Rash JE, Yasumura T (1999) Direct immunogold labeling of connexins and aquaporin-4 in freeze-fracture replicas of liver, brain, and spinal cord: factors limiting quantitative analysis. Cell Tissue Res 296:307–321 ArticleCASPubMed Google Scholar
Rothberg KG, Ying YS, Kamen BA, Anderson RG (1990) Cholesterol controls the clustering of the glycophospholipid-anchored membrane receptor for 5-methyltetrahydrofolate. J Cell Biol 11:2931–2938 Article Google Scholar
Rothberg KG, Heuser JE, Donzell WC, Ying Y-S, Glenney JR, Anderson RGW (1992) Caveolin, a protein component of caveolae membrane coats. Cell 68:673–682 ArticleCASPubMed Google Scholar
Sargiacomo M, Scherer PE, Tang ZL, Kübler E, Song KS, Sanders MC Lisanti MP (1995) Oligomeric structure of caveolin: Implications for caveolae membrane organisation. Proc Natl Acad Sci USA 92:9407–9411 CASPubMed Google Scholar
Schnitzer JE, Oh P, McIntosh DP (1996) Role of GTP hydrolysis in fission of caveolae directly from plasma membranes. Science 274:239–242 ArticleCASPubMed Google Scholar
Schnitzer JE, Oh P, Pinney E, Allard J (1994) Filipin-sensitive caveolae-mediated transport in endothelium: reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules. J Cell Biol 127:1217–1232 ArticleCASPubMed Google Scholar
Schnitzer JE, Liu J, Oh P (1995) Endothelial caveolae have the molecular transport machinery for vesicle budding, docking, and fusion including VAMP, NSF, SNAP, annexins and GTPases. J Biol Chem 270:14399–14404 ArticleCASPubMed Google Scholar
Severs NJ (1988) Caveolae: static inpocketings of the plasma membrane, dynamic vesicles or plain artifact? J Cell Sci 90:341–348 PubMed Google Scholar
Severs NJ, Simons K (1986) Caveolar bands and the effects of sterol-binding agents in vascular smooth muscle cell plasma membrane. Single and double labeling with filipin and tomatin in the aorta, pulmonary artery and vena cava. Lab Invest 55:295–307 CASPubMed Google Scholar
Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39 ArticleCASPubMed Google Scholar
Stan RV (2002) Structure and function of endothelial caveolae. Microsc Res Tech 57(5):350–364 ArticlePubMed Google Scholar
Takizawa T, Robinson JM (2000) Freeze-fracture cytochemistry: a new fracture-labeling method for topological analysis of biomembrane molecules. Histol Histopathol 15(2):515–522 CASPubMed Google Scholar
Thorn H, Stenkula KG, Karlsson M, Ortegren U, Nystrom FH, Gustavsson J, Stralfors P (2003) Cell surface orifices of caveolae and localization of caveolin to the necks of caveolae in adipocytes. Mol Biol Cell 14(10):3967–3976 ArticleCASPubMed Google Scholar
Westermann M, Leutbecher L, Meyer HW (1999) Membrane structure of caveolae and isolated caveolin-rich vesicles. Histochem Cell Biol 111:71–81 ArticleCASPubMed Google Scholar
Yamada E (1955) The fine structure of the gall bladder epithelium of the mouse. J Biophys Biochem Cytol 1:445–458 CASPubMed Google Scholar