microRNAs in Essential Hypertension and Blood Pressure Regulation (original) (raw)
Munroe PB, Barnes MR, Caulfield MJ. Advances in blood pressure genomics. Circ Res. 2013;112(10):1365–79. ArticleCASPubMed Google Scholar
Ehret GB, Munroe PB, Rice KM, Bochud M, Johnson AD, Chasman DI, et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature. 2011;478(7367):103–9. ArticleCASPubMed Google Scholar
Frith MC, Pheasant M, Mattick JS. The amazing complexity of the human transcriptome. Eur J Hum Genet. 2005;13(8):894–7. ArticleCASPubMed Google Scholar
Thomas JW, Touchman JW, Blakesley RW, Bouffard GG, Beckstrom-Sternberg SM, Margulies EH, et al. Comparative analyses of multi-species sequences from targeted genomic regions. Nature. 2003;424(6950):788–93. ArticleCASPubMed Google Scholar
Pasquinelli AE. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet. 2012;13(4):271–82. CASPubMed Google Scholar
Da Sacco L, Masotti A. Recent insights and novel bioinformatics tools to understand the role of microRNAs binding to 5’ untranslated region. Int J Mol Sci. 2012;14(1):480–95. ArticlePubMedPubMed Central Google Scholar
Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014;42(Database issue):D68–73. ArticleCASPubMedPubMed Central Google Scholar
Londin E, Loher P, Telonis AG, Quann K, Clark P, Jing Y, et al. Analysis of 13 cell types reveals evidence for the expression of numerous novel primate- and tissue-specific microRNAs. Proc Natl Acad Sci U S A. 2015;112(10):E1106–15. ArticleCASPubMedPubMed Central Google Scholar
Marques FZ, Booth SA, Charchar FJ. The emerging role of non-coding RNA in essential hypertension and blood pressure regulation. J Hum Hypertens. 2015;29(8):459–67. ArticleCASPubMed Google Scholar
Zampetaki A, Willeit P, Drozdov I, Kiechl S, Mayr M. Profiling of circulating microRNAs: from single biomarkers to re-wired networks. Cardiovasc Res. 2012;93(4):555–62. ArticleCASPubMedPubMed Central Google Scholar
Tijsen AJ, Pinto YM, Creemers EE. Circulating microRNAs as diagnostic biomarkers for cardiovascular diseases. Am J Physiol Heart Circ Physiol. 2012;303(9):H1085–95. ArticleCASPubMed Google Scholar
Eisenberg E, Levanon EY. Human housekeeping genes, revisited. Trends Genet. 2013;29(10):569–74. ArticleCASPubMed Google Scholar
Li S, Zhu J, Zhang W, Chen Y, Zhang K, Popescu LM, et al. Signature microRNA expression profile of essential hypertension and its novel link to human cytomegalovirus infection. Circulation. 2011;124(2):175–84. ArticleCASPubMed Google Scholar
Marques FZ, Morris BJ. Letter by Marques and Morris regarding article, “Signature microRNA expression profile of essential hypertension and its novel link to human cytomegalovirus infection”. Circulation. 2012;125(5):e337. author reply e8-9. ArticlePubMed Google Scholar
Karolina DS, Tavintharan S, Armugam A, Sepramaniam S, Pek SL, Wong MT, et al. Circulating miRNA profiles in patients with metabolic syndrome. J Clin Endocrinol Metab. 2012;97(12):E2271–6. ArticleCASPubMed Google Scholar
Schiffrin EL. Immune mechanisms in hypertension and vascular injury. Clin Sci (Lond). 2014;126(4):267–74. ArticleCAS Google Scholar
Penzkofer D, Bonauer A, Fischer A, Tups A, Brandes RP, Zeiher AM, et al. Phenotypic characterization of miR-92a-/- mice reveals an important function of miR-92a in skeletal development. PLoS One. 2014;9(6), e101153. ArticlePubMedPubMed Central Google Scholar
Gu Q, Wang B, Zhang XF, Ma YP, Liu JD, Wang XZ. Contribution of renin-angiotensin system to exercise-induced attenuation of aortic remodeling and improvement of endothelial function in spontaneously hypertensive rats. Cardiovasc Pathol. 2014;23(5):298–305. ArticleCASPubMed Google Scholar
Gildea JJ, Carlson JM, Schoeffel CD, Carey RM, Felder RA. Urinary exosome miRNome analysis and its applications to salt sensitivity of blood pressure. Clin Biochem. 2013;46(12):1131–4. ArticleCASPubMedPubMed Central Google Scholar
Kontaraki JE, Marketou ME, Zacharis EA, Parthenakis FI, Vardas PE. Differential expression of vascular smooth muscle-modulating microRNAs in human peripheral blood mononuclear cells: novel targets in essential hypertension. J Hum Hypertens. 2014;28(8):510–6. ArticleCASPubMed Google Scholar
Kontaraki JE, Marketou ME, Zacharis EA, Parthenakis FI, Vardas PE. MicroRNA-9 and microRNA-126 expression levels in patients with essential hypertension: potential markers of target-organ damage. J Am Soc Hypertens. 2014;8(6):368–75. ArticleCASPubMed Google Scholar
Mandraffino G, Imbalzano E, Sardo MA, D’Ascola A, Mamone F, Lo Gullo A, et al. Circulating progenitor cells in hypertensive patients with different degrees of cardiovascular involvement. J Hum Hypertens. 2014;28(9):543–50. ArticleCASPubMed Google Scholar
Yang Q, Jia C, Wang P, Xiong M, Cui J, Li L, et al. MicroRNA-505 identified from patients with essential hypertension impairs endothelial cell migration and tube formation. Int J Cardiol. 2014;177(3):925–34. ArticlePubMed Google Scholar
Cengiz M, Karatas OF, Koparir E, Yavuzer S, Ali C, Yavuzer H, et al. Differential expression of hypertension-associated microRNAs in the plasma of patients with white coat hypertension. Medicine (Baltimore). 2015;94(13), e693. ArticleCAS Google Scholar
Williams Z, Ben-Dov IZ, Elias R, Mihailovic A, Brown M, Rosenwaks Z, et al. Comprehensive profiling of circulating microRNA via small RNA sequencing of cDNA libraries reveals biomarker potential and limitations. Proc Natl Acad Sci U S A. 2013;110(11):4255–60. ArticleCASPubMedPubMed Central Google Scholar
Hindson CM, Chevillet JR, Briggs HA, Gallichotte EN, Ruf IK, Hindson BJ, et al. Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat Methods. 2013;10(10):1003–5. ArticleCASPubMedPubMed Central Google Scholar
Marques FZ, Campain AE, Tomaszewski M, Yang YHJ, Zukowska-Sczechowska E, Charchar FJ, et al. Gene expression profiling reveals renin mRNA overexpression in human hypertensive kidneys and a role for microRNAs. Hypertension. 2011;58:1093–8. ArticleCASPubMed Google Scholar
Tomaszewski M, Charchar FJ, Lynch MD, Padmanabhan S, Wang WY, Miller WH, et al. Fibroblast growth factor 1 gene and hypertension: from the quantitative trait locus to positional analysis. Circulation. 2007;116(17):1915–24. ArticleCASPubMed Google Scholar
Tomaszewski M, Charchar FJ, Nelson CP, Barnes T, Denniff M, Kaiser M, et al. Pathway analysis shows association between FGFBP1 and hypertension. J Am Soc Nephrol. 2011;22(5):947–55. ArticleCASPubMedPubMed Central Google Scholar
Eskildsen TV, Jeppesen PL, Schneider M, Nossent AY, Sandberg MB, Hansen PB, et al. Angiotensin II regulates microRNA-132/-212 in hypertensive rats and humans. Int J Mol Sci. 2013;14(6):11190–207. ArticlePubMedPubMed Central Google Scholar
Santovito D, Mandolini C, Marcantonio P, De Nardis V, Bucci M, Paganelli C, et al. Overexpression of microRNA-145 in atherosclerotic plaques from hypertensive patients. Expert Opin Ther Targets. 2013;17(3):217–23. ArticleCASPubMed Google Scholar
Sethupathy P, Borel C, Gagnebin M, Grant GR, Deutsch S, Elton TS, et al. Human microRNA-155 on chromosome 21 differentially interacts with its polymorphic target in the AGTR1 3’ untranslated region: a mechanism for functional single-nucleotide polymorphisms related to phenotypes. Am J Hum Genet. 2007;81(2):405–13. ArticleCASPubMedPubMed Central Google Scholar
Ceolotto G, Papparella I, Bortoluzzi A, Strapazzon G, Ragazzo F, Bratti P, et al. Interplay between miR-155, AT1R A1166C polymorphism, and AT1R expression in young untreated hypertensives. Am J Hypertens. 2011;24(2):241–6. ArticleCASPubMed Google Scholar
Elton TS, Sansom SE, Martin MM. Cardiovascular disease, single nucleotide polymorphisms, and the renin angiotensin system: is there a microRNA connection? Int J Hypertens. 2010;2010(2010):281692. PubMedPubMed Central Google Scholar
Nossent AY, Hansen JL, Doggen C, Quax PH, Sheikh SP, Rosendaal FR. SNPs in microRNA binding sites in 3’-UTRs of RAAS genes influence arterial blood pressure and risk of myocardial infarction. Am J Hypertens. 2011;24(9):999–1006. ArticlePubMed Google Scholar
Maharjan S, Mopidevi B, Kaw MK, Puri N, Kumar A. Human aldosterone synthase gene polymorphism promotes miRNA binding and regulates gene expression. Physiol Genomics. 2014;46(24):860–5. ArticleCASPubMedPubMed Central Google Scholar
Mopidevi B, Ponnala M, Kumar A. Human angiotensinogen +11525 C/A polymorphism modulates its gene expression through microRNA binding. Physiol Genomics. 2013;45(19):901–6. ArticleCASPubMedPubMed Central Google Scholar
Yang Z, Venardos K, Jones E, Morris BJ, Chin-Dusting J, Kaye DM. Identification of a novel polymorphism in the 3’UTR of the L-arginine transporter gene SLC7A1: contribution to hypertension and endothelial dysfunction. Circulation. 2007;115(10):1269–74. CASPubMed Google Scholar
Yang Z, Kaye DM. Mechanistic insights into the link between a polymorphism of the 3’UTR of the SLC7A1 gene and hypertension. Hum Mutat. 2009;30(3):328–33. ArticlePubMed Google Scholar
Wang L, Rao F, Zhang K, Mahata M, Rodriguez-Flores JL, Fung MM, et al. Neuropeptide Y(1) Receptor NPY1R discovery of naturally occurring human genetic variants governing gene expression in cella as well as pleiotropic effects on autonomic activity and blood pressure in vivo. J Am Coll Cardiol. 2009;54(10):944–54. ArticleCASPubMedPubMed Central Google Scholar
O’Connor DT, Zhu G, Rao F, Taupenot L, Fung MM, Das M, et al. Heritability and genome-wide linkage in US and Australian twins identify novel genomic regions controlling chromogranin a: implications for secretion and blood pressure. Circulation. 2008;118(3):247–57. ArticlePubMedPubMed Central Google Scholar
Wei Z, Biswas N, Wang L, Courel M, Zhang K, Soler-Jover A, et al. A common genetic variant in the 3’-UTR of vacuolar H + -ATPase ATP6V0A1 creates a microRNA motif to alter chromogranin A processing and hypertension risk. Circ Cardiovasc Genet. 2011;4(4):381–9. ArticleCASPubMedPubMed Central Google Scholar
Arora P, Wu C, Khan AM, Bloch DB, Davis-Dusenbery BN, Ghorbani A, et al. Atrial natriuretic peptide is negatively regulated by microRNA-425. J Clin Invest. 2013;123(8):3378–82. ArticleCASPubMedPubMed Central Google Scholar
Hanin G, Shenhar-Tsarfaty S, Yayon N, Hoe YY, Bennett ER, Sklan EH, et al. Competing targets of microRNA-608 affect anxiety and hypertension. Hum Mol Genet. 2014;23(17):4569–80. ArticleCASPubMedPubMed Central Google Scholar
Ghanbari M, Franco OH, de Looper H, Hofman A, Erkeland S, Dehghan A. Genetic variations in miRNA binding sites affect miRNA-mediated regulation of several genes associated with cardiometabolic phenotypes. Circ Cardiovasc Genet. 2015;8(3):473–86. ArticleCASPubMed Google Scholar
Fu X, Guo L, Jiang ZM, Zhao LS, Xu AG. An miR-143 promoter variant associated with essential hypertension. Int J Clin Exp Med. 2014;7(7):1813–7. PubMedPubMed Central Google Scholar
Ghanbari M, de Vries PS, de Looper H, Peters MJ, Schurmann C, Yaghootkar H, et al. A genetic variant in the seed region of miR-4513 shows pleiotropic effects on lipid and glucose homeostasis, blood pressure, and coronary artery disease. Hum Mutat. 2014;35(12):1524–31. ArticleCASPubMed Google Scholar
Han F, Konkalmatt P, Chen J, Gildea J, Felder RA, Jose PA, et al. miR-217 Mediates the protective effects of the dopamine d2 receptor on fibrosis in human renal proximal tubule cells. Hypertension. 2015;65(5):1118–25. ArticleCASPubMedPubMed Central Google Scholar
Ostchega Y, Dillon CF, Hughes JP, Carroll M, Yoon S. Trends in hypertension prevalence, awareness, treatment, and control in older U.S. adults: data from the National Health and Nutrition Examination Survey 1988 to 2004. J Am Geriatr Soc. 2007;55(7):1056–65. ArticlePubMed Google Scholar
Wang H, He T, Wu C, Zhong PS, Cui Y. A powerful statistical method identifies novel loci associated with diastolic blood pressure triggered by nonlinear gene-environment interaction. BMC Proc. 2014;8 Suppl 1:S61. ArticlePubMedPubMed Central Google Scholar
Fernandes T, Magalhaes FC, Roque FR, Phillips MI, Oliveira EM. Exercise training prevents the microvascular rarefaction in hypertension balancing angiogenic and apoptotic factors: role of microRNAs-16, -21, and -126. Hypertension. 2012;59(2):513–20. ArticleCASPubMed Google Scholar
Sequeira-Lopez ML, Weatherford ET, Borges GR, Monteagudo MC, Pentz ES, Harfe BD, et al. The microRNA-processing enzyme dicer maintains juxtaglomerular cells. J Am Soc Nephrol. 2010;21(3):460–7. ArticleCASPubMedPubMed Central Google Scholar
Xin M, Small EM, Sutherland LB, Qi X, McAnally J, Plato CF, et al. MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury. Genes Dev. 2009;23(18):2166–78. ArticleCASPubMedPubMed Central Google Scholar
Albinsson S, Skoura A, Yu J, DiLorenzo A, Fernandez-Hernando C, Offermanns S, et al. Smooth muscle miRNAs are critical for post-natal regulation of blood pressure and vascular function. PLoS One. 2011;6(4), e18869. ArticleCASPubMedPubMed Central Google Scholar
Davern PJ, Nguyen-Huu TP, La Greca L, Abdelkader A, Head GA. Role of the sympathetic nervous system in Schlager genetically hypertensive mice. Hypertension. 2009;54(4):852–9. ArticleCASPubMed Google Scholar
Jackson KL, Marques FZ, Watson AM, Palma-Rigo K, Nguyen-Huu TP, Morris BJ, et al. A novel interaction between sympathetic overactivity and aberrant regulation of renin by miR-181a in BPH/2J genetically hypertensive mice. Hypertension. 2013;62(4):775–81. ArticleCASPubMed Google Scholar
Jackson KL, Marques FZ, Nguyen-Huu TP, Stevenson ER, Charchar FJ, Davern PJ, et al. MicroRNA-181a mimic inhibits the renin-angiotensin system and attenuates hypertension in a neurogenic model of hypertension. High Blood Pressure Research Scientific Sessions 2014, San Francisco. 9–12 September 2014. Google Scholar
Fan ZD, Zhang L, Shi Z, Gan XB, Gao XY, Zhu GQ. Artificial microRNA interference targeting AT(1a) receptors in paraventricular nucleus attenuates hypertension in rats. Gene Ther. 2012;19(8):810–7. ArticleCASPubMed Google Scholar
Nossent AY, Eskildsen TV, Andersen LB, Bie P, Bronnum H, Schneider M, et al. The 14q32 microRNA-487b targets the antiapoptotic insulin receptor substrate 1 in hypertension-induced remodeling of the aorta. Ann Surg. 2013;258(5):743–51. discussion 52–3. ArticlePubMed Google Scholar
Cowley Jr AW, Roman RJ, Kaldunski ML, Dumas P, Dickhout JG, Greene AS, et al. Brown Norway chromosome 13 confers protection from high salt to consomic Dahl S rat. Hypertension. 2001;37(2 Part 2):456–61. ArticleCASPubMed Google Scholar
Liu Y, Taylor NE, Lu L, Usa K, Cowley Jr AW, Ferreri NR, et al. Renal medullary microRNAs in Dahl salt-sensitive rats: miR-29b regulates several collagens and related genes. Hypertension. 2010;55(4):974–82. ArticleCASPubMedPubMed Central Google Scholar
Castoldi G, Di Gioia CR, Bombardi C, Catalucci D, Corradi B, Gualazzi MG, et al. MiR-133a regulates collagen 1A1: potential role of miR-133a in myocardial fibrosis in angiotensin II-dependent hypertension. J Cell Physiol. 2012;227(2):850–6. ArticleCASPubMed Google Scholar
Ling S, Nanhwan M, Qian J, Kodakandla M, Castillo AC, Thomas B, et al. Modulation of microRNAs in hypertension-induced arterial remodeling through the β1 and β3-adrenoreceptor pathways. J Mol Cell Cardiol. 2013;65:127–36. ArticleCASPubMed Google Scholar
Friese RS, Altshuler AE, Zhang K, Miramontes-Gonzalez JP, Hightower CM, Jirout ML, et al. MicroRNA-22 and promoter motif polymorphisms at the Chga locus in genetic hypertension: functional and therapeutic implications for gene expression and the pathogenesis of hypertension. Hum Mol Genet. 2013;22(18):3624–40. ArticleCASPubMedPubMed Central Google Scholar
Sahu BS, Sonawane PJ, Mahapatra NR. Chromogranin A: a novel susceptibility gene for essential hypertension. Cell Mol Life Sci. 2010;67(6):861–74. ArticleCASPubMed Google Scholar
Wahlquist C, Jeong D, Rojas-Munoz A, Kho C, Lee A, Mitsuyama S, et al. Inhibition of miR-25 improves cardiac contractility in the failing heart. Nature. 2014;508(7497):531–5. ArticleCASPubMedPubMed Central Google Scholar
Delles C, McBride MW, Graham D, Padmanabhan S, Dominiczak AF. Genetics of hypertension: from experimental animals to humans. Biochim Biophys Acta. 2010;1802(12):1299–308. ArticleCASPubMedPubMed Central Google Scholar
Fagard R, Brguljan J, Staessen J, Thijs L, Derom C, Thomis M, et al. Heritability of conventional and ambulatory blood pressures. A study in twins. Hypertension. 1995;26(6 Pt 1):919–24. ArticleCASPubMed Google Scholar
Snieder H, Harshfield GA, Treiber FA. Heritability of blood pressure and hemodynamics in African- and European-American youth. Hypertension. 2003;41(6):1196–201. ArticleCASPubMed Google Scholar
Zeegers MP, Rijsdijk F, Sham P, Fagard R, Gielen M, De Leeuw PW, et al. The contribution of risk factors to blood pressure heritability estimates in young adults: the east flanders prospective twin study. Twin Res. 2004;7(3):245–53. ArticlePubMed Google Scholar
Kupper N, Willemsen G, Riese H, Posthuma D, Boomsma DI, de Geus EJ. Heritability of daytime ambulatory blood pressure in an extended twin design. Hypertension. 2005;45(1):80–5. ArticleCASPubMed Google Scholar
Wang X, Ding X, Su S, Harshfield G, Treiber F, Snieder H. Genetic influence on blood pressure measured in the office, under laboratory stress and during real life. Hypertens Res. 2011;34(2):239–44. PubMedPubMed Central Google Scholar
Hottenga JJ, Whitfield JB, de Geus EJ, Boomsma DI, Martin NG. Heritability and stability of resting blood pressure in Australian twins. Twin Res Hum Genet. 2006;9(2):205–9. ArticlePubMed Google Scholar
Lawlor DA, Smith GD. Early life determinants of adult blood pressure. Curr Opin Nephrol Hypertens. 2005;14(3):259–64. ArticlePubMed Google Scholar
Khan NA, Hemmelgarn B, Herman RJ, Rabkin SW, McAlister FA, Bell CM, et al. The 2008 Canadian hypertension education program recommendations for the management of hypertension: part 2-therapy. Can J Cardiol. 2008;24(6):465–75. ArticleCASPubMedPubMed Central Google Scholar
Hirt MN, Hansen A, Eschenhagen T. Cardiac tissue engineering: state of the art. Circ Res. 2014;114(2):354–67. ArticleCASPubMed Google Scholar
Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495(7441):384–8. ArticleCASPubMed Google Scholar
Juan L, Wang G, Radovich M, Schneider BP, Clare SE, Wang Y. Potential roles of microRNAs in regulating long intergenic noncoding RNAs. BMC Med Genomics. 2013;6 Suppl 1:S7. ArticlePubMedPubMed Central Google Scholar
Iaconetti C, Gareri C, Polimeni A, Indolfi C. Non-coding RNAs: the “dark matter” of cardiovascular pathophysiology. Int J Mol Sci. 2013;14(10):19987–20018. ArticlePubMedPubMed Central Google Scholar
Gupta SK, Piccoli MT, Thum T. Non-coding RNAs in cardiovascular ageing. Ageing Res Rev. 2014;17C:79–85. Article Google Scholar