Alexander, R. P., Fang, G., Rozowsky, J., Snyder, M. & Gerstein, M. B. Annotating non-coding regions of the genome. Nature Rev. Genet.11, 559–571 (2010). CASPubMed Google Scholar
Mercer, T. R., Dinger, M. E. & Mattick, J. S. Long non-coding RNAs insight into functions. Nature Rev. Genet.10, 155–159 (2009). CASPubMed Google Scholar
He, L. & Hannon, G. J. MicroRNAs: small RNAs with a big role in gene regulation. Nature Rev. Genet.5, 522–531 (2004). CASPubMed Google Scholar
Mendell, J. T. MicroRNAs: critical regulators of development, cellular physiology and malignancy. Cell Cycle4, 1179–1184 (2005). CASPubMed Google Scholar
Esquela-Kerscher, A. & Slack, F. J. OncomiRs — microRNAs with a role in cancer. Nature Rev. Cancer6, 259–269 (2006). CAS Google Scholar
Hammond, S. M. MicroRNAs as tumor suppressors. Nature Genet.39, 582–583 (2007). CASPubMed Google Scholar
Croce, C. M. Causes and consequences of microRNA dysregulation in cancer. Nature Rev. Genet.10, 704–714 (2009). CASPubMed Google Scholar
Nicoloso, M. S., Spizzo, R., Shimizu, M., Rossi, S. & Calin. G. A. MicroRNAs — the micro steering wheel of tumour metastases. Nature Rev. Cancer9, 293–302 (2009). CAS Google Scholar
Carninci, P. et al. The transcriptional landscape of the mammalian genome. Science309, 1559–1563 (2005). This is a landmark article that provides a comprehensive view of the transcriptome. CASPubMed Google Scholar
Kapranov, P. et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science316, 1484–1488 (2007). CASPubMed Google Scholar
Krol, J., Loedige, I. & Filipowicz, W. The widespread regulation of microRNA biogenesis, function and decay. Nature Rev. Genet.11, 597–610 (2010). CASPubMed Google Scholar
Czech, B. & Hannon, G. J. Small RNA sorting: matchmaking for Argonautes. Nature Rev. Genet.12, 19–31 (2011). CASPubMed Google Scholar
Aravin, A. A., Sachidanandam, R., Girard, A., Fejes-Toth, K. & Hannon, G. J. Developmentally regulated piRNA clusters implicate MILI in transposon control. Science316, 744–747 (2007). CASPubMed Google Scholar
Brennecke, J. et al. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell128, 1089–1103 (2007). CASPubMed Google Scholar
Gunawardane, L. S. et al. A slicer-mediated mechanism for repeat-associated siRNA 5′ end formation in Drosophila. Science315, 1587–1590 (2007). CASPubMed Google Scholar
Pal-Bhadra, M. et al. Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery. Science303, 669–672 (2004). CASPubMed Google Scholar
Carmell, M. A. et al. MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev. Cell12, 503–514 (2007). CASPubMed Google Scholar
Kuramochi-Miyagawa, S. et al. MVH in piRNA processing and gene silencing of retrotransposons. Genes Dev.24, 887–892 (2010). CASPubMedPubMed Central Google Scholar
Watanabe, T. et al. Role for piRNAs and noncoding RNA in de novo DNA methylation of the imprinted mouse Rasgrf1 locus. Science332, 848–852 (2011). This paper discusses the exciting discovery of a new function of piRNAs: the regulation of imprinting-related DNA methylation. CASPubMedPubMed Central Google Scholar
Kiss-László, Z., Henry, Y., Bachellerie, J. P., Caizergues-Ferrer, M. & Kiss, T. Site-specific ribose methylation of preribosomal RNA: a novel function for small nucleolar RNAs. Cell85, 1077–1088 (1996). PubMed Google Scholar
Ni, J., Tien, A. L. & Fournier, M. J. Small nucleolar RNAs direct site-specific synthesis of pseudouridine in ribosomal RNA. Cell89, 565–573 (1997). CASPubMed Google Scholar
King, T. H., Liu, B., McCully, R. R. & Fournier, M. J. Ribosome structure and activity are altered in cells lacking snoRNPs that form pseudouridines in the peptidyl transferase center. Mol. Cell11, 425–435 (2003). CASPubMed Google Scholar
Navarro, P., Page, D. R., Avner, P. & Rougeulle, C. _Tsix_-mediated epigenetic switch of a CTCF-flanked region of the Xist promoter determines the Xist transcription program. Genes Dev.20, 2787–2792 (2006). CASPubMedPubMed Central Google Scholar
Gupta, R. A. et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature464, 1071–1076 (2010). This provides a clear demonstration that many epigenetic layers are interconnected. CASPubMedPubMed Central Google Scholar
Rinn, J. L. et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell129, 1311–1323 (2007). CASPubMedPubMed Central Google Scholar
Plath. K. et al. Role of histone H3 lysine 27 methylation in X inactivation. Science300, 131–135 (2003). CASPubMed Google Scholar
Guttman, M., Amit, I., Garber, M., French, C. & Lin, M. F. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature458, 223–227 (2009). CASPubMedPubMed Central Google Scholar
Huarte, M. et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell142, 409–419 (2010). CASPubMedPubMed Central Google Scholar
Guttman, M. et al. lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature477, 295–300 (2011). CASPubMedPubMed Central Google Scholar
Orom, U. A., Derrien, T., Guigo, R. & Shiekhattar, R. Long noncoding RNAs as enhancers of gene expression. Cold Spring Harb. Symp. Quant. Biol.75, 325–331 (2010). CASPubMed Google Scholar
Bejerano, G. et al. Ultraconserved elements in the human genome. Science304, 1321–1325 (2004). CASPubMed Google Scholar
Bejerano, G. et al. A distal enhancer and an ultraconserved exon are derived from a novel retroposon. Nature441, 87–90 (2006). CASPubMed Google Scholar
Calin, G. A. et al. Ultraconserved regions encoding ncRNAs are altered in human leukemias and carcinomas. Cancer Cell12, 215–229 (2007). This paper presents the novel finding of the involvement of a new class of ncRNAs, T-UCRs, in human cancer. CASPubMed Google Scholar
Lujambio, A. et al. CpG island hypermethylation-associated silencing of non-coding RNAs transcribed from ultraconserved regions in human cancer. Oncogene29, 6390–6401 (2010). CASPubMedPubMed Central Google Scholar
Preker, P. et al. RNA exosome depletion reveals transcription upstream of active human promoters. Science322, 1851–1854 (2008). CASPubMed Google Scholar
Taft, R. J. et al. Tiny RNAs associated with transcription start sites in animals. Nature Genet.41, 572–578 (2009). CASPubMed Google Scholar
Feuerhahn, S., Iglesias, N., Panza, A., Porro, A. & Lingner, J. TERRA biogenesis, turnover and implications for function. FEBS Lett.584, 3812–3818 (2010). CASPubMed Google Scholar
Davalos, V. et al. Dynamic epigenetic regulation of the microRNA-200 family mediates epithelial and mesenchymal transitions in human tumorigenesis. Oncogene 29 Aug 2011 (10.1038/onc.2011.383).
Calin, G. A. et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl Acad. Sci. USA99, 15524–15529 (2002). This was a key study that showed the presence of genomic defects of miRNAs in transformed cells. CASPubMedPubMed Central Google Scholar
Calin, G. A. et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl Acad. Sci. USA101, 2999–3004 (2004). CASPubMedPubMed Central Google Scholar
Zhang, L. et al. microRNAs exhibit high frequency genomic alterations in human cancer. Proc. Natl Acad. Sci. USA103, 9136–9141 (2006). CASPubMedPubMed Central Google Scholar
Melo, S. A. et al. A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 function. Nature Genetics41, 365–370 (2009). This was the first reported mutation of an miRNA-processing gene in human tumours. CASPubMedPubMed Central Google Scholar
Melo, S. A. et al. A genetic defect in exportin-5 traps precursor microRNAs in the nucleus of cancer cells. Cancer Cell18, 303–315 (2010). CASPubMed Google Scholar
Lu, Y. et al. Identification of piRNAs in HeLa cells by massive parallel sequencing. BMB Rep.43, 635–641 (2010). CASPubMed Google Scholar
Park, C. W., Zeng, Y., Zhang, X., Subramanian, S. & Steer, C. J. Mature microRNAs identified in highly purified nuclei from HCT116 colon cancer cells. RNA Biol.7, 606–614 (2010). CASPubMedPubMed Central Google Scholar
Cichocki, F. et al. Cutting edge: KIR antisense transcripts are processed into a 28-base PIWI-like RNA in human NK cells. J. Immunol.185, 2009–2012 (2010). CASPubMed Google Scholar
Yan, Z. et al. Widespread expression of piRNA-like molecules in somatic tissues. Nucleic Acids Res.39, 6596–6607 (2011). CASPubMedPubMed Central Google Scholar
Taubert, H. et al. Expression of the stem cell self-renewal gene Hiwi and risk of tumour-related death in patients with soft-tissue sarcoma. Oncogene26, 1098–1100 (2007). CASPubMed Google Scholar
Sun, G. et al. Clinical significance of Hiwi gene expression in gliomas. Brain Res.1373, 183–188 (2011). CASPubMed Google Scholar
Lee, J. H. et al. Stem-cell protein Piwil2 is widely expressed in tumors and inhibits apoptosis through activation of Stat3/Bcl-XL pathway. Hum. Mol. Genet.15, 201–211 (2006). CASPubMed Google Scholar
Liu, J. J. et al. Piwil2 is expressed in various stages of breast cancers and has the potential to be used as a novel biomarker. Int. J. Clin. Exp. Pathol.3, 328–337 (2010). PubMedPubMed Central Google Scholar
Liu, X. et al. Expression of hiwi gene in human gastric cancer was associated with proliferation of cancer cells. Int. J. Cancer118, 1922–1929 (2006). CASPubMed Google Scholar
Lee, T. I., Jenner, R. G., Boyer, L. A., Guenther, M. G. & Levine, S. S. Control of developmental regulators by polycomb in human embryonic stem cells. Cell125, 301–313 (2006). CASPubMedPubMed Central Google Scholar
Janic, A., Mendizabal, L., Llamazares, S., Rossell, D. & Gonzalez, C. Ectopic expression of germline genes drives malignant brain tumor growth in Drosophila. Science330, 1824–1827 (2010). CASPubMed Google Scholar
Sharma, A. K. et al. Human CD34+ stem cells express the hiwi gene, a human homologue of the Drosophila gene piwi. Blood97, 426–434 (2001). CASPubMed Google Scholar
Chen, L. et al. Precancerous stem cells have the potential for both benign and malignant differentiation. PLoS ONE2, e293 (2007). PubMedPubMed Central Google Scholar
Wang, Q., Han, C., Milum, K. & Wani, A. A. Stem cell protein Piwil2 modulates chromatin modifications upon cisplatin treatment. Mutat. Res.708, 59–68 (2011). CASPubMedPubMed Central Google Scholar
Cheng, J. et al. piRNA, the new non-coding RNA, is aberrantly expressed in human cancer cells. Clin. Chim. Acta412, 1621–1625 (2011). CASPubMed Google Scholar
Chang, L. S., Lin, S. Y., Lieu, A. S. & Wu, T. L. Differential expression of human 5S snoRNA genes. Biochem. Biophys. Res. Commun.299, 196–200 (2002). CASPubMed Google Scholar
Liao, J., Yu, L., Mei, Y., Guarnera, M. & Shen, J. Small nucleolar RNA signatures as biomarkers for non-small-cell lung cancer. Mol. Cancer9, 198 (2010). PubMedPubMed Central Google Scholar
Dong, X. Y., Guo, P., Boyd, J., Sun, X. & Li, Q. Implication of snoRNA U50 in human breast cancer. J. Genet. Genomics36, 447–454 (2009). CASPubMedPubMed Central Google Scholar
Dong, X. Y. et al. snoRNA U50 is a candidate tumor-suppressor gene at 6q14.3 with a mutation associated with clinically significant prostate cancer. Hum. Mol. Genet.17, 1031–1042 (2008). CASPubMed Google Scholar
Mourtada-Maarabouni, M., Hedge, V. L., Kirkham, L., Farzaneh, F. & Williams, G. T. Growth arrest in human T-cells is controlled by the non-coding RNA growth-arrest-specific transcript 5 (GAS5). J. Cell Sci.121, 939–946 (2008). CASPubMed Google Scholar
Mourtada-Maarabouni, M., Pickard, M. R., Hedge, V. L., Farzaneh, F. & Williams, G. T. GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene28, 195–208 (2009). CASPubMed Google Scholar
Bachellerie, J. P., Cavaillé, J. & Hüttenhofer, A. The expanding snoRNA world. Biochimie84, 775–790 (2002). CASPubMed Google Scholar
Gupta, V. & Kumar, A. Dyskeratosis congenita. Adv. Exp. Med. Biol.685, 215–219 (2010). CASPubMed Google Scholar
Scott, M. S. & Ono, M. From snoRNA to miRNA: dual function regulatory non-coding RNAs. Biochimie93, 1987–1992 (2011). CASPubMedPubMed Central Google Scholar
Rossi, S., Sevignani, C., Nnadi, S. C., Siracusa, L. D. & Calin, G. A. Cancer-associated genomic regions (CAGRs) and noncoding RNAs: bioinformatics and therapeutic implications. Mamm. Genome19, 526–540 (2008). CASPubMed Google Scholar
Scaruffi, P. et al. Transcribed-ultra conserved region expression is associated with outcome in high-risk neuroblastoma. BMC Cancer9, 441 (2009). PubMedPubMed Central Google Scholar
Wojcik, S. E. et al. Non-coding RNA sequence variations in human chronic lymphocytic leukemia and colorectal cancer. Carcinogenesis31, 208–215 (2010). CASPubMed Google Scholar
Braconi, C. et al. Expression and functional role of a transcribed noncoding RNA with an ultraconserved element in hepatocellular carcinoma. Proc. Natl Acad. Sci. USA108, 786–791 (2011). CASPubMed Google Scholar
Yu, W. et al. Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. Nature451, 202–206 (2010). This paper describes a beautiful example of a mechanism of gene regulation that is mediated by ncRNAs. Google Scholar
Cao, X., Yeo, G., Muotri, A. R., Kuwabara, T. & Gage, F. H. Noncoding RNAs in the mammalian central nervous system. Annu. Rev. Neurosci.29, 77–103 (2006). CASPubMed Google Scholar
Shin, D., Shin, J. Y., McManus, M. T., Ptácek, L. J. & Fu, Y. H. Dicer ablation in oligodendrocytes provokes neuronal impairment in mice. Ann. Neurol.66, 843–857 (2009). CASPubMedPubMed Central Google Scholar
Hébert, S. S. et al. Genetic ablation of Dicer in adult forebrain neurons results in abnormal tau hyperphosphorylation and neurodegeneration. Hum. Mol. Genet.19, 3959–3969 (2010). PubMed Google Scholar
Ling, S. C, Albuquerque, C. P., Han, J. S., Lagier-Tourenne, C. & Tokunaga, S. ALS-associated mutations in TDP-43 increase its stability and promote TDP-43 complexes with FUS/TLS. Proc. Natl Acad. Sci. USA107, 13318–13323 (2010). CASPubMedPubMed Central Google Scholar
Edbauer, D., Neilson, J. R., Foster, K. A., Wang, C. F. & Seeburg, D. P. Regulation of synaptic structure and function by FMRP-associated microRNAs miR-125b and miR-132. Neuron65, 373–384 (2010). CASPubMedPubMed Central Google Scholar
Gehrke, S. et al. Pathogenic LRRK2 negatively regulates microRNA-mediated translational repression. Nature466, 637–641 (2010). This paper discusses the unmasking of a link between a classical Alzheimer's gene and the miRNA world. CASPubMedPubMed Central Google Scholar
Kuhn, D. E., Nuovo, G. J., Terry, A. V. Jr, Martin, M. M. & Malana, G. E. Chromosome 21-derived microRNAs provide an etiological basis for aberrant protein expression in human Down syndrome brains. J. Biol. Chem.285, 1529–1543 (2010). CASPubMed Google Scholar
Glinsky, G. V. An SNP-guided microRNA map of fifteen common human disorders identifies a consensus disease phenocode aiming at principal components of the nuclear import pathway. Cell Cycle7, 2570–2583 (2008). CASPubMed Google Scholar
Wang, G., van der Walt, J. M., Mayhew, G., Li, Y. J. & Züchner, S. Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of α-synuclein. Am. J. Hum. Genet.82, 283–289 (2008). CASPubMedPubMed Central Google Scholar
Williams, A. H. et al. MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice. Science326, 1549–1554 (2009). This paper opened up innovative therapeutic strategies for a devastating disorder. CASPubMedPubMed Central Google Scholar
Haramati, S. et al. miRNA malfunction causes spinal motor neuron disease. Proc. Natl Acad. Sci. USA107, 13111–13116 (2010). CASPubMedPubMed Central Google Scholar
Lee, Y. et al. miR-19, miR-101 and miR-130 co-regulate ATXN1 levels to potentially modulate SCA1 pathogenesis. Nature Neurosci.11, 1137–1139 (2008). CASPubMed Google Scholar
Hébert, S. S., Horré, K., Nicolaï, L., Papadopoulou, A. S. & Mandemakers, W. Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer's disease correlates with increased BACE1/β-secretase expression. Proc. Natl Acad. Sci. USA105, 6415–6420 (2008). PubMedPubMed Central Google Scholar
Wang, W. X., Rajeev, B. W., Stromberg, A. J., Ren, N. & Tang, G. The expression of microRNA miR-107 decreases early in Alzheimer's disease and may accelerate disease progression through regulation of b-site amyloid precursor protein-cleaving enzyme 1. J. Neurosci.28, 1213–1223 (2008). PubMedPubMed Central Google Scholar
Boissonneault, V., Plante, I., Rivest, S. & Provost, P. MicroRNA-298 and microRNA-328 regulate expression of mouse β-amyloid precursor protein-converting enzyme 1. J. Biol. Chem.284, 1971–1981 (2009). CASPubMed Google Scholar
De Santis, G., Ferracin, M., Biondani, A., Caniatti, L. & Rosaria Tola, M. Altered miRNA expression in T regulatory cells in course of multiple sclerosis. J. Neuroimmunol.226, 165–171 (2010). CASPubMed Google Scholar
Cox, M. B., Cairns, M. J., Gandhi, K. S., Carroll, A. P. & Moscovis, S. MicroRNAs miR-17 and miR-20a inhibit T cell activation genes and are under-expressed in MS whole blood. PLoS ONE5, e12132 (2010). PubMedPubMed Central Google Scholar
Junn, E., Lee, K. W., Jeong, B. S., Chan, T. W. & Im, J. Y. Repression of a-synuclein expression and toxicity by microRNA-7. Proc. Natl Acad. Sci. USA106, 13052–13057 (2009). CASPubMedPubMed Central Google Scholar
Chen, W. L., Lin, J. W. & Huang, H. J. SCA8 mRNA expression suggests an antisense regulation of KLHL1 and correlates to SCA8 pathology. Brain Res.1233, 176–184 (2008). CASPubMed Google Scholar
Albinsson, S. et al. MicroRNAs are necessary for vascular smooth muscle growth, differentiation, and function. Arterioscler. Thromb. Vasc. Biol.6, 1118–1126 (2010). Google Scholar
Zhao, Y. et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell129, 303–317 (2007). CASPubMed Google Scholar
Yang, B. et al. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nature Med.13, 486–491 (2007). CASPubMed Google Scholar
Van Rooij, E. et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc. Natl Acad. Sci. USA103, 18255–18260 (2006). CASPubMedPubMed Central Google Scholar
Fang, Y., Shi, C., Manduchi, E., Civelek, M. & Davies, P. F. MicroRNA-10a regulation of proinflammatory phenotype in athero-susceptible endothelium in vivo and in vitro. Proc. Natl Acad. Sci. USA107, 13450–13455 (2010). CASPubMedPubMed Central Google Scholar
Cordes, K. R. et al. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature460, 705–710 (2009). CASPubMedPubMed Central Google Scholar
Nicoli, S. et al. MicroRNA-mediated integration of haemodynamics and Vegf signalling during angiogenesis. Nature464, 1196–1200 (2010). CASPubMedPubMed Central Google Scholar
Ji, R. et al. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation. Circ. Res.100, 1579–1588 (2007). CASPubMed Google Scholar
Clop, A. et al. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nature Genet.38, 813–818 (2006). CASPubMed Google Scholar
Sethupathy, P. et al. Human microRNA-155 on chromosome 21 differentially interacts with its polymorphic target in the AGTR1 3′ untranslated region: a mechanism for functional single-nucleotide polymorphisms related to phenotypes. Am. J. Hum. Genet.81, 405–413 (2007). CASPubMedPubMed Central Google Scholar
Starczynowski, D. T. et al. Identification of miR-145 and miR-146a as mediators of the 5q- syndrome phenotype. Nature Med.16, 49–58 (2010). CASPubMed Google Scholar
Gatto, S., Della Ragione, F., Cimmino, A., Strazzullo, M. & Fabbri, M. Epigenetic alteration of microRNAs in DNMT3B-mutated patients of ICF syndrome. Epigenetics5, 427–443 (2010). CASPubMed Google Scholar
Urdinguio, R. G. et al. Disrupted microRNA expression caused by Mecp2 loss in a mouse model of Rett syndrome. Epigenetics5, 656–663 (2010). CASPubMedPubMed Central Google Scholar
Wu, H. et al. Genome-wide analysis reveals methyl-CpG-binding protein 2-dependent regulation of microRNAs in a mouse model of Rett syndrome. Proc. Natl Acad. Sci. USA107, 18161–18166 (2010). CASPubMedPubMed Central Google Scholar
Brest, P. et al. A synonymous variant in IRGM alters a binding site for miR-196 and causes deregulation of IRGM-dependent xenophagy in Crohn's disease. Nature Genet.43, 242–245 (2011). CASPubMed Google Scholar
Lewis, M. A. et al. An ENU-induced mutation of miR-96 associated with progressive hearing loss in mice. Nature Genet.41, 614–618 (2009). CASPubMed Google Scholar
Faghihi, M. A. et al. Expression of a noncoding RNA is elevated in Alzheimer's disease and drives rapid feed-forward regulation of beta-secretase. Nature Med.14, 723–730 (2008). CASPubMed Google Scholar
Martínez, F. et al. Enrichment of ultraconserved elements among genomic imbalances causing mental delay and congenital anomalies. BMC Med. Genomics3, 54 (2010). PubMedPubMed Central Google Scholar
Horsthemke, B. & Wagstaff, J. Mechanisms of imprinting of the Prader-Willi/Angelman region. Am. J. Med. Genet. A.146 A, 2041–2052 (2008). Google Scholar
Kishore, S. & Stamm, S. The snoRNA HBII-52 regulates alternative splicing of the serotonin receptor 2C. Science311, 230–232 (2006). CASPubMed Google Scholar
Sahoo, T. et al. Prader–Willi phenotype caused by paternal deficiency for the HBII-85 C/D box small nucleolar RNA cluster. Nature Genet.40, 719–721 (2008). CASPubMed Google Scholar
Kuramochi-Miyagawa, S. et al. Mili, a mammalian member of piwi family gene, is essential for spermatogenesis. Development131, 839–849 (2004). CASPubMed Google Scholar
Gu, A. et al. Genetic variants in Piwi-interacting RNA pathway genes confer susceptibility to spermatogenic failure in a Chinese population. Hum. Reprod.25, 2955–2961 (2010). CASPubMed Google Scholar
Burd, C. E. et al. Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet.6, e1001233 (2010). PubMedPubMed Central Google Scholar
Stenvang, J., Lindow, M. & Kauppinen, S. Targeting of microRNAs for therapeutics. Biochem. Soc. Trans.36, 1197–1200 (2008). CASPubMed Google Scholar
Krutzfeldt, J., Rajewsky, N. & Braich R. Silencing of microRNAs in vivo with 'antagomirs'. Nature438, 685–689 (2005). PubMed Google Scholar
Elmen, J., Lindow, M. & Schutz, S. LNA-mediated microRNA silencing in non-human primates. Nature452, 896–899 (2008). CASPubMed Google Scholar
Esau, C. C. Inhibition of microRNA with antisense oligonucleotides. Methods44, 55–60 (2008). CASPubMed Google Scholar
Ma, L. et al. Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nature Biotech.28, 341–347 (2010). This is a comprehensive study that highlights the relevance of miRNAs in the dissemination of cancer cells. CAS Google Scholar
Lu, Y., Xiao, J. & Lin, H. A single anti-microRNA antisense oligodeoxyribonucleotide (AMO) targeting multiple microRNAs offers an improved approach for microRNA interference. Nucleic Acids Res.37, e24 (2009). PubMedPubMed Central Google Scholar
Cohen, S. M. Use of microRNA sponges to explore tissue-specific microRNA functions in vivo. Nature Methods6, 873–874 (2009). CASPubMed Google Scholar
Ma, L. et al. miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nature Cell Biol.12, 247–256 (2010). CASPubMed Google Scholar
Kota, J. et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell137, 1005–1017 (2009). This study provides anin vivodemonstration of the antitumour effect of the administration of a tumour suppressor miRNA. CASPubMedPubMed Central Google Scholar
Kay, M. A. State-of-the-art gene-based therapies: the road ahead. Nature Rev. Genet.12, 316–328 (2011). CASPubMed Google Scholar
Kumar, M. S., Lu, J., Mercer, K. L., Golub, T. R. & Jacks, T. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nature Genet.39, 673–677 (2007). This is an elegant functional demonstration that haploinsufficiency for miRNA-processing genes promotes carcinogenesis. CASPubMed Google Scholar
Shan, G. et al. A small molecule enhances RNA interference and promotes microRNA processing. Nature Biotech.26, 933–940 (2008). CAS Google Scholar
Melo, S. et al. The small molecule enoxacin is a cancer-specific growth inhibitor that acts by enhancing TAR RNA-binding protein 2-mediated microRNA processing. Proc. Natl Acad. Sci. USA108, 4394–4399 (2011). A 'first-in-class' compound that acts on miRNA biogenesis to have an antitumour effect is described in this study. CASPubMedPubMed Central Google Scholar
Saito, Y. et al. Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell9, 435–443 (2006). CASPubMed Google Scholar
Lujambio, A. et al. Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res.67, 1424–1429 (2007). This paper discusses the first identified tumour suppressor miRNA that is inactivated by CpG island hypermethylation in human cancer. CASPubMed Google Scholar
Rodríguez-Paredes, M. & Esteller, M. Cancer epigenetics reaches mainstream oncology. Nature Med.17, 330–339 (2011). PubMed Google Scholar
Tsai, M. C. et al. Long noncoding RNA as a modular scaffold of histone modification complexes. Science329, 689–693 (2010). CASPubMedPubMed Central Google Scholar
Tsai, M. C., Spitale, R. C. & Chang, H. Y. Long intergenic noncoding RNAs: new links in cancer progression. Cancer Res.71, 3–7 (2011). CASPubMedPubMed Central Google Scholar
Lunse, C. E., Michlewski, G. & Hopp, C. S. An aptamer targeting the apical-loop domain modulates pri-miRNA processing. Angew. Chem. Int. Ed. Engl.49, 4674–4677 (2010). PubMed Google Scholar
Costa, F. F. Non-coding RNAs and new opportunities for the private sector. Drug Discov. Today14, 446–452 (2009). CASPubMed Google Scholar
The ENCODE Project Consortium. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature447, 799–816 (2007).
Ponjavic, J., Ponting, C. P. & Lunter, G. Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs. Genome Res.17, 556–565 (2007). CASPubMedPubMed Central Google Scholar
Medina, P. P., Nolde, M. & Slack, F. J. OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature467, 86–90 (2010). This is a paper that presents proof-of-concept that tumours depend on miRNAs, extending the concept of oncogene addiction to ncRNAs. CASPubMed Google Scholar
Voorhoeve, P. M. et al. A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell124, 1169–1181 (2006). CASPubMed Google Scholar
Thum, T. et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature456, 980–984 (2008). CASPubMed Google Scholar
Eggermann, T. Silver-Russell and Beckwith–Wiedemann syndromes: opposite (epi)mutations in 11p15 result in opposite clinical pictures. Horm. Res.71, (Suppl. 2), 30–35 (2009). CASPubMed Google Scholar
Williamson, C. M. et al. Uncoupling antisense-mediated silencing and DNA methylation in the imprinted Gnas cluster. PLoS Genet.7, e1001347 (2011). CASPubMedPubMed Central Google Scholar
Pauley, K. M. & Cha, S. miRNA-146a in rheumatoid arthritis: a new therapeutic strategy. Immunotherapy3, 829–831 (2011). CASPubMed Google Scholar
Temple, I. K. & Shield, J. P. Transient neonatal diabetes, a disorder of imprinting. J. Med. Genet.39, 872–875 (2002). CASPubMedPubMed Central Google Scholar