Phospholipase C-Coupled Receptors and Activation of TRPC Channels (original) (raw)
Bahner M, Frechter S, Da SN, Minke B, Paulsen R, Huber A (2002) Light-regulated subcellular translocation of Drosophila TRPL channels induces long-term adaptation and modifies the light-induced current. Neuron 34:83–93 ArticlePubMedCAS Google Scholar
Barritt GJ (1999) Receptor-activated Ca2+ inflow in animal cells: a variety of pathways tailored to meet different intracellular Ca2+ signalling requirements. Biochem J 337:153–169 ArticlePubMedCAS Google Scholar
Basora N, Boulay G, Bilodeau L, Rousseau E, Payet MD (2003) 20-Hydroxyeicosatetraenoic acid (20-HETE) activates mouse TRPC6 channels expressed in HEK293 cells. J Biol Chem 278:31709–31716 ArticlePubMedCAS Google Scholar
Benham CD, Davis JB, Randall AD (2002) Vanilloid and TRP channels: a family of lipid-gated cation channels. Neuropharmacology 42:873–888 ArticlePubMedCAS Google Scholar
Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21 ArticlePubMedCAS Google Scholar
Bezzerides VJ, Ramsey IS, Kotecha S, Greka A, Clapham DE (2004) Rapid vesicular translocation and insertion of TRP channels. Nat Cell Biol 6:709–720 ArticlePubMedCAS Google Scholar
Birnbaumer L, Zhu X, Jiang M, Boulay G, Peyton M, Vannier B, Brown D, Platano D, Sadeghi H, Stefani E, Birnbaumer M (1996) On the molecular basis and regulation of cellular capacitative calcium entry: roles for Trp proteins. Proc Natl Acad Sci USA 93:15195–15202 ArticlePubMedCAS Google Scholar
Boulay G, Zhu X, Peyton M, Jiang M, Hurst R, Stefani E, Birnbaumer L (1997) Cloning and expression of a novel mammalian homolog of Drosophila transient receptor potential (Trp) involved in calcium entry secondary to activation of receptors coupled by the Gq class of G protein. J Biol Chem 272:29672–29680 ArticlePubMedCAS Google Scholar
Braun FJ, Broad LM, Armstrong DL, Putney JW Jr (2001) Stable activation of single CRAC-channels in divalent cation-free solutions. J Biol Chem 276:1063–1070 ArticlePubMedCAS Google Scholar
Broad LM, Cannon TR, Taylor CW (1999) A non-capacitative pathway activated by arachidonic acid is the major Ca2+ entry mechanism in rat A7r5 smooth muscle cells stimulated with low concentrations of vasopressin. J Physiol (Lond) 517:121–134 ArticlePubMedCAS Google Scholar
Brough GH, Wu S, Cioffi D, Moore TM, Li M, Dean N, Stevens T (2001) Contribution of endogenously expressed Trp1 to a Ca2+-selective, store-operated Ca2+ entry pathway. FASEB J 15:1727–1738 ArticlePubMedCAS Google Scholar
Cayouette S, Lussier MP, Mathieu EL, Bousquet SM, Boulay G (2004) Exocytotic insertion of TRPC6 channel into the plasma membrane upon Gq protein-coupled receptor activation. J Biol Chem 279:7241–7246 ArticlePubMedCAS Google Scholar
Chakrabarti R, Kumar S (2000) Diacylglycerol mediates the T-cell receptor-driven Ca2+ influx in T cells by a novel mechanism independent of protein kinase C activation. J Cell Biochem 78:222–230 ArticlePubMedCAS Google Scholar
Chuang HH, Prescott ED, Kong H, Shields S, Jordt SE, Basbaum AI, Chao MV, Julius D (2001) Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature 411:957–962 ArticlePubMedCAS Google Scholar
Clapham DE, Runnels LW, Strübing C (2002) The TRP ion channel family. Nat Rev Neurosci 2:387–396 ArticleCAS Google Scholar
Dietrich A, Mederos YS, Gollasch M, Gross V, Storch U, Dubrovska G, Obst M, Yildirim E, Salanova B, Kalwa H, Essin K, Pinkenburg O, Luft FC, Gudermann T, Birnbaumer L (2005) Increased vascular smooth muscle contractility in TRPC6-/- mice. Mol Cell Biol 25:6980–6989 ArticlePubMedCAS Google Scholar
Dohke Y, Oh YS, Ambudkar IS, Turner RJ (2004) Biogenesis and topology of the transient receptor potential Ca2+ channel TRPC1. J Biol Chem 279:12242–12248 ArticlePubMedCAS Google Scholar
Estacion M, Li S, Sinkins WG, Gosling M, Bahra P, Poll C, Westwick J, Schilling WP (2004) Activation of human TRPC6 channels by receptor stimulation. J Biol Chem 279:22047–22056 ArticlePubMedCAS Google Scholar
Fadool DA, Ache BW (1992) Plasma membrane inositol 1,4,5-trisphosphate-activated channels mediate signal transduction in lobster olfactory receptor neurons. Neuron 9:907–918 ArticlePubMedCAS Google Scholar
Fleig A, Penner R (2004) The TRPM ion channel subfamily: molecular, biophysical and functional features. Trends Pharmacol Sci 25:633–639 ArticlePubMedCAS Google Scholar
Freichel M, Suh SH, Pfeifer A, Schweig U, Trost C, Weißgerber P, Biel M, Philipp S, Freise D, Droogmans G, Hofmann F, Flockerzi V, Nilius B (2001) Lack of an endothelial storeoperated Ca2+ current impairs agonist-dependent vasorelaxation in TRP4-/- mice. Nat Cell Biol 3:121–127 ArticlePubMedCAS Google Scholar
Gailly P, Colson-Van Schoor M (2001) Involvement of trp-2 protein in store-operated influx of calcium in fibroblasts. Cell Calcium 30:157–165 ArticlePubMedCAS Google Scholar
Gamberucci A, Giurisato E, Pizzo P, Tassi M, Giunti R, McIntosh DP, Benedetti A (2002) Diacylglycerol activates the influx of extracellular cations in T-lymphocytes independently of intracellular calcium-store depletion and possibly involving endogenous TRP6 gene products. Biochem J 364:245–254 PubMedCAS Google Scholar
Greka A, Navarro B, Oancea E, Duggan A, Clapham DE (2003) TRPC5 is a regulator of hippocampal neurite length and growth cone morphology. Nat Neurosci 6:837–845 ArticlePubMedCAS Google Scholar
Gunthorpe MJ, Benham CD, Randall A, Davis JB (2002) The diversity in the vanilloid (TRPV) receptor family of ion channels. Trends Pharmacol Sci 23:183–191 ArticlePubMedCAS Google Scholar
Guse AH, da Silva CP, Berg I, Skapenko AL, Weber K, Heyer P, Hohenegger M, Ashamu GA, Schulze-Koops H, Potter BVL, Mayr GW (1999) Regulation of calcium signalling in T lymphocytes by the second messenger cyclic ADP-ribose. Nature 398:70–73 ArticlePubMedCAS Google Scholar
Halaszovich CR, Zitt C, Jüngling E, Lückhoff A (2000) Inhibition of TRP3 by lanthanides. Block from the cytosolic side of the plasma membrane. J Biol Chem 275:37423–37428 ArticlePubMedCAS Google Scholar
Hardie RC, Minke B (1993) Novel Ca2+ channels underlying transduction in Drosophila photoreceptors: implications for phosphoinositide-mediated Ca2+ mobilization. Trends Neurosci 16:371–376 ArticlePubMedCAS Google Scholar
Harteneck C, Plant TD, Schultz G (2000) From worm to man: three subfamilies of TRP channels. Trends Neurosci 23:159–166 ArticlePubMedCAS Google Scholar
Hoenderop JG, Nilius B, Bindels RJ (2003) Epithelial calcium channels: from identification to function and regulation. Pflugers Arch 446:304–308 PubMedCAS Google Scholar
Hofmann T, Obukhov AG, Schaefer M, Harteneck C, Gudermann T, Schultz G (1999) Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397:259–262 ArticlePubMedCAS Google Scholar
Hofmann T, Schaefer M, Schultz G, Gudermann T (2000) Cloning, expression and subcellular localization of two splice variants of mouse transient receptor potential channel 2. Biochem J 351:115–122 ArticlePubMedCAS Google Scholar
Hofmann T, Schaefer M, Schultz G, Gudermann T (2002) Subunit composition of mammalian transient receptor potential channels in living cells. Proc Natl Acad Sci USA 99:7461–7466 ArticlePubMedCAS Google Scholar
Hsu AL, Ching TT, Sem G, Wang DS, Bondada S, Authi KS, Chen CS (2000) Novel function of phosphoinositide 3-kinase in T cell signaling. A phosphatidylinositol 3,4,5-trisphosphate-mediated Ca2+ entry mechanism. J Biol Chem 275:16242–16250 ArticlePubMedCAS Google Scholar
Hurst RS, Zhu X, Boulay G, Birnbaumer L, Stefani E (1998) Ionic currents underlying HTRP3 mediated agonist-dependent Ca2+ influx in stably transfected HEK293 cells. FEBS Lett 422:333–338 ArticlePubMedCAS Google Scholar
Inoue R, Okada T, Onoue H, Hara Y, Shimizu S, Naitoh S, Ito Y, Mori Y (2001) The transient receptor potential protein homologue TRP6 is the essential component of vascular α1-adrenoceptor-activated Ca2+-permeable cation channel. Circ Res 88:325–332 PubMedCAS Google Scholar
Jung S, Mühle A, Schaefer M, Strotmann R, Schultz G, Plant TD (2003) Lanthanides potentiate TRPC5 currents by an action at extracellular sites close to the pore mouth. J Biol Chem 278:3562–3571 ArticlePubMedCAS Google Scholar
Jungnickel MK, Marreo H, Birnbaumer L, Lémos JR, Florman HM (2001) Trp2 regulates entry of Ca2+ into mouse sperm triggered by egg ZP3. Nat Cell Biol 3:499–502 ArticlePubMedCAS Google Scholar
Kamouchi M, Philipp S, Flockerzi V, Wissenbach U, Mamin A, Raeymaekers L, Eggermont J, Droogmans G, Nilius B (1999) Properties of heterologously expressed hTRP3 channels in bovine pulmonary artery endothelial cells. J Physiol (Lond) 518:345–358 ArticlePubMedCAS Google Scholar
Kanki H, Kinoshita M, Akaike A, Satoh M, Mori Y, Kaneko S (2001) Activation of inositol 1,4,5-trisphosphate receptor is essential for the opening of mouse TRP5 channel. Mol Pharmacol 60:989–998 PubMedCAS Google Scholar
Kim JY, Saffen D (2005) Activation of M1 muscarinic acetylcholine receptors stimulates the formation of a multiprotein complex centered on TRPC6 channels. J Biol Chem 280:32035–32047 ArticlePubMedCAS Google Scholar
Kiselyov K, Xu X, Mozhayeva G, Kuo T, Pessah I, Mignery G, Zhu X, Birnbaumer L, Muallem S (1998) Functional interaction between InsP3 receptors and store-operated Htrp3 channels. Nature 396:478–482 ArticlePubMedCAS Google Scholar
Kwan HY, Huang Y, Yao X (2004) Regulation of canonical transient receptor potential isoform 3 (TRPC3) channel by protein kinase G. Proc Natl Acad Sci U S A 101:2625–2630 ArticlePubMedCAS Google Scholar
Kwan HY, Huang Y, Yao X (2005) Protein kinase C can inhibit TRPC3 channels indirectly via stimulating protein kinase G. J Cell Physiol 207:315–321 ArticleCAS Google Scholar
Lievremont JP, Bird GS, Putney JW Jr (2004) Canonical transient receptor potential TRPC7 can function as both a receptor-and store-operated channel in HEK-293 cells. Am J Physiol Cell Physiol 287:C1709–C1716 ArticlePubMedCAS Google Scholar
Lievremont JP, Bird GS, Putney JW Jr (2005a) Mechanism of inhibition of TRPC cation channels by 2-aminoethoxydiphenylborane. Mol Pharmacol 68:758–762 PubMedCAS Google Scholar
Lievremont JP, Numaga T, Vazquez G, Lemonnier L, Hara Y, Mori E, Trebak M, Moss SE, Bird GS, Mori Y, Putney JW Jr (2005b) The role of canonical transient receptor potential 7 in B-cell receptor-activated channels. J Biol Chem 280:35346–35351 ArticlePubMedCAS Google Scholar
Liman ER, Innan H (2003) Relaxed selective pressure on an essential component of pheromone transduction in primate evolution. Proc Natl Acad Sci U S A 100:3328–3332 ArticlePubMedCAS Google Scholar
Liman ER, Corey DP, Dulac C (1999) TRP2: a candidate transduction channel for mammalian pheromone sensory signaling. Proc Natl Acad Sci USA 96:5791–5796 ArticlePubMedCAS Google Scholar
Lintschinger B, Balzer-Geldsetzer M, Baskaran T, Graier WF, Romanin C, Zhu MX, Groschner K (2000) Coassembly of Trp1 and Trp3 proteins generates diacylglycerol-and Ca2+-sensitive cation channels. J Biol Chem 275:27799–27805 PubMedCAS Google Scholar
Liu X, Wang W, Singh BB, Lockwich T, Jadlowiec J, O’Connell B, Wellner R, Zhu MX, Ambudkar IS (2000) Trp1, a candidate protein for the store-operated Ca2+ influx mechanism in salivary gland cells. J Biol Chem 275:3403–3411 ArticlePubMedCAS Google Scholar
Liu X, Singh BB, Ambudkar IS (2003) TRPC1 is required for functional store-operated Ca2+ channels. Role of acidic amino acid residues in the S5–S6 region. J Biol Chem 278:11337–11343 ArticlePubMedCAS Google Scholar
Liu X, Bandyopadhyay BC, Singh BB, Groschner K, Ambudkar IS (2005) Molecular analysis of a store-operated and 2-Acetyl-sn-glycerol-sensitive non-selective cation channel: heteromeric assembly of TRPC1-TRPC3. J Biol Chem 280:21600–21606 ArticlePubMedCAS Google Scholar
Lucas P, Ukhanov K, Leinders-Zufall T, Zufall F (2003) A diacylglycerol-gated cation channel in vomeronasal neuron dendrites is impaired in TRPC2 mutant mice: mechanism of pheromone transduction. Neuron 40:551–561 ArticlePubMedCAS Google Scholar
Ma HT, Patterson RL, van Rossum DB, Birnbaumer L, Mikoshiba K, Gill DL (2000) Requirement of the inositol trisphosphate receptor for activation of store-operated Ca2+ channels. Science 287:1647–1651 ArticlePubMedCAS Google Scholar
Ma HT, Venkatachalam K, Parys JB, Gill DL (2002) Modification of store-operated channel coupling and inositol trisphosphate receptor function by 2-aminoethoxydiphenyl borate in DT40 lymphocytes. J Biol Chem 277:6915–6922 ArticlePubMedCAS Google Scholar
Maroto R, Raso A, Wood TG, Kurosky A, Martinac B, Hamill OP (2005) TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat Cell Biol 7:179–185 ArticlePubMedCAS Google Scholar
McKay RR, Szymeczek-Seay CL, Lièvremont JP, Bird GS, Zitt C, Jüngling E, Lückhoff A, Putney JW Jr (2000) Cloning and expression of the human transient receptor potential 4 (TRP4) gene: localization and functional expression of human TRP4 and TRP3. Biochem J 351:735–746 ArticlePubMedCAS Google Scholar
Mehta D, Ahmmed GU, Paria B, Holinstat M, Voyno-Yasenetskaya T, Tiruppathi C, Minshall RD, Malik AB (2003) Rho A interaction with inositol 1,4,5-triphosphate receptor and transient receptor potential channel-1 regulates Ca2+ entry. Role in signaling increased endothelial permeability. J Biol Chem 278:33492–33500 ArticlePubMedCAS Google Scholar
Minke B, Cook B (2002) TRP channel proteins and signal transduction. Physiol Rev 82:429–472 PubMedCAS Google Scholar
Montell C, Birnbaumer L, Flockerzi V (2002) The TRP channels, a remarkably functional family. Cell 108:595–598 ArticlePubMedCAS Google Scholar
Mori Y, Wakamori M, Miyakawa T, Hermosura M, Hara Y, Nishida M, Hirose K, Mizushima A, Kurosaki M, Mori E, Gotoh K, Okada T, Fleig A, Penner R, Iino M, Kurosaki T (2002) Transient receptor potential 1 regulates capacitative Ca2+ entry and Ca2+ release from endoplasmic reticulum in B lymphocytes. J Exp Med 195:673–681 ArticlePubMedCAS Google Scholar
Nilius B, Vriens J, Prenen J, Droogmans G, Voets T (2004) TRPV4 calcium entry channel: a paradigm for gating diversity. Am J Physiol Cell Physiol 286:C195–C205 ArticlePubMedCAS Google Scholar
Nilius B, Voets T, Peters J (2005) TRP channels in disease. Sci STKE 2005:re8 Google Scholar
Obukhov AG, Nowycky MC (2002) TRPC4 can be activated by G-protein-coupled receptors and provides sufficient Ca2+ to trigger exocytosis in neuroendocrine cells. J Biol Chem 277:16172–16178 ArticlePubMedCAS Google Scholar
Odell AF, Scott JL, Van Helden DF (2005) Epidermal growth factor induces tyrosine phos-phorylation, membrane insertion, and activation of transient receptor potential channel 4. J Biol Chem 280:37974–37987 ArticlePubMedCAS Google Scholar
Okada T, Shimizu S, Wakamori M, Maeda A, Kurosaki T, Takada N, Imoto K, Mori Y (1998) Molecular cloning and functional characterization of a novel receptor-activated TRP Ca2+ channel from mouse brain. J Biol Chem 273:10279–10287 ArticlePubMedCAS Google Scholar
Okada T, Inoue R, Yamazaki K, Maeda A, Kurosaki T, Yamakuni T, Tanaka I, Shimizu S, Ikenaka K, Imoto K, Mori Y (1999) Molecular and functional characterization of a novel mouse transient receptor potential protein homologue TRP7. Ca2+-permeable cation channel that is constitutively activated and enhanced by stimulation of G protein-coupled receptor. J Biol Chem 274:27359–27370 ArticlePubMedCAS Google Scholar
Okada Y, Teeter JH, Restrepo D (1994) Inositol 1,4,5-trisphosphate-gated conductance in isolated rat olfactory neurons. J Neurophysiol 71:595–602 PubMedCAS Google Scholar
Ordaz B, Tang J, Xiao R, Salgado A, Sampieri A, Zhu MX, Vaca L (2005) Calmodulin and calcium interplay in the modulation of TRPC5 channel activity: identification of a novel C-terminal domain for calcium/calmodulin-mediated facilitation. J Biol Chem 280:30788–30796 ArticlePubMedCAS Google Scholar
Paria BC, Vogel SM, Ahmmed GU, Alamgir S, Shroff J, Malik AB, Tiruppathi C (2004) Tumor necrosis factor-alpha-induced TRPC1 expression amplifies store-operated Ca2+ influx and endothelial permeability. Am J Physiol Lung Cell Mol Physiol 287:L1303–L1313 ArticlePubMedCAS Google Scholar
Perraud AL, Knowles HM, Schmitz C (2004) Novel aspects of signaling and ion-homeostasis regulation in immunocytes. The TRPM ion channels and their potential role in modulating the immune response. Mol Immunol 41:657–673 ArticlePubMedCAS Google Scholar
Philipp S, Cavalié A, Freichel M, Wissenbach U, Zimmer S, Trost C, Marguart A, Murakami M, Flockerzi V (1996) A mammalian capacitative calcium entry channel homologous to Drosophila TRP and TRPL. EMBO J 15:6166–6171 PubMedCAS Google Scholar
Philipp S, Hambrecht J, Braslavski L, Schroth G, Freichel M, Murakami M, Cavalié A, Flockerzi V (1998) A novel capacitative calcium entry channel expressed in excitable cells. EMBO J 17:4274–4282 ArticlePubMedCAS Google Scholar
Philipp S, Trost C, Warnat J, Rautmann J, Himmerkus N, Schroth G, Kretz O, Nastainczyk W, Cavalié A, Hoth M, Flockerzi V (2000) Trp4 (CCE1) protein is part of native calcium release-activated Ca2+-like channels in adrenal cells. J Biol Chem 275:23965–23972 ArticlePubMedCAS Google Scholar
Podesta M, Zocchi E, Pitto A, Usai C, Franco L, Bruzzone S, Guida L, Bacigalupo A, Scadden DT, Walseth TF, De Flora A, Daga A (2000) Extracellular cyclic ADP-ribose increases intracellular free calcium concentration and stimulates proliferation of human hemopoietic progenitors. FASEB J 14:680–690 PubMedCAS Google Scholar
Preuß KD, Nöller JK, Krause E, Göbel A, Schulz I (1997) Expression and characterization of a trpl homolog from rat. Biochem Biophys Res Commun 240:167–172 ArticlePubMed Google Scholar
Putney JW Jr (1997) Capacitative calcium entry. Landes Biomedical Publishing, Austin Google Scholar
Putney JW Jr (2004) The enigmatic TRPCs: multifunctional cation channels. Trends Cell Biol 14:282–286 ArticlePubMedCAS Google Scholar
Reiser J, Polu KR, Moller CC, Kenlan P, Altintas MM, Wei C, Faul C, Herbert S, Villegas I, vila-Casado C, McGee M, Sugimoto H, Brown D, Kalluri R, Mundel P, Smith PL, Clapham DE, Pollak MR (2005) TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat Genet 37:739–744 ArticlePubMedCAS Google Scholar
Riccio A, Mattei C, Kelsell RE, Medhurst AD, Calver AR, Randall AD, Davis JB, Benham CD, Pangalos MN (2002a) Cloning and functional expression of human short TRP7, a candidate protein for store-operated Ca2+ influx. J Biol Chem 277:12302–12309 ArticlePubMedCAS Google Scholar
Riccio A, Medhurst AD, Mattei C, Kelsell RE, Calver AR, Randall AD, Benham CD, Pangalos MN (2002b) mRNA distribution analysis of human TRPC family in CNS and peripheral tissues. Mol Brain Res 109:95–104 ArticlePubMedCAS Google Scholar
Rosado JA, Brownlow SL, Sage SO (2002) Endogenously expressed Trp1 is involved in store-mediated Ca2+ entry by conformational coupling in human platelets. J Biol Chem 277:42157–42163 ArticlePubMedCAS Google Scholar
Sadighi Akha AA, Willmott NJ, Brickley K, Dolphin AC, Galione A, Hunt SV (1996) Anti-Ig-induced c alcium influx in rat B lymphocytes mediated by cGMP through a dihydropyridine-sensitive channel. J Biol Chem 271:7297–7300 ArticlePubMedCAS Google Scholar
Schaefer M, Plant TD, Obukhov AG, Hofmann T, Gudermann T, Schultz G (2000) Receptor-mediated regulation of the nonselective cation channels TRPC4 and TRPC5. J Biol Chem 275:17517–17526 ArticlePubMedCAS Google Scholar
Schaefer M, Plant TD, Stresow N, Albrecht N, Schultz G (2002) Functional differences between TRPC4 splice variants. J Biol Chem 277:3752–3759 ArticlePubMedCAS Google Scholar
Shi J, Mori E, Mori Y, Mori M, Li J, Ito Y, Inoue R (2004) Multiple regulation by calcium of murine homologues of transient receptor potential proteins TRPC6 and TRPC7 expressed in HEK293 cells. J Physiol 561:415–432 ArticlePubMedCAS Google Scholar
Shuttleworth TJ (1999) What drives calcium entry during [Ca2+]i oscillations? Challenging the capacitative model. Cell Calcium 25:237–246 ArticlePubMedCAS Google Scholar
Shuttleworth TJ, Thompson JL, Mignen O (2004) ARC channels: a novel pathway for receptor-activated calcium entry. J Appl Physiol 19:355–361 CAS Google Scholar
Singh BB, Lockwich TP, Bandyopadhyay BC, Liu X, Bollimuntha S, Brazer SC, Combs C, Das S, Leenders AG, Sheng ZH, Knepper MA, Ambudkar SV, Ambudkar IS (2004) VAMP2-dependent exocytosis regulates plasma membrane insertion of TRPC3 channels and contributes to agonist-stimulated Ca(2+) influx. Mol Cell 15:635–646 ArticlePubMedCAS Google Scholar
Sinkins WG, Estacion M, Schilling WP (1998) Functional expression of TrpC1: a human homologue of the Drosophila Trp channel. Biochem J 331:331–339 PubMedCAS Google Scholar
Soboloff J, Spassova M, Xu W, He LP, Cuesta N, Gill DL (2005) Role of endogenous TRPC6 channels in Ca2+ signal generation in A7r5 smooth muscle cells. J Biol Chem 280:39786–39794 ArticlePubMedCAS Google Scholar
Strubing C, Krapivinsky G, Krapivinsky L, Clapham DE (2003) Formation of novel TRPC channels by complex subunit interactions in embryonic brain. J Biol Chem 278:39014–39019 ArticlePubMed Google Scholar
Strübing C, Krapivinsky G, Krapivinsky L, Clapham DE (2001) TRPC1 and TRPC5 form a novel cation channel in mammalian brain. Neuron 29:645–655 ArticlePubMed Google Scholar
Sweeney M, Yu Y, Platoshyn O, Zhang S, McDaniel SS, Yuan JXJ (2002) Inhibition of endogenous TRP1 decreases capacitative Ca2+ entry and attenuates pulmonary artery smooth muscle cell proliferation. Am J Physiol 283:L144–L155 CAS Google Scholar
Tiruppathi C, Freichel M, Vogel SM, Paria BC, Mehta D, Flockerzi V, Malik AB (2002) Impairment of store-operated Ca2+ entry in TRPC4(-/-) mice interferes with increase in lung microvascular permeability. Circ Res 91:70–76 ArticlePubMedCAS Google Scholar
Tomita Y, Kaneko S, Funayama M, Kondo H, Satoh M, Akaike A (1998) Intracellular Ca2+ store-operated influx of Ca2+ through TRP-R, a rathomolog of TRP, expressed in Xenopus oocytes. Neurosci Lett 248:195–198 ArticlePubMedCAS Google Scholar
Trebak M, Bird GS, McKay RR, Putney JW Jr (2002) Comparison of human TRPC3 channels in receptor-activated and store-operated modes. Differential sensitivity to channel blockers suggests fundamental differences in channel composition. J Biol Chem 277:21617–21623 ArticlePubMedCAS Google Scholar
Trebak M, Bird GS, McKay RR, Birnbaumer L, Putney JW Jr (2003a) Signaling mechanism for receptor-activated TRPC3 channels. J Biol Chem 278:16244–16252 ArticlePubMedCAS Google Scholar
Trebak M, Vazquez G, Bird GS, Putney JW Jr (2003b) The TRPC3/6/7 subfamily of cation channels. Cell Calcium 33:451–461 ArticlePubMedCAS Google Scholar
Trebak M, Hempel N, Wedel BJ, Smyth JT, Bird GS, Putney JW Jr (2005) Negative regulation of TRPC3 channels by protein kinase C-mediated phosphorylation of serine 712. Mol Pharmacol 67:558–563 ArticlePubMedCAS Google Scholar
Tseng PH, Lin HP, Hu H, Wang C, Zhu MX, Chen CS (2004) The canonical transient receptor potential 6 channel as a putative phosphatidylinositol 3,4,5-trisphosphate-sensitive calcium entry system. Biochemistry 43:11701–11708 ArticlePubMedCAS Google Scholar
Vannier B, Zhu X, Brown D, Birnbaumer L (1998) The membrane topology of human transient receptor potential 3 as inferred from glycosylation-scanning mutagenesis and epitope immunocytochemistry. J Biol Chem 273:8675–8679 ArticlePubMedCAS Google Scholar
Vannier B, Peyton M, Boulay G, Brown D, Qin N, Jiang M, Zhu X, Birnbaumer L (1999) Mouse trp2, the homologue of the human trpc2 pseudogene, encodes mTrp2, a store depletion-activated capacitative Ca2+ channel. Proc Natl Acad Sci U S A 96:2060–2064 ArticlePubMedCAS Google Scholar
Vazquez G, Lièvremont JP, Bird GS, Putney JW Jr (2001) Human Trp3 forms both inositol trisphosphate receptor-dependent and receptor-independent store-operated cation channels in DT40 avian B-lymphocytes. Proc Natl Acad Sci USA 98:11777–11782 ArticlePubMedCAS Google Scholar
Vazquez G, Wedel BJ, Bird GS, Joseph SK, Putney JW Jr (2002) An inositol 1,4,5-trisphosphate receptor-dependent cation entry pathway in DT40 B lymphocytes. EMBOJ 21:4531–4538 ArticleCAS Google Scholar
Vazquez G, Wedel BJ, Trebak M, Bird GS, Putney JW Jr (2003) Expression level of TRPC3 channel determines its mechanism of activation. J Biol Chem 278:21649–21654 ArticlePubMedCAS Google Scholar
Vazquez G, Wedel BJ, Aziz O, Trebak M, Putney JW Jr (2004) The mammalian TRPC cation channels. Biochim Biophys Acta 1742:21–36 ArticlePubMedCAS Google Scholar
Venkatachalam K, Ma HT, Ford DL, Gill DL (2001) Expression of functional receptor-coupled TRPC3 channels in DT40 triple receptor InsP3 knockout cells. J Biol Chem 276:33980–33985 ArticlePubMedCAS Google Scholar
Venkatachalam K, Zheng F, Gill DL (2003) Regulation of canonical transient receptor potential (TRPC) channel function by diacylglycerol and protein kinase C. J Biol Chem 278:29031–29040 ArticlePubMedCAS Google Scholar
Wang J, Shimoda LA, Sylvester JT (2004) Capacitative calcium entry and TRPC channel proteins are expressed in rat distal pulmonary arterial smooth muscle. Am J Physiol Lung Cell Mol Physiol 286:L848–L858 ArticlePubMedCAS Google Scholar
Warnat J, Philipp S, Zimmer S, Flockerzi V, Cavalié A (1999) Phenotype of a recombinant store-operated channel: highly selective permeation of Ca2+. J Physiol (Lond) 518:631–638 ArticlePubMedCAS Google Scholar
Wes PD, Chevesich J, Jeromin A, Rosenberg C, Stetten G, Montell C (1995) TRPC1, a human homolog of a Drosophila store-operated channel. Proc Natl Acad Sci USA 92:9652–9656 ArticlePubMedCAS Google Scholar
Winn MP, Conlon PJ, Lynn KL, Farrington MK, Creazzo T, Hawkins AF, Daskalakis N, Kwan SY, Ebersviller S, Burchette JL, Pericak-Vance MA, Howell DN, Vance JM, Rosenberg PB (2005) A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 308:1801–1804 ArticlePubMedCAS Google Scholar
Wu X, Babnigg G, Villereal ML (2000) Functional significance of human trp1 and trp3 in store-operated Ca2+ entry in HEK-293 cells. Am J Physiol 278:C526–C536 CAS Google Scholar
Wu X, Babnigg G, Zagranichnaya T, Villereal ML (2002) The role of endogenous human Trp4 in regulating carbachol-induced calcium oscillations in HEK-293 cells. J Biol Chem 277:13597–13608 ArticlePubMedCAS Google Scholar
Xu SZ, Beech DJ (2001) TrpC1 is a membrane-spanning subunit of store-operated Ca(2+) channels in native vascular smooth muscle cells. Circ Res 88:84–87 PubMedCAS Google Scholar
Xu SZ, Zeng F, Boulay G, Grimm C, Harteneck C, Beech DJ (2005) Block of TRPC5 channels by 2-aminoethoxydiphenyl borate: a differential, extracellular and voltage-dependent effect. Br J Pharmacol 145:405–414 ArticlePubMedCAS Google Scholar
Xu XZ, Sternberg PW (2003) A C. elegans sperm TRP protein required for sperm-egg interactions during fertilization. Cell 114:285–297 ArticlePubMedCAS Google Scholar
Yamada H, Wakamori M, Hara Y, Takahashi Y, Konishi K, Imoto K, Mori Y (2000) Spontaneous single-channel activity of neuronal TRP5 channel recombinantly expressed in HEK293 cells. Neurosci Lett 285:111–114 ArticlePubMedCAS Google Scholar
Zeng F, Xu SZ, Jackson PK, McHugh D, Kumar B, Fountain SJ, Beech DJ (2004) Human TRPC5 channel activated by a multiplicity of signals in a single cell. J Physiol 559:739–750 PubMedCAS Google Scholar
Zhang L, Saffen D (2001) Muscarinic acetylcholine receptor regulation of TRP6 Ca2+ channel isoforms. J Biol Chem 276:13331–13339 ArticlePubMedCAS Google Scholar
Zhu X, Chu PB, Peyton M, Birnbaumer L (1995) Molecular cloning of a widely expressed human homologue for the Drosophila trp gene. FEBS Lett 373:193–198 ArticlePubMedCAS Google Scholar
Zhu X, Jiang M, Peyton M, Boulay G, Hurst R, Stefani E, Birnbaumer L (1996) trp, a novel mammalian gene family essential for agonist-activated capacitative Ca2+ entry. Cell 85:661–671 ArticlePubMedCAS Google Scholar
Zhu X, Jiang M, Birnbaumer L (1998) Receptor-activated Ca2+ influx via human Trp3 stably expressed in human embryonic kidney (HEK)293 cells. Evidence for a non-capacitative calcium entry. J Biol Chem 273:133–142 ArticlePubMedCAS Google Scholar
Zitt C, Zobel A, Obukhov AG, Harteneck C, Kalkbrenner F, Lückhoff A, Schultz G (1996) Cloning and functional expression of a human Ca2+-permeable cation channel activated by calcium store depletion. Neuron 16:1189–1196 ArticlePubMedCAS Google Scholar
Zitt C, Obukhov AG, Strübing C, Zobel A, Kalkbrenner F, Lückhoff A, Schultz G (1997) Expression of TRPC3 in Chinese hamster ovary cells results in calcium-activated cation currents not related to store depletion. J Cell Biol 138:1333–1341 ArticlePubMedCAS Google Scholar
Zitt C, Halaszovich CR, Lückhoff A (2002) The TRP family of cation channels: probing and advancing the concepts on receptor-activated calcium entry. Prog Neurobiol 66:243–264 ArticlePubMedCAS Google Scholar
Zweifach A, Lewis RS (1995a) Rapid inactivation of depletion-activated calcium current (ICRAC) due to local calcium feedback. J Gen Physiol 105:209–226 ArticlePubMedCAS Google Scholar
Zweifach A, Lewis RS (1995b) Slow calcium-dependent inactivation of depletion-activated calcium current. J Biol Chem 270:14445–14451 ArticlePubMedCAS Google Scholar