FinIS: Improved in silico Finishing Using an Exact Quadratic Programming Formulation (original) (raw)

References

  1. Li, Y., Zheng, H., Luo, R., et al.: Structural variation in two human genomes mapped at single-nucleotide resolution by whole genome de novo assembly. Nature Biotechnology 29, 6723–6730 (2011)
    Google Scholar
  2. Birol, I., Jackman, S.D., Nielsen, C.B., et al.: De novo transcriptome assembly with ABySS. Bioinformatics 25(21), 2872–2877 (2009)
    Article Google Scholar
  3. Woyke, T., Teeling, H., Ivanova, N.N., et al.: Symbiosis insights through metagenomic analysis of a microbial consortium. Nature 443, 950–955 (2006)
    Article Google Scholar
  4. Nagarajan, N., Pop, M.: Sequencing and genome assembly using next-generation technologies. Methods in Molecular Biology 673, 1–17 (2010)
    Article Google Scholar
  5. Baker, M.: De novo genome assembly: what every biologist should know. Nature Methods 9, 333–337 (2012)
    Article Google Scholar
  6. Nagarajan, N., Pop, M.: Parametric complexity of sequence assembly: theory and applications to next generation sequencing. Journal of Computational Biology 16(7), 897–908 (2009)
    Article MathSciNet Google Scholar
  7. Gao, S., Sung, W.K., Nagarajan, N.: Opera: reconstructing optimal genomic scaffolds with high-throughput paired-end sequences. Journal of Computational Biology 18(11), 1681–1691 (2011)
    Article MathSciNet Google Scholar
  8. Pop, M., Kosack, S.D., Salzberg, S.L.: Hierarchical scaffolding with bambus. Genome Research 14, 149–159 (2004)
    Article Google Scholar
  9. Nagarajan, N., Read, T.D., Pop, M.: Scaffolding and validation of bacterial genome assemblies using optical restriction maps. Bioinformatics 24(10), 1229–1235 (2008)
    Article Google Scholar
  10. Pop, M., Phillipy, A., Delcher, A.L., Salzberg, S.L.: Comparative genome assembly. Briefings in Bioinformatics 5(3), 237–248 (2004)
    Article Google Scholar
  11. Nagarajan, N., Cook, C., Bonaventura, M.D., et al.: Finishing genomes with limited resources: lessons from an ensemble of microbial genomes. BMC Genomics 11(242) (2010)
    Google Scholar
  12. Zerbino, D.R., McEwen, G.K., Marguiles, E.H., Birney, E.: Pebble and rock band: heuristic resolution of repeats and scaffolding in the velvet short-read de novo assembler. PLoS ONE 4(12) (2009)
    Google Scholar
  13. Li, R.H., Zhu, J., Ruan, W., et al.: De novo assembly of human genomes with massively parallel short read sequencing. Genome Research 20, 265–272 (2010)
    Article Google Scholar
  14. Tsai, I.J., Otto, T.D., Berriman, M.: Improving draft assemblies by iterative mapping and assembly of short reads to eliminate gaps. Genome Biology 11, R41 (2010)
    Article Google Scholar
  15. Kececioglu, J.D., Myers, E.W.: Combinatorial algorithms for DNA sequence assembly. Algorithmica 13, 7–51 (1993)
    Article MathSciNet Google Scholar
  16. Pevzner, P.A., Tang, H., Waterman, M.S.: A Eularian path approach to DNA fragment assembly. Proceedings of the National Academy of Sciences 98(17), 9748–9753 (2001)
    Article MathSciNet MATH Google Scholar
  17. Myers, E.W.: The fragment assembly string graph. Bioinformatics 21(2), 79–85 (2005)
    Article Google Scholar
  18. Zerbino, D., Birney, E.: Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Research (2008), doi:10.1101/gr.074492.107
    Google Scholar
  19. Karger, D., Motwani, R., Ramkumar, G.D.S.: On approximating the longest path in a graph. Algorithmica 18, 421–432 (1993)
    MathSciNet Google Scholar
  20. Kleinberg, J.M.: Approximation algorithms for disjoint path problems. Ph.D Thesis, Dept. of EECS. MIT (1996)
    Google Scholar
  21. Fleischner, H.: Algorithms for Eulerian Trails, Eulerian Graphs and Related Topics. Annals of Discrete Mathematics, Part 1 2(50), X.1C13 (1991)
    Google Scholar
  22. Kingsford, C., Schatz, M.C., Pop, M.: Assembly complexity of prokaryotic genomes using short reads. BMC Bioinformatics 11(21) (2010)
    Google Scholar
  23. Richter, D.C., Ott, F., Schmid, R., Huson, D.H.: Metasim: a sequencing simulator for genomics and metagenomics. PloS One 3(10) (2008)
    Google Scholar
  24. Kelley, D.R., Schatz, M.C., Salzberg, S.L.: Quake: quality-aware detection and correction of sequencing errors. Genome Biology 11, R116 (2010)
    Article Google Scholar
  25. Kurtz, S.A., Phillippy, A., Delcher, A.L., et al.: Versatile and open software for comparing large genomes. Genome Biology 5, R12 (2004)
    Article Google Scholar
  26. Katoh, K., Misawa, K., Kuma, K., Miyata, T.: MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30(14) (2002)
    Google Scholar
  27. Jarrod, A.C., Isaac, H., Sirisha, S., Shujun, L., Gary, P.S., Daniel, S.R.: Meraculous: De Novo Genome Assembly with Short Paired-End Reads. PLoS ONE 6(8), e23501 (2011), doi:10.1371/journal.pone.0023501
    Article Google Scholar
  28. Vandenberghe, L., Boyd, S.: Semidefinite Programming. SIAM Review 38, 49–95 (1996)
    Article MathSciNet MATH Google Scholar

Download references