Gene conversion in the chicken immunoglobulin locus: A paradigm of homologous recombination in higher eukaryotes (original) (raw)
References
Aboussekhra, A., Chanet, R., Adjiri, A., and Fabre, F., Semidominant suppressors of Srs2 helicase mutations of_Saccharomyces cerevisiae_ map in the_RAD51_ gene, whose sequence predicts a protein with similarities to prokaryotic RecA proteins. Molec. cell. Biol.12 (1992) 3224–3234. CASPubMedPubMed Central Google Scholar
Adair, G. M., Nairn, R. S., Wilson, J. H., Seidman, M. M., Brotherman, K. A., MacKinnon, C., and Schleerer, J. B., Targeted homologous recombination at the endogenous adenine phosphoribosyltransferase locus in Chinese hamster cells. Proc. natl Acad. Sci. USA_86_ (1989) 4574–4578. ArticleCASPubMedPubMed Central Google Scholar
Adzuma, K., Ogawa, H., and Ogawa, T., Primary structure of the_RAD52_ gene in_Saccharomyces cerevisiae_. Molec. cell. Biol.4 (1984) 2735–2744. CASPubMedPubMed Central Google Scholar
Baltimore, D., Somatic mutation gains its place among the generators of diversity. Cell_26_ (1981) 295–296. ArticleCASPubMed Google Scholar
Becker, R. S., and Knight, K. L., Somatic diversification of immunoglobulin heavy chain VDJ genes: evidence for somatic gene conversion in rabbits. Cell_63_ (1990) 987–997. ArticleCASPubMed Google Scholar
Bezzubova, O., Shinohara, A., Mueller, R. G., Ogawa, H., and Buerstedde, J.-M., A chicken_RAD51_ homologue is expressed at high levels in lymphoid and reproductive organs. Nucl. Acids Res.21 (1993) 1577–1580. ArticleCASPubMedPubMed Central Google Scholar
Biedermann, K. A., Sun, J. R., Giaccia, A. J., Tosto, L. M., and Brown, J. M.,scid mutation in mice confers hypersensitivity to ionizing radiation and a deficiency in DNA double-strand repair. Proc. natl Acad. Sci. USA_88_ (1991) 1394–1397. ArticleCASPubMedPubMed Central Google Scholar
Bishop, D. K., Park, D., Xu, L., and Kleckner, N., DMC1: A meiosis-specific yeast homologue of_E. coli_ recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell_69_ (1992) 439–456. ArticleCASPubMed Google Scholar
Bosma, G. C., Custer, R. P., and Bosma, M. J., A severe combined immunodeficiency mutation in the mouse. Nature_301_ (1983) 527–530. ArticleCASPubMed Google Scholar
Budd, M., and Mortimer, R. K., Repair of double-strand breaks in a temperature-conditioned radiation-sensitive mutant of_Saccharomyces cerevisiae_. Mutation Res.103 (1982) 19–26. CASPubMed Google Scholar
Buerstedde, J.-M., Reynaud, C.-A., Humphries, E. H., Olson, W., Ewert, D. L., and Weill, J.-C., Light chain gene conversion continues at high rate in an ALV-induced cell line. EMBO J.9 (1990) 921–927. ArticleCASPubMedPubMed Central Google Scholar
Buerstedde, J.-M., and Takeda, S., Increased ratio of targeted to random integration after transfection of chicken B cell lines. Cell_67_ (1991) 179–188. ArticleCASPubMed Google Scholar
Carlson, L. M., McCormack, W. T., Postema, C. E., Barth, C. F., Humphries, E. H., and Thompson, C. B., Templated insertions in the rearranged chicken IgL V gene segment arise by intrachromosomal gene conversion. Genes Dev.4 (1990) 536–547. ArticleCASPubMed Google Scholar
Carlson, L. M., Oettinger, M. A., Schatz, D. G., Masteller, E. L., Hurley, E. A., McCormack, W. T., Baltimore, D., and Thompson, C. B., Selective expression of RAG-2 in chicken B cells undergoing immunoglobulin gene conversion. Cell_64_ (1991) 201–208. ArticleCASPubMed Google Scholar
Emery, H. S., Schild, D., Kellogg, D. E., and Mortimer, R. K., Sequence of_RAD54_, a_Saccharomyces cerevisiae_ gene involved in recombination and repair. Gene_104_ (1991) 103–106. ArticleCASPubMed Google Scholar
Fulop, G. M., and Phillips, R. A., The_scid_ mutation in mice causes a general defect in DNA repair. Nature_347_ (1990) 479–482. ArticleCASPubMed Google Scholar
Game, J. C., Radiation-sensitive mutants and repair in yeast, in: Yeast Genetics: Fundamental and Applied Aspects, pp. 109–137. Eds J. F. T. Spencer, D. Spencer and A. R. W. Smith. Springer Verlag, New York 1983. Chapter Google Scholar
Game, J. C., and Mortimer, R. K., A genetic study of X-ray sensitive mutants in yeast. Mutation Res.24 (1974) 281–292. ArticleCASPubMed Google Scholar
Gellert, M., Molecular analysis of V(D)J recombination. A. Rev. Genet.22 (1992) 425–446. Article Google Scholar
Gorbalenya, A. E., Koonin, E. V., Donchenko, A. P., and Blinov, V. M., Two related superfamilies of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes. Nucl. Acids Res.17 (1989) 4713–4730. ArticleCASPubMedPubMed Central Google Scholar
Gossen, M., and Bujard, H., Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. natl Acad. Sci. USA_89_ (1992) 5547–5551. ArticleCASPubMedPubMed Central Google Scholar
Haber, J. E., Mating-type gene switching in_Saccharomyces cerevisiae_. Trends Genet.8 (1992) 446–452. ArticleCASPubMed Google Scholar
Haber, J. E., and Hearn, M.RAD52_-independent mitotic gene conversion in_Saccharomyces cerevisiae frequently results in chromosomal loss. Genetics_111_ (1985) 7–22. ArticleCASPubMedPubMed Central Google Scholar
Hastings, P. J., Conversion events in fungi, in: Genetic recombination, pp. 397–428. Eds. R. Kucherlapati and G. Smith. American Society for Microbiology, Washington, D.C. 1988. Google Scholar
Haynes, R. M., and Kunz, B. A., DNA repair and mutagenesis in yeast, in: The Molecular Biology of the Yeast_Saccharomyces cerevisiae_: Life Cycle and Inheritance, pp. 371–414. Eds J. N. Strathern, E. W. Jones and J. R. Broach. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 1981. Google Scholar
Hendrickson, E. A., Qin, X.-Q., Schatz, D. G., Oettinger, M. and Weaver, D. T.. A link between double-strand break-related repair and V(D)J recombination: the_scid_ mutation. Proc. natl Acad. Sci. USA_88_ (1991) 4061–4065. ArticleCASPubMedPubMed Central Google Scholar
Ho, K. S. Y., Induction of double-strand breaks by X-rays in a radiosensitive strains of yeast. Mutation Res.20 (1975) 45–51. Article Google Scholar
Hoeijmakers, J. H. J., Nucleotide excision repair I: from E. coli to yeast. Trends Genet.9 (1993) 173–177. ArticleCASPubMed Google Scholar
Hoeijmakers, J. H. J., Nucleotide excision repair II: from yeast to mammals. Trends Genet.9 (1993) 211–217. ArticleCASPubMed Google Scholar
Jachimczyk, W. J., von Borstel, R. C., Mowat, M., and Hastings, P. J., Repair of interstrand cross-links in DNA of_Saccharomyces cerevisiae_ requires two systems of repair: The_RAD3_ system and the_RAD51_ system. Molec. gen. Genet.182 (1981) 196–205. Article Google Scholar
Knight, K. L., Restricted VH gene usage and generation of antibody diversity in rabbit. A. Rev. Immun.10 (1992) 593–616. ArticleCAS Google Scholar
Lieber, M. R., Hesse, J. E., Lewis, S., Bosma, G. C., Rosenberg, N., Mizuchi, K., Bosma M. J., and Gellert, M., The defect in murine severe combined immune deficiency: Joining of signal sequences but not encoding segments in V(D)J recombination. Cell_55_ (1988) 7–16. ArticleCASPubMed Google Scholar
Malone, R. E., and Esposito, R. E., The_RAD52_ gene is required for homothallic interconversion of mating types and spontaneous mitotic recombination. Proc. natl Acad. Sci. USA_77_, (1980) 503–507. ArticleCASPubMedPubMed Central Google Scholar
McCormack, W. T., and Thompson, C. B., Chicken IgL, variable region gene conversion display pseudogene donor preference and 5′ to 3′ polarity. Genes Dev.4 (1990) 548–558. ArticleCASPubMed Google Scholar
McCormack, W. T., Tjoelker, L. W., Barth, C. F., Carlson, L. M., Petryniak, B., Humphries, E. H., and Thompson, C. B., Selection for B cells with productive IgL gene rearrangement occurs in the bursa of Fabricius during chicken embryonic development. Genes Dev.3 (1989) 838–847. ArticleCASPubMed Google Scholar
McCormack, W. T., Tjoelker, L. W., Carlson, L. M., Petryniak, B., Barth, C. F., Humphries, E. H., and Thompson, C. B., Chicken LgL gene rearrangement involves deletion of a circular episome and addition of single nonrandom nucleotides to both coding segments. Cell_56_ (1989) 785–791. ArticleCASPubMed Google Scholar
McCormack, W. T., Tjoelker, L. W., and Thompson, C. B., Avian B-cell development: Generation of an Ig repertoire by gene conversion. A. Rev. Immun.9 (1991) 219–241. ArticleCAS Google Scholar
Ogawa, T., Yu, X., Shinohara, A., and Egelman, E. H., Similarity of the yeast RAD51 filament to the bacterial RecA filament. Science_259_ (1993) 1896–1898. ArticleCASPubMed Google Scholar
Oettinger, M. A., Schatz, D. G., Gorka, C., and Baltimore, D., RAG-1 and RAG-2 adjacent genes that synergistically activate V(D)J recombination. Science_248_ (1990) 1517–1523. ArticleCASPubMed Google Scholar
Ostermann, K., Lorentz, A., and Schmidt, H., The fission yeast rad22 gene, having a function in mating-type switching and repair of DNA damages, encodes a protein homolog to Rad52 of Saccharomyces cerevisiae. Nucl. Acids Res.21 (1993) 5940–5944. ArticleCASPubMedPubMed Central Google Scholar
Petes, T. D., Malone, R. E., and Symington, L. S., Recombination in yeast, in: The Molecular and Cellular Biology of the Yeast_Saccharomyces_, vol. 1, pp. 407–521. Eds J. Broach, J. Pringle and E. Jones. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 1991. Google Scholar
Resnick, M. A., Investigating the genetic control of biochemical events in meiotic recombination, in: Meiosis, pp. 109–137. Ed. P. B. Moens, Academic Press, New York 1987. Google Scholar
Resnick, M. A., and Martin, P., The repair of the doublestranded breaks in the nuclear DNA of_Saccharomyces cerevisiae_ and its genetic control. Molec gen. Genet.143 (1976) 119–129. ArticleCASPubMed Google Scholar
Reynaud, C.-A., Anquez, V., Dahan, A., and Weill, J.-C., A single rearrangement event generates most of the chicken Ig light chain diversity. Cell_40_ (1985) 283–291. ArticleCASPubMed Google Scholar
Reynaud, C.-A., Anquez, V., Grimal, H., and Weill, J.-C., A hyperconversion mechanism generates the chicken light chain preimmune repertoire. Cell_48_ (1987) 379–388. ArticleCASPubMed Google Scholar
Roth, D. B., Nakajima, P. B., Menetski, J. P., Bostma, M. J., and Gellert, M., V(D)J recombination in mouse thymocytes: double-strand breaks near T cell receptor δ rearrangement signals. Cell_69_ (1992) 41–53. ArticleCASPubMed Google Scholar
Shinohara, A., Ogawa, H., and Ogawa, T., Rad51 protein involved in repair and recombination in_S. cerevisiae_ is a RecA-like protein. Cell_69_ (1992) 457–470. ArticleCASPubMed Google Scholar
Shinohara, A., Ogawa, H., Matsuda, Y., Ushio, N., Ikeo, K., and Ogawa, T., Cloning of human, mouse and fission yeast recombination genes homologous to_RAD51_ and_recA_. Nature Gen.4 (1993) 239–243. ArticleCAS Google Scholar
Schatz, D. G., Oettinger, M. A., and Baltimore, D., The V(D)J recombination activating gene, RAG-1. Cell_59_ (1989) 1035–1048. ArticleCASPubMed Google Scholar
Smithies, O., Gregg, R. G., Boggs, S. S., Koralewski, M. A., and Kucherlapati, R. S., Insertion of DNA sequences into the human chromosomal β-globin locus by homologous recombination. Nature_317_ (1985) 230–234. ArticleCASPubMed Google Scholar
Taccioli, G. E., Rathbun, G., Oltz, E., Stamato, T., Jeggo, P. A., and Alt, F. W. Impairment of V(D)J recombination in double-strand break repair mutants. Science_260_ (1993) 207–210. ArticleCASPubMed Google Scholar
Takeda, S., Masteller, E. L., Thompson, C. B., and Buerstedde, J.-M., RAG-2 expression is not essential for chicken immunoglobulin gene conversion. Proc. natl Acad. Sci. USA_89_ (1992) 4023–4027. ArticleCASPubMedPubMed Central Google Scholar
Thomas, K. R., Folger, K. R., and Capecchi, M. R., High frequency targeting of genes to specific sites in mammalian genome. Cell_44_ (1986) 419–428. ArticleCASPubMed Google Scholar
Thompson, C. B., Creation of immunoglobulin diversity by intrachromosomal gene conversion. Trends Genet.8 (1992) 416–442. ArticleCASPubMed Google Scholar
Thompson, C. B., and Neiman, P. E., Somatic diversification of the chicken Ig light chain gene is limited to the rearranged variable gene segment. Cell_48_ (1987) 369–378. ArticleCASPubMed Google Scholar
Thompson, C. B., Humphries, E. H., Carlson, L. M., Chen, C.-L. H., and Neiman, P. E., The effect of alterations in_myc_ gene expression on B cell development in the bursa of Fabricius. Cell_51_ (1987) 371–381. ArticleCASPubMed Google Scholar
Tonegawa, S., Somatic generation of antibody diversity. Nature_302_ (1983) 576–581. Article Google Scholar
Troelstra, C., van Gool, A., de Wit, J., Vermeulen, W., Bootsma, D., and Hoeijmakers, J. H. J., ERCC6, a member of a subfamily of putative helicases, is involved in Cocaine's syndrome and preferential repair of active genes. Cell_71_ (1992) 939–953. ArticleCASPubMed Google Scholar
Weill, J.-C., Reynaud, C.-A., Lassila, O., and Pink, J. R. L., Rearrangement of chicken Ig genes is not an ongoing process in the embryonic bursa of Fabricius. Proc. natl Acad. Sci. USA_83_ (1986) 3336–3340. ArticleCASPubMedPubMed Central Google Scholar
Weill, J.-C., and Reynaud, C.-A., The chicken B-cell compartment. Science_238_ (1987), 1094–1098. ArticleCASPubMed Google Scholar
Bezzubova, O. Y., Schmidt, H., Ostermann, K., Heyer, W.-D., and Buerstedde, J.-M., Identification of a chicken_RAD52_ homologue suggests conservation of the_RAD52_ recombination pathway throughout the evolution of higher eukaryotes. Nucl. Acids Res.21 (1993) 5945–5949. ArticleCASPubMedPubMed Central Google Scholar