Gene conversion in the chicken immunoglobulin locus: A paradigm of homologous recombination in higher eukaryotes (original) (raw)

References

  1. Aboussekhra, A., Chanet, R., Adjiri, A., and Fabre, F., Semidominant suppressors of Srs2 helicase mutations of_Saccharomyces cerevisiae_ map in the_RAD51_ gene, whose sequence predicts a protein with similarities to prokaryotic RecA proteins. Molec. cell. Biol.12 (1992) 3224–3234.
    CAS PubMed PubMed Central Google Scholar
  2. Adair, G. M., Nairn, R. S., Wilson, J. H., Seidman, M. M., Brotherman, K. A., MacKinnon, C., and Schleerer, J. B., Targeted homologous recombination at the endogenous adenine phosphoribosyltransferase locus in Chinese hamster cells. Proc. natl Acad. Sci. USA_86_ (1989) 4574–4578.
    Article CAS PubMed PubMed Central Google Scholar
  3. Adzuma, K., Ogawa, H., and Ogawa, T., Primary structure of the_RAD52_ gene in_Saccharomyces cerevisiae_. Molec. cell. Biol.4 (1984) 2735–2744.
    CAS PubMed PubMed Central Google Scholar
  4. Baltimore, D., Somatic mutation gains its place among the generators of diversity. Cell_26_ (1981) 295–296.
    Article CAS PubMed Google Scholar
  5. Becker, R. S., and Knight, K. L., Somatic diversification of immunoglobulin heavy chain VDJ genes: evidence for somatic gene conversion in rabbits. Cell_63_ (1990) 987–997.
    Article CAS PubMed Google Scholar
  6. Bezzubova, O., Shinohara, A., Mueller, R. G., Ogawa, H., and Buerstedde, J.-M., A chicken_RAD51_ homologue is expressed at high levels in lymphoid and reproductive organs. Nucl. Acids Res.21 (1993) 1577–1580.
    Article CAS PubMed PubMed Central Google Scholar
  7. Biedermann, K. A., Sun, J. R., Giaccia, A. J., Tosto, L. M., and Brown, J. M.,scid mutation in mice confers hypersensitivity to ionizing radiation and a deficiency in DNA double-strand repair. Proc. natl Acad. Sci. USA_88_ (1991) 1394–1397.
    Article CAS PubMed PubMed Central Google Scholar
  8. Bishop, D. K., Park, D., Xu, L., and Kleckner, N., DMC1: A meiosis-specific yeast homologue of_E. coli_ recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell_69_ (1992) 439–456.
    Article CAS PubMed Google Scholar
  9. Bosma, G. C., Custer, R. P., and Bosma, M. J., A severe combined immunodeficiency mutation in the mouse. Nature_301_ (1983) 527–530.
    Article CAS PubMed Google Scholar
  10. Budd, M., and Mortimer, R. K., Repair of double-strand breaks in a temperature-conditioned radiation-sensitive mutant of_Saccharomyces cerevisiae_. Mutation Res.103 (1982) 19–26.
    CAS PubMed Google Scholar
  11. Buerstedde, J.-M., Reynaud, C.-A., Humphries, E. H., Olson, W., Ewert, D. L., and Weill, J.-C., Light chain gene conversion continues at high rate in an ALV-induced cell line. EMBO J.9 (1990) 921–927.
    Article CAS PubMed PubMed Central Google Scholar
  12. Buerstedde, J.-M., and Takeda, S., Increased ratio of targeted to random integration after transfection of chicken B cell lines. Cell_67_ (1991) 179–188.
    Article CAS PubMed Google Scholar
  13. Carlson, L. M., McCormack, W. T., Postema, C. E., Barth, C. F., Humphries, E. H., and Thompson, C. B., Templated insertions in the rearranged chicken IgL V gene segment arise by intrachromosomal gene conversion. Genes Dev.4 (1990) 536–547.
    Article CAS PubMed Google Scholar
  14. Carlson, L. M., Oettinger, M. A., Schatz, D. G., Masteller, E. L., Hurley, E. A., McCormack, W. T., Baltimore, D., and Thompson, C. B., Selective expression of RAG-2 in chicken B cells undergoing immunoglobulin gene conversion. Cell_64_ (1991) 201–208.
    Article CAS PubMed Google Scholar
  15. Emery, H. S., Schild, D., Kellogg, D. E., and Mortimer, R. K., Sequence of_RAD54_, a_Saccharomyces cerevisiae_ gene involved in recombination and repair. Gene_104_ (1991) 103–106.
    Article CAS PubMed Google Scholar
  16. Fulop, G. M., and Phillips, R. A., The_scid_ mutation in mice causes a general defect in DNA repair. Nature_347_ (1990) 479–482.
    Article CAS PubMed Google Scholar
  17. Game, J. C., Radiation-sensitive mutants and repair in yeast, in: Yeast Genetics: Fundamental and Applied Aspects, pp. 109–137. Eds J. F. T. Spencer, D. Spencer and A. R. W. Smith. Springer Verlag, New York 1983.
    Chapter Google Scholar
  18. Game, J. C., and Mortimer, R. K., A genetic study of X-ray sensitive mutants in yeast. Mutation Res.24 (1974) 281–292.
    Article CAS PubMed Google Scholar
  19. Gellert, M., Molecular analysis of V(D)J recombination. A. Rev. Genet.22 (1992) 425–446.
    Article Google Scholar
  20. Gorbalenya, A. E., Koonin, E. V., Donchenko, A. P., and Blinov, V. M., Two related superfamilies of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes. Nucl. Acids Res.17 (1989) 4713–4730.
    Article CAS PubMed PubMed Central Google Scholar
  21. Gossen, M., and Bujard, H., Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. natl Acad. Sci. USA_89_ (1992) 5547–5551.
    Article CAS PubMed PubMed Central Google Scholar
  22. Haber, J. E., Mating-type gene switching in_Saccharomyces cerevisiae_. Trends Genet.8 (1992) 446–452.
    Article CAS PubMed Google Scholar
  23. Haber, J. E., and Hearn, M.RAD52_-independent mitotic gene conversion in_Saccharomyces cerevisiae frequently results in chromosomal loss. Genetics_111_ (1985) 7–22.
    Article CAS PubMed PubMed Central Google Scholar
  24. Hastings, P. J., Conversion events in fungi, in: Genetic recombination, pp. 397–428. Eds. R. Kucherlapati and G. Smith. American Society for Microbiology, Washington, D.C. 1988.
    Google Scholar
  25. Haynes, R. M., and Kunz, B. A., DNA repair and mutagenesis in yeast, in: The Molecular Biology of the Yeast_Saccharomyces cerevisiae_: Life Cycle and Inheritance, pp. 371–414. Eds J. N. Strathern, E. W. Jones and J. R. Broach. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 1981.
    Google Scholar
  26. Hendrickson, E. A., Qin, X.-Q., Schatz, D. G., Oettinger, M. and Weaver, D. T.. A link between double-strand break-related repair and V(D)J recombination: the_scid_ mutation. Proc. natl Acad. Sci. USA_88_ (1991) 4061–4065.
    Article CAS PubMed PubMed Central Google Scholar
  27. Ho, K. S. Y., Induction of double-strand breaks by X-rays in a radiosensitive strains of yeast. Mutation Res.20 (1975) 45–51.
    Article Google Scholar
  28. Hoeijmakers, J. H. J., Nucleotide excision repair I: from E. coli to yeast. Trends Genet.9 (1993) 173–177.
    Article CAS PubMed Google Scholar
  29. Hoeijmakers, J. H. J., Nucleotide excision repair II: from yeast to mammals. Trends Genet.9 (1993) 211–217.
    Article CAS PubMed Google Scholar
  30. Jachimczyk, W. J., von Borstel, R. C., Mowat, M., and Hastings, P. J., Repair of interstrand cross-links in DNA of_Saccharomyces cerevisiae_ requires two systems of repair: The_RAD3_ system and the_RAD51_ system. Molec. gen. Genet.182 (1981) 196–205.
    Article Google Scholar
  31. Knight, K. L., Restricted VH gene usage and generation of antibody diversity in rabbit. A. Rev. Immun.10 (1992) 593–616.
    Article CAS Google Scholar
  32. Lieber, M. R., Hesse, J. E., Lewis, S., Bosma, G. C., Rosenberg, N., Mizuchi, K., Bosma M. J., and Gellert, M., The defect in murine severe combined immune deficiency: Joining of signal sequences but not encoding segments in V(D)J recombination. Cell_55_ (1988) 7–16.
    Article CAS PubMed Google Scholar
  33. Malone, R. E., and Esposito, R. E., The_RAD52_ gene is required for homothallic interconversion of mating types and spontaneous mitotic recombination. Proc. natl Acad. Sci. USA_77_, (1980) 503–507.
    Article CAS PubMed PubMed Central Google Scholar
  34. McCormack, W. T., and Thompson, C. B., Chicken IgL, variable region gene conversion display pseudogene donor preference and 5′ to 3′ polarity. Genes Dev.4 (1990) 548–558.
    Article CAS PubMed Google Scholar
  35. McCormack, W. T., Tjoelker, L. W., Barth, C. F., Carlson, L. M., Petryniak, B., Humphries, E. H., and Thompson, C. B., Selection for B cells with productive IgL gene rearrangement occurs in the bursa of Fabricius during chicken embryonic development. Genes Dev.3 (1989) 838–847.
    Article CAS PubMed Google Scholar
  36. McCormack, W. T., Tjoelker, L. W., Carlson, L. M., Petryniak, B., Barth, C. F., Humphries, E. H., and Thompson, C. B., Chicken LgL gene rearrangement involves deletion of a circular episome and addition of single nonrandom nucleotides to both coding segments. Cell_56_ (1989) 785–791.
    Article CAS PubMed Google Scholar
  37. McCormack, W. T., Tjoelker, L. W., and Thompson, C. B., Avian B-cell development: Generation of an Ig repertoire by gene conversion. A. Rev. Immun.9 (1991) 219–241.
    Article CAS Google Scholar
  38. Ogawa, T., Yu, X., Shinohara, A., and Egelman, E. H., Similarity of the yeast RAD51 filament to the bacterial RecA filament. Science_259_ (1993) 1896–1898.
    Article CAS PubMed Google Scholar
  39. Oettinger, M. A., Schatz, D. G., Gorka, C., and Baltimore, D., RAG-1 and RAG-2 adjacent genes that synergistically activate V(D)J recombination. Science_248_ (1990) 1517–1523.
    Article CAS PubMed Google Scholar
  40. Ostermann, K., Lorentz, A., and Schmidt, H., The fission yeast rad22 gene, having a function in mating-type switching and repair of DNA damages, encodes a protein homolog to Rad52 of Saccharomyces cerevisiae. Nucl. Acids Res.21 (1993) 5940–5944.
    Article CAS PubMed PubMed Central Google Scholar
  41. Petes, T. D., Malone, R. E., and Symington, L. S., Recombination in yeast, in: The Molecular and Cellular Biology of the Yeast_Saccharomyces_, vol. 1, pp. 407–521. Eds J. Broach, J. Pringle and E. Jones. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 1991.
    Google Scholar
  42. Resnick, M. A., Investigating the genetic control of biochemical events in meiotic recombination, in: Meiosis, pp. 109–137. Ed. P. B. Moens, Academic Press, New York 1987.
    Google Scholar
  43. Resnick, M. A., and Martin, P., The repair of the doublestranded breaks in the nuclear DNA of_Saccharomyces cerevisiae_ and its genetic control. Molec gen. Genet.143 (1976) 119–129.
    Article CAS PubMed Google Scholar
  44. Reynaud, C.-A., Anquez, V., Dahan, A., and Weill, J.-C., A single rearrangement event generates most of the chicken Ig light chain diversity. Cell_40_ (1985) 283–291.
    Article CAS PubMed Google Scholar
  45. Reynaud, C.-A., Anquez, V., Grimal, H., and Weill, J.-C., A hyperconversion mechanism generates the chicken light chain preimmune repertoire. Cell_48_ (1987) 379–388.
    Article CAS PubMed Google Scholar
  46. Roth, D. B., Nakajima, P. B., Menetski, J. P., Bostma, M. J., and Gellert, M., V(D)J recombination in mouse thymocytes: double-strand breaks near T cell receptor δ rearrangement signals. Cell_69_ (1992) 41–53.
    Article CAS PubMed Google Scholar
  47. Shinohara, A., Ogawa, H., and Ogawa, T., Rad51 protein involved in repair and recombination in_S. cerevisiae_ is a RecA-like protein. Cell_69_ (1992) 457–470.
    Article CAS PubMed Google Scholar
  48. Shinohara, A., Ogawa, H., Matsuda, Y., Ushio, N., Ikeo, K., and Ogawa, T., Cloning of human, mouse and fission yeast recombination genes homologous to_RAD51_ and_recA_. Nature Gen.4 (1993) 239–243.
    Article CAS Google Scholar
  49. Schatz, D. G., Oettinger, M. A., and Baltimore, D., The V(D)J recombination activating gene, RAG-1. Cell_59_ (1989) 1035–1048.
    Article CAS PubMed Google Scholar
  50. Smithies, O., Gregg, R. G., Boggs, S. S., Koralewski, M. A., and Kucherlapati, R. S., Insertion of DNA sequences into the human chromosomal β-globin locus by homologous recombination. Nature_317_ (1985) 230–234.
    Article CAS PubMed Google Scholar
  51. Taccioli, G. E., Rathbun, G., Oltz, E., Stamato, T., Jeggo, P. A., and Alt, F. W. Impairment of V(D)J recombination in double-strand break repair mutants. Science_260_ (1993) 207–210.
    Article CAS PubMed Google Scholar
  52. Takeda, S., Masteller, E. L., Thompson, C. B., and Buerstedde, J.-M., RAG-2 expression is not essential for chicken immunoglobulin gene conversion. Proc. natl Acad. Sci. USA_89_ (1992) 4023–4027.
    Article CAS PubMed PubMed Central Google Scholar
  53. Thomas, K. R., Folger, K. R., and Capecchi, M. R., High frequency targeting of genes to specific sites in mammalian genome. Cell_44_ (1986) 419–428.
    Article CAS PubMed Google Scholar
  54. Thompson, C. B., Creation of immunoglobulin diversity by intrachromosomal gene conversion. Trends Genet.8 (1992) 416–442.
    Article CAS PubMed Google Scholar
  55. Thompson, C. B., and Neiman, P. E., Somatic diversification of the chicken Ig light chain gene is limited to the rearranged variable gene segment. Cell_48_ (1987) 369–378.
    Article CAS PubMed Google Scholar
  56. Thompson, C. B., Humphries, E. H., Carlson, L. M., Chen, C.-L. H., and Neiman, P. E., The effect of alterations in_myc_ gene expression on B cell development in the bursa of Fabricius. Cell_51_ (1987) 371–381.
    Article CAS PubMed Google Scholar
  57. Tonegawa, S., Somatic generation of antibody diversity. Nature_302_ (1983) 576–581.
    Article Google Scholar
  58. Troelstra, C., van Gool, A., de Wit, J., Vermeulen, W., Bootsma, D., and Hoeijmakers, J. H. J., ERCC6, a member of a subfamily of putative helicases, is involved in Cocaine's syndrome and preferential repair of active genes. Cell_71_ (1992) 939–953.
    Article CAS PubMed Google Scholar
  59. Weill, J.-C., Reynaud, C.-A., Lassila, O., and Pink, J. R. L., Rearrangement of chicken Ig genes is not an ongoing process in the embryonic bursa of Fabricius. Proc. natl Acad. Sci. USA_83_ (1986) 3336–3340.
    Article CAS PubMed PubMed Central Google Scholar
  60. Weill, J.-C., and Reynaud, C.-A., The chicken B-cell compartment. Science_238_ (1987), 1094–1098.
    Article CAS PubMed Google Scholar
  61. Bezzubova, O. Y., Schmidt, H., Ostermann, K., Heyer, W.-D., and Buerstedde, J.-M., Identification of a chicken_RAD52_ homologue suggests conservation of the_RAD52_ recombination pathway throughout the evolution of higher eukaryotes. Nucl. Acids Res.21 (1993) 5945–5949.
    Article CAS PubMed PubMed Central Google Scholar

Download references