Possible roles ofl-phosphoserine in the pathogenesis of Alzheimer’s disease (original) (raw)
Adamson P., Hajimohammadreza I., Brammer M. J., Campbell I. C., and Meldrum B. S. (1990) Presynaptic glutamate/quisqualate receptors: Effects on synaptosomal free calcium concentrations.J. Neurochem.55, 1850–1854. ArticlePubMedCAS Google Scholar
Andreasen M., Lambert J. D., and Jensen M. S. (1989) Effects of new non-_N_-methyl-d-aspartate antagonists on synaptic transmission in the in vitro rat hippocampus.J. Physiol.414, 317–336. PubMedCAS Google Scholar
Arai H., Kobayashi K., Ichimiya Y., Kosaka K., and Iizuka R. (1985) Free amino acids in post-mortem cerebral cortices from patients with Alzheimer-type dementia.Neurosci. Res.2, 486–490. ArticlePubMedCAS Google Scholar
Balcar V. J. and Johnston G. A. (1972) The structural specificity of the high affinity uptake ofl-glutamate andl-aspartate by rat brain slices.J. Neurochem.19, 2657–2666. ArticlePubMedCAS Google Scholar
Bernstein J., Fisher R. S., Zaczek R., and Coyle J. (1985) Dipeptides of glutamate and aspartate may be endogenous neuroexcitants in the rat hippocampal slice.J. Neurosci.5, 1429–1433. PubMedCAS Google Scholar
Blakely R. D., Robinson M. B., Guarda A. S., and Coyle J. T. (1988) A reexamination of the interaction of_N_-acetyl-l-aspartyl-l-glutamate with a subpopulation of rat brain membrane L-glutamate-sensitive binding sites.Eur. J. Pharmacol.151, 419–426. ArticlePubMedCAS Google Scholar
Bradler J. E., Barrionuevo G., Panchalingam K., McKeag D., and Pettegrew J. W. (1991) Actions of phosphomonoesters on CA1 hippocampal neurons as revealed by a combined electrophysiological and nuclear magnetic resonance study.Synapse (in press).
Bridges R. J., Hearn T. J., Monaghan D. T., and Cotman C. W. (1986) A comparison of 2-amino-4-phosphonubutyric acid (AP4) receptors and [3H]AP4 binding sites in the rat brain.Brain Res.375, 204–209. ArticlePubMedCAS Google Scholar
Brown G. G., Levine S. R., Gorell J. M., Pettegrew J. W., Gdowski J. W., Bueri J. A., Helpern J. A., and Welch K. M. A. (1989) In vivo31P NMR profiles of Alzheimer’s disease and multiple subcortical infarct dementia.Neurology39, 1423–1427. PubMedCAS Google Scholar
Brown T. H., Chapman P. F., Kairiss E. W., and Keenan C. L. (1988) Long-term synaptic potentiation.Science242, 724–728. ArticlePubMedCAS Google Scholar
Butcher S. P., Collins J. F., and Roberts P. J. (1983) Characterization of the binding ofDl-[3H]-2-amino-4-phosphonobutyrate tol-glutamate-sensitive sites on rat brain synaptic membranes.Br. J. Pharmacol.80, 355–364. PubMedCAS Google Scholar
Chalmers D. T., Dewar D., Graham D. I., Brooks D. N., and McCulloch J. (1990) Differential alterations of cortical glutamatergic binding sites in senile dementia of the Alzheimer type.Proc. Natl. Acad. Sci. USA87, 1352–1356. ArticlePubMedCAS Google Scholar
Coleman P. A. and Miller R. F. (1989) Kainate receptor-mediated synaptic currents in mudpuppy inner retinal neurons reduced byd-_O_-phosphoserine.J. Neurophys.62, 495–500. CAS Google Scholar
Cotman C. W., Flatman J. A., Ganong A. H., and Perkins M. N. (1986) Effects of excitatory amino acid antagonists on evoked and spontaneous excitatory potentials in guinea-pig hippocampus.J. Physiol.378, 403–415. PubMedCAS Google Scholar
Cotman C. W., Geddes J. W., Bridges R. J., and Monaghan D. T. (1989)_N_-methyl-d-aspartate receptors and Alzheimer’s disease.Neurobiol. Aging10, 603–605. ArticlePubMedCAS Google Scholar
Cowburn R. F., Hardy J. A., Briggs R. S., and Roberts P. J. (1989) Characterisation, density, and distribution of kainate receptors in normal and Alzheimer’s diseased human brain.J. Neurochem.52, 140–147. ArticlePubMedCAS Google Scholar
Davies J. and Watkins J. C. (1982) Actions of D and L forms of 2-amino-5-phosphonovalerate and 2-amino-4-phosphonobutyrate in the cat spinal cord.Brain Res.235, 378–386. ArticlePubMedCAS Google Scholar
Ellison D. W., Beal M. F., Mazurek M. F., Bird E. D., and Martin J. B. (1986) A postmortem study of amino acid neurotransmitters in Alzheimer’s disease.Ann. Neurol.20, 616–621. ArticlePubMedCAS Google Scholar
Fagg G. E., Foster A. C., Harris E. W., Lanthorn T. H., and Cotman C. W. (1982a) Structure-activity relationships ofl-glutamate receptor ligands: role of the omega-acidic terminal.Neurosci. Lett.31, 59–64. ArticlePubMedCAS Google Scholar
Fagg, G. E., Foster A. C., Mena E. E., and Cotman C. W. (1982b) Chloride and calcium ions reveal a pharmacologically distinct population ofl-glutamate binding sites in synaptic membranes: correspondence between biochemical and electrophysiological data.J. Neurosci.2, 958–965. PubMedCAS Google Scholar
Fletcher E. J., Martin D., Aram J. A., Lodge D., and Honor T. (1988) Quinoxalinediones selectively block quisqualate and kainate receptors and synaptic events in rat neocortex and hippocampus and frog spinal cord in vitro.Br. J. Pharmacol.95, 585–597. PubMedCAS Google Scholar
Forsythe I. D. and Clements J. D. (1990) Presynaptic glutamate receptors depress excitatory monosynaptic transmission between mouse hippocampal neurones.J. Physiol.429, 1–16. PubMedCAS Google Scholar
Freund R. K., Crooks S. L., Koerner J. F., and Johnson R. L. (1984) Antagonist activity of phosphorus-containing glutamate analogs in the perforant path.Brain Res.291, 150–153. ArticlePubMedCAS Google Scholar
Gannon R. L., Baty L. T., and Terrian D. M. (1989)l(+)-2-amino-4-phosphonobutyrate inhibits the release of both glutamate and dynorphin from guinea pig but not rat hippocampal mossy fiber synaptosomes.Brain Res.495, 151–155. ArticlePubMedCAS Google Scholar
Gramsbergen J. B., Mountjoy C. Q., Rossor M. N., Reynolds G. P., Roth M., and Korf J. (1987) A correlative study on hippocampal cation shifts and amino acids and clinico-pathological data in Alzheimer’s disease.Neurobiol. Aging8, 487–494. ArticlePubMedCAS Google Scholar
Greenamyre J. T. and Young A. B. (1989) Excitatory amino acids and Alzheimer’s disease.Neurobiol. Aging10, 593–602. ArticlePubMedCAS Google Scholar
Henneberry R. C. (1989) The role of neuronal energy in the neurotoxicity of excitatory amino acids.Neurobiol. Aging10, 611–613. ArticlePubMedCAS Google Scholar
Hyman B. T., Van Hoesen G. W., and Damasio A. R. (1987) Alzheimer’s disease: Glutamate depletion in the hippocampal perforant pathway zone.Ann. Neurol.22, 37–40. ArticlePubMedCAS Google Scholar
Johnson K. M., Snell L. D., Jones S. M., and Qi H. (1988) Glycine antagonist activity of simple glycine analogues and_N_-methyl-d-aspartate antagonists.Neurol. Neurobiol.46, 551–558. CAS Google Scholar
Kamiya K., Cruse W. B. T., and Kennard O. (1983) The arsonomethyl group as an analogue of phosphate.Biochem. J.213, 217–223. PubMedCAS Google Scholar
Kessler M., Baudry M., and Lynch G. (1987) Use of cystine to distinguish glutamate binding from glutamate sequestration.Neurosci. Lett.81, 221–226. PubMedCAS Google Scholar
Klunk W. E., McClure R. J., and Pettegrew J. W. (1991) L-Phosphoserine, a metabolite elevated in Alzheimer’s disease, interacts with specificl-glutamate receptor subtypes.J. Neurochem.56, 1997–2003. ArticlePubMedCAS Google Scholar
Koerner J. F., Johnson R. L., Freund R. K., Robinson M. B., and Crooks S. L. (1983) Structure-function relationships for gamma-substituted glutamate analogues on dentate granule cells.Brain Res.272, 299–309. ArticlePubMedCAS Google Scholar
Kosik K. S., Orecchio L. D., Bakalis S., and Neve R. L. (1989) Developmentally regulated expression of specific tau sequences.Neuron2, 1389–1397. ArticlePubMedCAS Google Scholar
Lanthorn T. H., Ganong A. H., and Cotman C. W. (1984) 2-Amino-4-phosphonobutyrate selectively blocks mossy fiber-CA3 responses in guinea pig but not rat hippocampus.Brain Res.290, 174–178. ArticlePubMedCAS Google Scholar
Mann D. M. A. (1985) The neuropathology of Alzheimer’s disease: A review with pathogenetic, aetiological and therapeutic considerations.Mech. Ageing Dev.31, 213–255. ArticlePubMedCAS Google Scholar
Maragos. W. F., Greenamyre J. T., Penney J. B., Jr., and Young A. B. (1987) Glutamate dysfunction in Alzheimer’s disease: An hypothesis.Trends Neurosci.10, 65–68. ArticleCAS Google Scholar
Mattson M. P., Guthrie P. B., and Kater S. B. (1989) Intrinsic factors in the selective vulnerability of hippocampal pyramidal neurons.Prog. Clin. Biol. Res.317, 333–351. PubMedCAS Google Scholar
May P. C. (1989) Selectivity of excitotoxic mechanisms in Alzheimer’s disease.Neurobiol. Aging10, 606–608. ArticlePubMedCAS Google Scholar
McBain C. J., Kleckner N. W., Wyrick S., and Dingledine R. (1989) Structural requirements for activation of the glycine coagonist site of_N_-methyl-d-aspartate receptors expressed in Xenopus oocytes.Mol. Pharmacol.36, 556–565. PubMedCAS Google Scholar
McClure, R. J., Klunk W. E., and Pettegrew J. W. (1990) Computer molecular modeling of L-phosphoserine to the NMDA receptor. (Abstract)Biol. Psychiatry27(9A), 76A-77A. Google Scholar
McClure R. J. and Pettegrew J. W. (1989) Computer molecular modeling ofl-glutamate agonists and antagonists. (Abstract).Neurology39 (Suppl. 1), 398. Google Scholar
McIlwain H. and Bachelard H. S. (1985)Biochemistry and the Central Nervous System. Churchill Livingstone, New York. Google Scholar
McKhann G., Drachman D., Folstein M., Katzman R., Price D., and Stadlan E.M. (1984) Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA work group under the auspices of the Department of Health and Human Services Task Force on Alzheimer’s disease.Neurology34, 939–944. PubMedCAS Google Scholar
Miotto O., Gonzalez R. G., Buonanno F., and Growdon J. (1986) In vitro31P NMR spectroscopy detects altered phospholipid metabolism in Alzheimer’s disease.Can. J. Neurol. Sci.13, (Suppl.) 535–539. Google Scholar
Monaghan D. T., McMills M. C., Chamberlin A. R., and Cotman C. W. (1983) Synthesis of 2-amino-4-phosphonobutyric acid and characterization of its binding to rat brain membranes: a selective ligand for the chloride/calcium-dependent class ofl-glutamate binding sites.Brain Res.278, 137–144. ArticlePubMedCAS Google Scholar
Monahan J. B., Corpus V. M., Hood W. F., Thomas J. W., and Compton R. P. (1989) Characterization of a [3H]glycine recognition site, a modulatory site of the N-methyl-D-aspartate receptor complex.J. Neurochem.53, 370–375. ArticlePubMedCAS Google Scholar
Mouradian M. M., Contreras P. C., Monahan J. B., and Chase T. N. (1988) [3H]MK-801 binding in Alzheimer’s disease.Neurosci. Lett.93, 225–230. ArticlePubMedCAS Google Scholar
Murphy D. E., Hutchison A. J., Hurt S. D., Williams M., and Sills M. A. (1988) Characterization of the binding of [3H]-CGS 19755: A novel_N_-methyl-d-aspartate antagonist with nanomolar affinity in rat brain.Br. J. Pharmacol.95, 932–938. PubMedCAS Google Scholar
Murphy D. E., Schneider J., Boehm C., Lehmann J., and Williams M. (1987a) Binding of [3H]3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid to rat brain membranes: a selective, high-affinity ligand for_N_-methyl-d-aspartate receptors.J. Pharmacol. Exp. Ther.240, 778–784. PubMedCAS Google Scholar
Murphy D. E., Snowhill E. W., and Williams M. (1987b) Characterization of quisqualate recognition sites in rat brain tissue using DL-[3H]alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) and a filtration assay.Neurochem. Res.9, 775–782. Article Google Scholar
Naito S. and Ueda T. (1983) Adenosine triphosphate-dependent uptake of glutamate into protein I-associated synaptic vesicles.J. Biol. Chem.258, 696–699. PubMedCAS Google Scholar
Naito S. and Ueda T. (1985) Characterization of glutamate uptake into synaptic vesicles.J. Neurochem.44, 99–109. ArticlePubMedCAS Google Scholar
Nicholls D. G. (1989) Release of glutamate, aspartate, and gamma-aminobutyric acid from isolated nerve terminals.J. Neurochem.52, 331–341. ArticlePubMedCAS Google Scholar
Nicoletti F., Meek J. L., Iadarola M. J., Chuang D. M., Roth B. L., and Costa E. (1986a) Coupling of inositol phospholipid metabolism with excitatory amino acid recognition sites in rat hippocampus.J. Neurochem.46, 40–46. ArticlePubMedCAS Google Scholar
Nicoletti F., Wroblewski J. T., Iadarola M. J., and Costa E. (1986b) Serine-O-phosphate, an endogenous metabolite inhibits the stimulation of inositol phospholipid hydrolysis elicited by ibotenic acid in rat hippocampal slices.Neuropharmacology25, 335–338. ArticlePubMedCAS Google Scholar
Ninomiya H., Fukunaga R., Taniguchi T., Fujiwara M., Shimohama S., and Kameyama M. (1990) [3H]_N_-[1-(2-thienyl)cyclohexyl]-3,4-piperidine ([3H]TCP) binding in human frontal cortex: decreases in Alzheimer-type dementia.J. Neurochem.54, 526–532. ArticlePubMedCAS Google Scholar
Olney J. W., Ho O. L., and Rhee V. (1971) Cytotoxic effects of acidic and sulphur containing amino acids on the infant mouse central nervous system.Exp. Brain Res.14, 61–76. ArticlePubMedCAS Google Scholar
Olney J. W., Price M. T., Samson L., and Labruyere J. (1986) The role of specific ions in glutamate neurotoxicity.Neurosci. Lett.65, 65–71. ArticlePubMedCAS Google Scholar
Olsen R. W., Szamraj O., and Houser C. R. (1987) [3H]AMPA binding to glutamate receptor subpopulations in rat brain.Brain Res.402, 243–254. ArticlePubMedCAS Google Scholar
Olverman H. J., Jones A. W., Mewett K. N., and Watkins J. C. (1988) Structure/activity relations of_N_-methyl-d-aspartate receptor ligands as studied by their inhibition of [3H]d-2-amino-5-phosphonopentanoic acid binding in rat brain membranes.Neuroscience26, 17–31. ArticlePubMedCAS Google Scholar
Olverman H. J., Jones A. W., and Watkins J. C. (1984) L-glutamate has higher affinity than other amino acids for [3H]-d-AP5 binding sites in rat brain membranes.Nature307, 460–462. ArticlePubMedCAS Google Scholar
Perry T. L., Yong V. W., Bergeron C., Hansen S., and Jones K. (1987) Amino acids, glutathione, and glutathione transferase activity in the brains of patients with Alzheimer’s disease.Ann. Neurol.21, 331–336. ArticlePubMedCAS Google Scholar
Pettegrew J. W. (1989) Molecular insights into Alzheimer’s disease, in_Calcium, Membranes, Aging, and Alzheimer’s Disease_ (Khachaturian Z., Cotman C., and Pettegrew J. W., eds.), p. 5, New York Academy of Sciences, New York. Google Scholar
Pettegrew J. W., Kopp S. J., Minshew N. J., Glonek T., Feliksik J. M., Tow T. P., and Cohen M. M. (1987a)31P Nuclear Magnetic Resonance studies of phosphoglyceride metabolism in developing and degenerating brain: Preliminary observations.J. Neuropathol. Exp. Neurol.46, 419–430. ArticlePubMedCAS Google Scholar
Pettegrew J. W., Minshew N. J., Cohen M. M., Kopp S. J., and Glonek T. (1984) P-31 NMR changes in Alzheimer’s and Huntington’s disease brain.Neurology34, 281 (abstract). Google Scholar
Pettegrew J. W., Moossy J., Withers G., McKeag D., and Panchalingam K. (1988a)31P Nuclear magnetic resonance study of the brain in Alzheimer’s disease.J. Neuropathol. Exp. Neurol.47, 235–248. ArticlePubMedCAS Google Scholar
Pettegrew J. W. and Panchalingam K. (1990) Solid state31P and27Al NMR studies of model membranes and mammalian brain: Possible implications for Alzheimer’s disease, in_NMR Principles and Applications to Biomedical Research_ (Pettegrew J. W., ed.), p. 310. Springer-Verlag, New York. Google Scholar
Pettegrew J. W., Panchalingam K., Moossy J., Martinez J. A., Rao G., and Boller F. (1988b) Correlation of31P NMR and morphologic findings in Alzheimer’s disease.Arch. Neurol.45, 1093–1096. PubMedCAS Google Scholar
Pettegrew J. W., Panchalingam K., Withers G., McKeag D., and Strychor S. (1990) Changes in brain energy and phospholipid metabolism during development and aging in the Fischer 344 rat.J. Neuropathol. Exp. Neurol.49, 237–249. ArticlePubMedCAS Google Scholar
Pettegrew J. W., Withers G., Panchalingam K., and Post J. F. (1987b)31P nuclear magnetic resonance (NMR) spectroscopy of brain in aging and Alzheimer’s disease.J. Neural. Transm.24, (Suppl.) 261–268. CAS Google Scholar
Pin J. P., Bockaert J., and Recasesn M. (1984) The Ca2+/Cl− dependentl-[3H]glutamate binding: A new receptor or a particular transport process?FEBS Lett.175, 31–36. ArticlePubMedCAS Google Scholar
Procter A. W., Lowe S. L., Palmer A. M., Francis P. T., Esiri M. M., Stratmann G. C., Najlerahim A., Patel A. J., Hunt A., and Bowen D. M. (1988a) Topographical distribution of neurochemical changes in Alzheimer’s disease.J. Neurol. Sci.84, 125–140. ArticlePubMedCAS Google Scholar
Procter A. W., Palmer A. M., Francis P. T., Lowe S. L., Neary D., Murphy E., Doshi R., and Bowen D. M. (1988b) Evidence of glutamatergic denervation and possible abnormal metabolism in Alzheimer’s disease.J. Neurochem.50, 790–802. ArticlePubMedCAS Google Scholar
Procter A. W., Stirling J. M., Stratmann G. C., Cross A. J., and Bowen D. M. (1989a) Loss of glycine-dependent radioligand binding to the_N_-methyl-d-aspartate-phencyclidine receptor complex in patients with Alzheimer’s disease.Neurosci. Lett.101, 62–66. ArticlePubMedCAS Google Scholar
Procter A. W., Wong E. H., Stratmann G. C., Lowe S. L., and Bowen D. M. (1989b) Reduced glycine stimulation of [3H]MK-801 binding in Alzheimer’s disease.J. Neurochem.53, 698–704. ArticlePubMedCAS Google Scholar
Reynolds I. J. and Miller R. J. (1988) Multiple sites for the regulation of the_N_-methyl-d-aspartate receptor.Mol. Pharmacol.33, 581–584. PubMedCAS Google Scholar
Reynolds I. J., Murphy S. N., and Miller R. J. (1987) [3H]-labeled MK-801 binding to the excitatory amino acid receptor complex from rat brain is enhanced by glycine.Proc. Natl. Acad. Sci. USA84, 7744–7748. ArticlePubMedCAS Google Scholar
Sanfeliu C., Hunt A., and Patel A. J. (1990) Death of subcortical cholinergic neurons in certain neurodegenerative disorders may not be due to an overstimulation of N-methyl-d-aspartate receptors.Brain Res.506, 319–322. ArticlePubMedCAS Google Scholar
Sasaki H., Muramoto O., Kanazawa I., Arai H., Kosaka K., and Iizuka R. (1986) Regional distribution of amino acid transmitters in postmortem brains of presenile and senile dementia of Alzheimer type.Ann. Neurol19, 263–269. ArticlePubMedCAS Google Scholar
Schoepp D. D. and Johnson B. G. (1989) Comparison of excitatory amino acid-stimulated phosphoinositide hydrolysis and N-[3H]acetylaspartylglutamate binding in rat brain: Selective inhibition of phosphoinositide hydrolysis by 2-amino-3-phosphonopropionate.J. Neurochem.53, 273–278. ArticlePubMedCAS Google Scholar
Schoepp D. D., Johnson B. G., Smith E. C., and McQuaid L. A. (1990) Stereo-selectivity and mode of inhibition of phosphoinositide-coupled excitatory amino acid receptors by 2-amino-3-phosphonopropionic acid.Mol. Pharmacol.38, 222–228. PubMedCAS Google Scholar
Simpson M. D., Royston M. C., Deakin J. F., Cross A. J., Mann D. M., and Slater P. (1988) Regional changes in [3H]d-aspartate and [3H]TCP binding sites in Alzheimer’s disease brains.Brain Res.462, 76–82. ArticlePubMedCAS Google Scholar
Slaughter M. M. and Miller R. F. (1985) Characterization of an extended glutamate receptor of the on bipolar neuron in the vertebrate retina.J. Neurosci.5, 224–233. PubMedCAS Google Scholar
Steele J. E., Palmer A. M., Stratmann G. C., and Bowen D. M. (1989) The_N_-methyl-d-aspartate receptor complex in Alzheimer’s disease: Reduced regulation by glycine but not zinc.Brain Res.500, 369–373. ArticlePubMedCAS Google Scholar
Sundaralingam M. and Putkey E. F. (1970) Molecular structures of amino acids and peptides. II. A redetermination of the crystal structure ofl-_O_-serine phosphate. A very short phosphate-carboxyl hydrogen bond.Acta Cryst.B26, 790–800. ArticleCAS Google Scholar
Vincent S. R. and McGeer E. G. (1980) A comparison of sodium-dependent glutamate binding with high-affinity glutamate uptake in rat striatum.Brain Res.184, 99–108. ArticlePubMedCAS Google Scholar