Stress, glucocorticoid receptors, and adult neurogenesis: a balance between excitation and inhibition? (original) (raw)
Cajal Y, Ramón S (1928) Degeneration and regeneration of the nervous system. Oxford University Press, London Google Scholar
Altman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124:319–335 CASPubMed Google Scholar
Altman J (1963) Autoradiographic investigation of cell proliferation in the brains of rats and cats. Anat Rec 145:573–591 CASPubMed Google Scholar
Altman J, Das GD (1965) Post-natal origin of microneurones in the rat brain. Nature 207:953–956 CASPubMed Google Scholar
Kaplan MS, Hinds JW (1977) Neurogenesis in the adult rat: electron microscopic analysis of light radioautographs. Science 197:1092–1094 CASPubMed Google Scholar
Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710 CASPubMed Google Scholar
Kempermann G, Jessberger S, Steiner B, Kronenberg G (2004) Milestones of neuronal development in the adult hippocampus. Trends Neurosci 27:447–452. doi:10.1016/j.tins.2004.05.013 CASPubMed Google Scholar
Encinas JM, Enikolopov G (2008) Identifying and Quantitating Neural Stem and Progenitor Cells in the Adult Brain. In: Methods in Cell Biology. Elsevier, pp 243–272
Brown JP, Couillard-Despres S, Cooper-Kuhn CM et al (2003) Transient expression of doublecortin during adult neurogenesis. J Comp Neurol 467:1–10. doi:10.1002/cne.10874 CASPubMed Google Scholar
Rao MS, Shetty AK (2004) Efficacy of doublecortin as a marker to analyse the absolute number and dendritic growth of newly generated neurons in the adult dentate gyrus. Eur J Neurosci 19:234–246 PubMed Google Scholar
Gould E, Cameron HA, Daniels DC et al (1992) Adrenal hormones suppress cell division in the adult rat dentate gyrus. J Neurosci 12:3642–3650 CASPubMed Google Scholar
Cameron HA, Woolley CS, McEwen BS, Gould E (1993) Differentiation of newly born neurons and glia in the dentate gyrus of the adult rat. NSC 56:337–344 CAS Google Scholar
Gould E, Reeves AJ, Fallah M et al (1999) Hippocampal neurogenesis in adult Old World primates. Proc Natl Acad Sci USA 96:5263–5267 CASPubMed CentralPubMed Google Scholar
Eriksson PS, Perfilieva E, Björk-Eriksson T et al (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317. doi:10.1038/3305 CASPubMed Google Scholar
Gould E, Woolley CS, McEwen BS (1991) Adrenal steroids regulate postnatal development of the rat dentate gyrus: I. Effects of glucocorticoids on cell death. J Comp Neurol 313:479–485. doi:10.1002/cne.903130308 CASPubMed Google Scholar
de Kloet ER, Vreugdenhil E, Oitzl MS, Joëls M (1998) Brain corticosteroid receptor balance in health and disease. Endocr Rev 19:269–301 PubMed Google Scholar
de Kloet ER, Fitzsimons CP, Datson NA et al (2009) Glucocorticoid signaling and stress-related limbic susceptibility pathway: about receptors, transcription machinery and microRNA. Brain Res 1293:129–141. doi:10.1016/j.brainres.2009.03.039 PubMed Google Scholar
de Kloet ER, Joëls M, Holsboer F (2005) Stress and the brain: from adaptation to disease. Nat Rev Neurosci 6:463–475. doi:10.1038/nrn1683 PubMed Google Scholar
Schoenfeld TJ, Gould E (2013) Differential effects of stress and glucocorticoids on adult neurogenesis. Curr Top Behav Neurosci 15:139–164. doi:10.1007/7854_2012_233 PubMed Google Scholar
Kempermann G, Song H, Gage FH (2008) Neurogenesis in the hippocampus. In: Gage FH, Kempermann G, Song H (eds) Adult neurogenesis. Cold Spring Harbor Laboratory Press, New York, pp 159–174
Kempermann G, Gast D, Kronenberg G et al (2003) Early determination and long-term persistence of adult-generated new neurons in the hippocampus of mice. Development 130:391–399 CASPubMed Google Scholar
Espósito MS, Piatti VC, Laplagne DA et al (2005) Neuronal differentiation in the adult hippocampus recapitulates embryonic development. J Neurosci 25:10074–10086. doi:10.1523/JNEUROSCI.3114-05.2005 PubMed Google Scholar
Francis F, Koulakoff A, Boucher D et al (1999) Doublecortin is a developmentally regulated, microtubule-associated protein expressed in migrating and differentiating neurons. Neuron 23:247–256 CASPubMed Google Scholar
van Praag H, Schinder AF, Christie BR et al (2002) Functional neurogenesis in the adult hippocampus. Nature 415:1030–1034. doi:10.1038/4151030a PubMed Google Scholar
Zhao C, Teng EM, Summers RG et al (2006) Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J Neurosci 26:3–11. doi:10.1523/JNEUROSCI.3648-05.2006 CASPubMed Google Scholar
Toni N, Teng EM, Bushong EA et al (2007) Synapse formation on neurons born in the adult hippocampus. Nat Neurosci 10:727–734. doi:10.1038/nn1908 CASPubMed Google Scholar
Selye H (1998) A syndrome produced by diverse nocuous agents. 1936. J Neuropsychiatry Clin Neurosci 10:230–231 CASPubMed Google Scholar
Vale W, Spiess J, Rivier C, Rivier J (1981) Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science 213:1394–1397 CASPubMed Google Scholar
Arriza JL, Weinberger C, Cerelli G et al (1987) Cloning of human mineralocorticoid receptor complementary DNA: structural and functional kinship with the glucocorticoid receptor. Science 237:268–275 CASPubMed Google Scholar
Reul JM, de Kloet ER (1985) Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation. Endocrinology 117:2505–2511 CASPubMed Google Scholar
McEwen BS, de Kloet ER, Rostene W (1986) Adrenal steroid receptors and actions in the nervous system. Physiol Rev 66:1121–1188 CASPubMed Google Scholar
Hollenberg SM, Weinberger C, Ong ES et al (1985) Primary structure and expression of a functional human glucocorticoid receptor cDNA. Nature 318:635–641 CASPubMed Google Scholar
Bamberger CM, Schulte HM, Chrousos GP (1996) Molecular determinants of glucocorticoid receptor function and tissue sensitivity to glucocorticoids. Endocr Rev 17:245–261 CASPubMed Google Scholar
Groeneweg FL, Karst H, de Kloet ER, Joëls M (2012) Mineralocorticoid and glucocorticoid receptors at the neuronal membrane, regulators of nongenomic corticosteroid signalling. Mol Cell Endocrinol 350:299–309. doi:10.1016/j.mce.2011.06.020 CASPubMed Google Scholar
Gould E, McEwen BS, Tanapat P et al (1997) Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation. J Neurosci 17:2492–2498 CASPubMed Google Scholar
Gould E, Tanapat P, McEwen BS et al (1998) Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress. Proc Natl Acad Sci USA 95:3168–3171 CASPubMed CentralPubMed Google Scholar
Lagace DC, Donovan MH, DeCarolis NA et al (2010) Adult hippocampal neurogenesis is functionally important for stress-induced social avoidance. Proc Natl Acad Sci USA 107:4436–4441. doi:10.1073/pnas.0910072107 CASPubMed CentralPubMed Google Scholar
Cameron HA, Gould E (1994) Adult neurogenesis is regulated by adrenal steroids in the dentate gyrus. NSC 61:203–209 CAS Google Scholar
Cameron HA, Woolley CS, Gould E (1993) Adrenal steroid receptor immunoreactivity in cells born in the adult rat dentate gyrus. Brain Res 611:342–346 CASPubMed Google Scholar
van Praag H, Kempermann G, Gage FH (1999) Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 2:266–270. doi:10.1038/6368 PubMed Google Scholar
Snyder JS, Glover LR, Sanzone KM et al (2009) The effects of exercise and stress on the survival and maturation of adult-generated granule cells. Hippocampus 19:898–906. doi:10.1002/hipo.20552 CASPubMed CentralPubMed Google Scholar
Droste SK, Gesing A, Ulbricht S et al (2003) Effects of long-term voluntary exercise on the mouse hypothalamic–pituitary–adrenocortical axis. Endocrinology 144:3012–3023 CASPubMed Google Scholar
Rizzi S, Bianchi P, Guidi S et al (2011) Impact of environmental enrichment on neurogenesis in the dentate gyrus during the early postnatal period. Brain Res 1415:23–33. doi:10.1016/j.brainres.2011.08.007 CASPubMed Google Scholar
Veena J, Srikumar BN, Raju TR, Shankaranarayana Rao BS (2009) Exposure to enriched environment restores the survival and differentiation of new born cells in the hippocampus and ameliorates depressive symptoms in chronically stressed rats. Neurosci Lett 455:178–182. doi:10.1016/j.neulet.2009.03.059 CASPubMed Google Scholar
Leuner B, Gould E, Shors TJ (2006) Is there a link between adult neurogenesis and learning? Hippocampus 16:216–224. doi:10.1002/hipo.20153 PubMed Google Scholar
Kirby ED, Muroy SE, Sun WG et al (2013) Acute stress enhances adult rat hippocampal neurogenesis and activation of newborn neurons via secreted astrocytic FGF2. Elife 2:e00362. doi:10.7554/eLife.00362 PubMed CentralPubMed Google Scholar
Snyder JS, Soumier A, Brewer M et al (2011) Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature 476:1–5. doi:10.1038/nature10287 Google Scholar
Maier SF, Watkins LR (1998) Stressor controllability, anxiety, and serotonin. Cogn Ther Res 22:595–613 Google Scholar
Banasr M, Hery M, Printemps R, Daszuta A (2004) Serotonin-induced increases in adult cell proliferation and neurogenesis are mediated through different and common 5-HT receptor subtypes in the dentate gyrus and the subventricular zone. Neuropsychopharmacology 29:450–460. doi:10.1038/sj.npp.1300320 CASPubMed Google Scholar
Flügge G, Kramer M, Rensing S, Fuchs E (1998) 5HT1A-receptors and behaviour under chronic stress: selective counteraction by testosterone. Eur J Neurosci 10:2685–2693 PubMed Google Scholar
Meijer OC, de Kloet ER (1994) Corticosterone suppresses the expression of 5-HT1A receptor mRNA in rat dentate gyrus. Eur J Pharmacol 266:255–261 CASPubMed Google Scholar
Meijer OC, de Kloet ER (1998) Corticosterone and serotonergic neurotransmission in the hippocampus: functional implications of central corticosteroid receptor diversity. Crit Rev Neurobiol 12:1–20 CASPubMed Google Scholar
Rasmuson S, Olsson T, Henriksson BG et al (1998) Environmental enrichment selectively increases 5-HT1A receptor mRNA expression and binding in the rat hippocampus. Brain Res Mol Brain Res 53:285–290 CASPubMed Google Scholar
Bland ST, Beckley JT, Young S et al (2010) Enduring consequences of early-life infection on glial and neural cell genesis within cognitive regions of the brain. Brain Behav Immun 24:329–338. doi:10.1016/j.bbi.2009.09.012 PubMed CentralPubMed Google Scholar
Schaaf MJ, de Kloet ER, Vreugdenhil E (2000) Corticosterone effects on BDNF expression in the hippocampus. Implications for memory formation. Stress (Amsterdam, Netherlands) 3:201–208
Kheirbek MA, Klemenhagen KC, Sahay A, Hen R (2012) Neurogenesis and generalization: a new approach to stratify and treat anxiety disorders. Nat Neurosci 15:1613–1620. doi:10.1038/nn.3262 CASPubMed CentralPubMed Google Scholar
Garcia A, Steiner B, Kronenberg G et al (2004) Age-dependent expression of glucocorticoid- and mineralocorticoid receptors on neural precursor cell populations in the adult murine hippocampus. Aging Cell 3:363–371. doi:10.1111/j.1474-9728.2004.00130.x CASPubMed Google Scholar
Boku S, Nakagawa S, Masuda T et al (2009) Glucocorticoids and lithium reciprocally regulate the proliferation of adult dentate gyrus-derived neural precursor cells through GSK-3beta and beta-catenin/TCF pathway. Neuropsychopharmacology 34:805–815. doi:10.1038/npp.2008.198 CASPubMed Google Scholar
Cameron HA, McEwen BS, Gould E (1995) Regulation of adult neurogenesis by excitatory input and NMDA receptor activation in the dentate gyrus. J Neurosci 15:4687–4692 CASPubMed Google Scholar
Okuyama N, Takagi N, Kawai T et al (2004) Phosphorylation of extracellular-regulating kinase in NMDA receptor antagonist-induced newly generated neurons in the adult rat dentate gyrus. J Neurochem 88:717–725 CASPubMed Google Scholar
Bernabeu R, Sharp FR (2000) NMDA and AMPA/kainate glutamate receptors modulate dentate neurogenesis and CA3 synapsin-I in normal and ischemic hippocampus. J Cereb Blood Flow Metab 20:1669–1680. doi:10.1097/00004647-200012000-00006 CASPubMed Google Scholar
Abrahám I, Juhasz G, Kékesi KA, Kovács KJ (1998) Corticosterone peak is responsible for stress-induced elevation of glutamate in the hippocampus. Stress (Amsterdam, Netherlands) 2:171–181
Cameron HA, Tanapat P, Gould E (1998) Adrenal steroids and _N_-methyl-d-aspartate receptor activation regulate neurogenesis in the dentate gyrus of adult rats through a common pathway. NSC 82:349–354 CAS Google Scholar
Vreugdenhil E, Kolk SM, Boekhoorn K, et al (2007) Doublecortin-like, a microtubule-associated protein expressed in radial glia, is crucial for neuronal precursor division and radial process stability. Eur J Neurosci 25:635–648. doi:10.1111/j.1460-9568.2007.05318.x Google Scholar
Saaltink D-J, Håvik B, Verissimo CS et al (2012) Doublecortin and doublecortin-like are expressed in overlapping and non-overlapping neuronal cell population: implications for neurogenesis. J Comp Neurol 520:2805–2823. doi:10.1002/cne.23144 PubMed Google Scholar
Dijkmans TF, van Hooijdonk LWA, Fitzsimons CP, Vreugdenhil E (2010) The doublecortin gene family and disorders of neuronal structure. Cent Nerv Syst Agents Med Chem 10:32–46 CASPubMed Google Scholar
Vreugdenhil E, Verissimo CSL, Mariman R et al (2009) MicroRNA 18 and 124a down-regulate the glucocorticoid receptor: implications for glucocorticoid responsiveness in the brain. Endocrinology 150:2220–2228. doi:10.1210/en.2008-1335 CASPubMed Google Scholar
Yoo AS, Sun AX, Li L et al (2011) MicroRNA-mediated conversion of human fibroblasts to neurons. Nature 476:228–231. doi:10.1038/nature10323 Google Scholar
Cheng L-C, Pastrana E, Tavazoie M, Doetsch F (2009) miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci 12:399–408. doi:10.1038/nn.2294 CASPubMed CentralPubMed Google Scholar
van Hooijdonk LWA, Ichwan M, Dijkmans TF et al (2009) Lentivirus-mediated transgene delivery to the hippocampus reveals sub-field specific differences in expression. BMC Neurosci 10:2. doi:10.1186/1471-2202-10-2 PubMed CentralPubMed Google Scholar
Fitzsimons CP, van Hooijdonk LWA, Schouten M et al (2013) Knockdown of the glucocorticoid receptor alters functional integration of newborn neurons in the adult hippocampus and impairs fear-motivated behavior. Mol Psychiatry 18:396–407. doi:10.1038/mp.2012.123 PubMed Google Scholar
Fukumoto K, Morita T, Mayanagi T et al (2009) Detrimental effects of glucocorticoids on neuronal migration during brain development. Mol Psychiatry 14:1119–1131. doi:10.1038/mp.2009.60 CASPubMed Google Scholar
Deng W, Aimone JB, Gage FH (2010) New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci 11:339–350. doi:10.1038/nrn2822 CASPubMed CentralPubMed Google Scholar
Kirby ED, Friedman AR, Covarrubias D et al (2011) Basolateral amygdala regulation of adult hippocampal neurogenesis and fear-related activation of newborn neurons. Mol Psychiatry 17:10. doi:10.1038/mp.2011.71
Urbach A, Redecker C, Witte OW (2008) Induction of neurogenesis in the adult dentate gyrus by cortical spreading depression. Stroke 39:3064–3072. doi:10.1161/STROKEAHA.108.518076 PubMed Google Scholar
Parent JM, Yu TW, Leibowitz RT et al (1997) Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J Neurosci 17:3727–3738 CASPubMed Google Scholar
Mao Y, Ge X, Frank CL et al (2007) Disrupted in schizophrenia 1 regulates neuronal progenitor proliferation via modulation of GSK3β/β-catenin signaling. Cell 136:1017–1031. doi:10.1016/j.cell.2008.12.044 Google Scholar
Gallagher BB, Murvin A, Flanigin HF et al (1984) Pituitary and adrenal function in epileptic patients. Epilepsia 25:683–689 CASPubMed Google Scholar
Kumar G, Couper A, O’Brien TJ et al (2007) The acceleration of amygdala kindling epileptogenesis by chronic low-dose corticosterone involves both mineralocorticoid and glucocorticoid receptors. Psychoneuroendocrinology 32:834–842. doi:10.1016/j.psyneuen.2007.05.011 CASPubMed Google Scholar
Sinclair D, Tsai SY, Woon HG, Weickert CS (2011) Abnormal glucocorticoid receptor mRNA and protein isoform expression in the prefrontal cortex in psychiatric illness. Neuropsychopharmacology 36:2698–2709. doi:10.1038/npp.2011.160 CASPubMed CentralPubMed Google Scholar
Sinclair D, Webster MJ, Wong J, Weickert CS (2011) Dynamic molecular and anatomical changes in the glucocorticoid receptor in human cortical development. Mol Psychiatry 16:504–515. doi:10.1038/mp.2010.28 CASPubMed Google Scholar
Sinclair D, Fullerton JM, Webster MJ, Shannon Weickert C (2012) Glucocorticoid receptor 1B and 1C mRNA transcript alterations in schizophrenia and bipolar disorder, and their possible regulation by GR gene variants. PLoS ONE 7:e31720. doi:10.1371/journal.pone.0031720 CASPubMed CentralPubMed Google Scholar
Webster MJ, Knable MB, O’Grady J et al (2002) Regional specificity of brain glucocorticoid receptor mRNA alterations in subjects with schizophrenia and mood disorders. Mol Psychiatry 7:985–994. doi:10.1038/sj.mp.4001139 Google Scholar
Perlman WR, Webster MJ, Kleinman JE, Weickert CS (2004) Reduced glucocorticoid and estrogen receptor alpha messenger ribonucleic acid levels in the amygdala of patients with major mental illness. Biol Psychiatry 56:844–852. doi:10.1016/j.biopsych.2004.09.006 CASPubMed Google Scholar
Lu NZ, Cidlowski JA (2005) Translational regulatory mechanisms generate N-terminal glucocorticoid receptor isoforms with unique transcriptional target genes. Mol Cell 18:331–342. doi:10.1016/j.molcel.2005.03.025 CASPubMed Google Scholar
Oakley RH, Cidlowski JA (2011) Cellular processing of the glucocorticoid receptor gene and protein: new mechanisms for generating tissue-specific actions of glucocorticoids. J Biol Chem 286:3177–3184. doi:10.1074/jbc.R110.179325 CASPubMed CentralPubMed Google Scholar
Anacker C, Cattaneo A, Musaelyan K et al (2013) Role for the kinase SGK1 in stress, depression, and glucocorticoid effects on hippocampal neurogenesis. Proc Natl Acad Sci USA 110:8708–8713. doi:10.1073/pnas.1300886110 CASPubMed CentralPubMed Google Scholar
Sutcliffe JS, Jiang YH, Galijaard RJ et al (1997) The E6-Ap ubiquitin-protein ligase (UBE3A) gene is localized within a narrowed Angelman syndrome critical region. Genome Res 7:368–377 CASPubMed CentralPubMed Google Scholar
Mardirossian S, Rampon C, Salvert D et al (2009) Impaired hippocampal plasticity and altered neurogenesis in adult Ube3a maternal deficient mouse model for Angelman syndrome. Exp Neurol 220:341–348. doi:10.1016/j.expneurol.2009.08.035 CASPubMed Google Scholar
Godavarthi SK, Dey P, Maheshwari M, Jana NR (2012) Defective glucocorticoid hormone receptor signaling leads to increased stress and anxiety in a mouse model of Angelman syndrome. Hum Mol Genet 21:1824–1834. doi:10.1093/hmg/ddr614 CASPubMed Google Scholar
Yu J, de Belle I, Liang H, Adamson ED (2004) Coactivating factors p300 and CBP are transcriptionally crossregulated by Egr1 in prostate cells, leading to divergent responses. Mol Cell 15:83–94. doi:10.1016/j.molcel.2004.06.030 CASPubMed Google Scholar
Fitzsimons CP, Ahmed S, Wittevrongel CFW et al (2008) The microtubule-associated protein doublecortin-like regulates the transport of the glucocorticoid receptor in neuronal progenitor cells. Mol Endocrinol 22:248–262. doi:10.1210/me.2007-0233 CASPubMed Google Scholar
Meaney MJ, Szyf M, Seckl JR (2007) Epigenetic mechanisms of perinatal programming of hypothalamic–pituitary–adrenal function and health. Trends Mol Med 13:269–277. doi:10.1016/j.molmed.2007.05.003 CASPubMed Google Scholar
Zhang TY, Labonté B, Wen XL et al (2013) Epigenetic mechanisms for the early environmental regulation of hippocampal glucocorticoid receptor gene expression in rodents and humans. Neuropsychopharmacology 38:111–123. doi:10.1038/npp.2012.149 PubMed CentralPubMed Google Scholar
Weaver ICG, Cervoni N, Champagne FA et al (2004) Epigenetic programming by maternal behavior. Nat Neurosci 7:847–854. doi:10.1038/nn1276 CASPubMed Google Scholar
Szyf M, Weaver ICG, Champagne FA et al (2005) Maternal programming of steroid receptor expression and phenotype through DNA methylation in the rat. Front Neuroendocrinol 26:139–162. doi:10.1016/j.yfrne.2005.10.002 CASPubMed Google Scholar
Mirescu C, Peters JD, Gould E (2004) Early life experience alters response of adult neurogenesis to stress. Nat Neurosci 7:841–846. doi:10.1038/nn1290 CASPubMed Google Scholar
Kuhn HG, Dickinson-Anson H, Gage FH (1996) Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci 16:2027–2033 CASPubMed Google Scholar
Murphy EK, Spencer RL, Sipe KJ, Herman JP (2002) Decrements in nuclear glucocorticoid receptor (GR) protein levels and DNA binding in AgedRat hippocampus. Endocrinology 143:1362–1370 CASPubMed Google Scholar
Tanapat P, Galea LA, Gould E (1998) Stress inhibits the proliferation of granule cell precursors in the developing dentate gyrus. Int J Dev Neurosci 16:235–239 CASPubMed Google Scholar
Gould E, Tanapat P (1999) Stress and hippocampal neurogenesis. Biol Psychiatry 46:1472–1479 CASPubMed Google Scholar
Avishai-Eliner S, Gilles EE, Eghbal-Ahmadi M et al (2001) Altered regulation of gene and protein expression of hypothalamic-pituitary-adrenal axis components in an immature rat model of chronic stress. J Neuroendocrinol 13:799–807 CASPubMed CentralPubMed Google Scholar
Chiba S, Numakawa T, Ninomiya M et al (2012) Chronic restraint stress causes anxiety- and depression-like behaviors, downregulates glucocorticoid receptor expression, and attenuates glutamate release induced by brain-derived neurotrophic factor in the prefrontal cortex. Prog Neuropsychopharmacol Biol Psychiatry 39:112–119. doi:10.1016/j.pnpbp.2012.05.018 CASPubMed Google Scholar
McEwen BS (2012) The ever-changing brain: cellular and molecular mechanisms for the effects of stressful experiences. Devel Neurobiol 72:878–890. doi:10.1002/dneu.20968 CAS Google Scholar
Datson NA, van der Perk J, de Kloet ER, Vreugdenhil E (2001) Expression profile of 30,000 genes in rat hippocampus using SAGE. Hippocampus 11:430–444. doi:10.1002/hipo.1058 CASPubMed Google Scholar
Morsink MC, Steenbergen PJ, Vos JB et al (2006) Acute activation of hippocampal glucocorticoid receptors results in different waves of gene expression throughout time. J Neuroendocrinol 18:239–252. doi:10.1111/j.1365-2826.2006.01413.x CASPubMed Google Scholar
Anacker C, Zunszain PA, Cattaneo A et al (2011) Antidepressants increase human hippocampal neurogenesis by activating the glucocorticoid receptor. Mol Psychiatry 16:750. doi:10.1038/mp.2011.26 Google Scholar
Tashiro A, Sandler VM, Toni N et al (2006) NMDA-receptor-mediated, cell-specific integration of new neurons in adult dentate gyrus. Nature 442:929–933. doi:10.1038/nature05028 CASPubMed Google Scholar
Veyrac A, Gros A, Bruel-Jungerman E et al (2013) Zif268/egr1 gene controls the selection, maturation and functional integration of adult hippocampal newborn neurons by learning. Proc Natl Acad Sci USA 110:7062–7067. doi:10.1073/pnas.1220558110 CASPubMed CentralPubMed Google Scholar
Herold S, Jagasia R, Merz K et al (2011) CREB signalling regulates early survival, neuronal gene expression and morphological development in adult subventricular zone neurogenesis. Mol Cell Neurosci 46:79–88. doi:10.1016/j.mcn.2010.08.008 CASPubMed Google Scholar
Jagasia R, Steib K, Englberger E et al (2009) GABA-cAMP response element-binding protein signaling regulates maturation and survival of newly generated neurons in the adult hippocampus. J Neurosci 29:7966–7977. doi:10.1523/JNEUROSCI.1054-09.2009 CASPubMed CentralPubMed Google Scholar
Conway-Campbell BL, George CL, Pooley JR et al (2011) The HSP90 molecular chaperone cycle regulates cyclical transcriptional dynamics of the glucocorticoid receptor and its coregulatory molecules CBP/p300 during ultradian ligand treatment. Mol Endocrinol 25:944–954. doi:10.1210/me.2010-0073 CASPubMed CentralPubMed Google Scholar
Vecchia D, Pietrobon D (2012) Migraine: a disorder of brain excitatory–inhibitory balance? Trends Neurosci 35:507–520. doi:10.1016/j.tins.2012.04.007 Google Scholar
Ridder S, Chourbaji S, Hellweg R et al (2005) Mice with genetically altered glucocorticoid receptor expression show altered sensitivity for stress-induced depressive reactions. J Neurosci 25:6243–6250. doi:10.1523/JNEUROSCI.0736-05.2005 CASPubMed Google Scholar
Moors M, Bose R, Johansson-Haque K et al (2012) Dickkopf 1 mediates glucocorticoid-induced changes in human neural progenitor cell proliferation and differentiation. Toxicol Sci 125:488–495. doi:10.1093/toxsci/kfr304 CASPubMed Google Scholar
Furukawa-Hibi Y, Yun J, Nagai T, Yamada K (2012) Transcriptional suppression of the neuronal PAS domain 4 (Npas4) gene by stress via the binding of agonist-bound glucocorticoid receptor to its promoter. J Neurochem 123:866–875. doi:10.1111/jnc.12034 CASPubMed Google Scholar
Ibi D, Takuma K, Koike H et al (2008) Social isolation rearing-induced impairment of the hippocampal neurogenesis is associated with deficits in spatial memory and emotion-related behaviors in juvenile mice. J Neurochem 105:921–932. doi:10.1111/j.1471-4159.2007.05207.x CASPubMed Google Scholar
Murray F, Smith DW, Hutson PH (2008) Chronic low dose corticosterone exposure decreased hippocampal cell proliferation, volume and induced anxiety and depression like behaviours in mice. Eur J Pharmacol 583:115–127. doi:10.1016/j.ejphar.2008.01.014 CASPubMed Google Scholar
Nacher J, Gomez-Climent MA, Mcewen B (2004) Chronic non-invasive glucocorticoid administration decreases polysialylated neural cell adhesion molecule expression in the adult rat dentate gyrus. Neurosci Lett 370:40–44. doi:10.1016/j.neulet.2004.07.062 CASPubMed Google Scholar
Liu D, Diorio J, Tannenbaum B et al (1997) Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science 277:1659–1662 CASPubMed Google Scholar
Coe CL, Kramer M, Czéh B et al (2003) Prenatal stress diminishes neurogenesis in the dentate gyrus of juvenile rhesus monkeys. Biological psychiatry 54:1025–1034 CASPubMed Google Scholar
Lemaire V, Koehl M, Le Moal M, Abrous DN (2000) Prenatal stress produces learning deficits associated with an inhibition of neurogenesis in the hippocampus. Proc Natl Acad Sci USA 97:11032–11037 CASPubMed CentralPubMed Google Scholar
Bredy TW, Grant RJ, Champagne DL, Meaney MJ (2003) Maternal care influences neuronal survival in the hippocampus of the rat. Eur J Neurosci 18:2903–2909 PubMed Google Scholar
Cameron HA, McKay RD (1999) Restoring production of hippocampal neurons in old age. Nat Neurosci 2:894–897. doi:10.1038/13197 CASPubMed Google Scholar
Simon M, Czéh B, Fuchs E (2005) Age-dependent susceptibility of adult hippocampal cell proliferation to chronic psychosocial stress. Brain Res 1049:244–248. doi:10.1016/j.brainres.2005.05.006 CASPubMed Google Scholar
Seki T, Arai Y (1995) Age-related production of new granule cells in the adult dentate gyrus. Neuroreport 6:2479–2482 CASPubMed Google Scholar
Dunlap KD, Chung M, Castellano JF (2013) Influence of long-term social interaction on chirping behavior, steroid levels and neurogenesis in weakly electric fish. J Exp Biol 216:2434–2441. doi:10.1242/jeb.082875 CASPubMed Google Scholar
Magariños AM, McEwen BS, Flügge G, Fuchs E (1996) Chronic psychosocial stress causes apical dendritic atrophy of hippocampal CA3 pyramidal neurons in subordinate tree shrews. J Neurosci 16:3534–3540 PubMed Google Scholar
Dong H, Goico B, Martin M et al (2004) Modulation of hippocampal cell proliferation, memory, and amyloid plaque deposition in APPsw (Tg2576) mutant mice by isolation stress. Neuroscience 127:601–609. doi:10.1016/j.neuroscience.2004.05.040 CASPubMed Google Scholar
Yap JJ, Takase LF, Kochman LJ et al (2006) Repeated brief social defeat episodes in mice: effects on cell proliferation in the dentate gyrus. Behav Brain Res 172:344–350. doi:10.1016/j.bbr.2006.05.027 PubMed Google Scholar
Ferragud A, Haro A, Sylvain A et al (2010) Enhanced habit-based learning and decreased neurogenesis in the adult hippocampus in a murine model of chronic social stress. Behav Brain Res 210:134–139. doi:10.1016/j.bbr.2010.02.013 CASPubMed Google Scholar
Branchi I, D'Andrea I, Sietzema J et al (2006) Early social enrichment augments adult hippocampal BDNF levels and survival of BrdU-positive cells while increasing anxiety- and “depression-”like behavior. J Neurosci Res 83:965–973. doi:10.1002/jnr.20789 CASPubMed Google Scholar
Kannangara TS, Webber A, Gil-Mohapel J, Christie BR (2009) Stress differentially regulates the effects of voluntary exercise on cell proliferation in the dentate gyrus of mice. Hippocampus 19:889–897. doi:10.1002/hipo.20514 CASPubMed Google Scholar
Bednarczyk MR, Hacker LC, Fortin-Nunez S et al (2011) Distinct stages of adult hippocampal neurogenesis are regulated by running and the running environment. Hippocampus 21:1334–1347. doi:10.1002/hipo.20831 PubMed Google Scholar
Oomen CA, Mayer JL, de Kloet ER et al (2007) Brief treatment with the glucocorticoid receptor antagonist mifepristone normalizes the reduction in neurogenesis after chronic stress. Eur J Neurosci 26:3395–3401. doi:10.1111/j.1460-9568.2007.05972.x PubMed Google Scholar
Falconer EM, Galea LAM (2003) Sex differences in cell proliferation, cell death and defensive behavior following acute predator odor stress in adult rats. Brain Res 975:22–36 CASPubMed Google Scholar
Tanapat P, Hastings NB, Rydel TA et al (2001) Exposure to fox odor inhibits cell proliferation in the hippocampus of adult rats via an adrenal hormone-dependent mechanism. J Comp Neurol 437:496–504 CASPubMed Google Scholar
Heine VM, Maslam S, Zareno J et al (2004) Suppressed proliferation and apoptotic changes in the rat dentate gyrus after acute and chronic stress are reversible. Eur J Neurosci 19:131–144 PubMed Google Scholar
Pham K, Nacher J, Hof PR, McEwen BS (2003) Repeated restraint stress suppresses neurogenesis and induces biphasic PSA-NCAM expression in the adult rat dentate gyrus. Eur J Neurosci 17:879–886 PubMed Google Scholar
Rosenbrock H, Koros E, Bloching A et al (2005) Effect of chronic intermittent restraint stress on hippocampal expression of marker proteins for synaptic plasticity and progenitor cell proliferation in rats. Brain Res 1040:55–63. doi:10.1016/j.brainres.2005.01.065 CASPubMed Google Scholar