Single-nucleotide polymorphisms in the C-reactive protein (CRP) gene promoter that affect transcription factor binding, alter transcriptional activity, and associate with differences in baseline serum CRP level (original) (raw)

References

  1. Kushner I (1982) The phenomenon of the acute phase response. Ann NY Acad Sci USA 389:39–48
    Google Scholar
  2. Szalai AJ (2002) The biological functions of C-reactive protein. Vasc Pharmacol 39:105–107
    Google Scholar
  3. Nauta AJ, Daha MR, van Kooten C, Roos A (2003) Recognition and clearance of apoptotic cells: a role for complement and pentraxins. Trends Immunol 24:148–154
    Google Scholar
  4. Danenberg HD, Szalai AJ, Swaminathan RV, Peng L, Chen Z, Seifert P, Fay WP, Simon DI, Edelman ER (2003) Increased arterial thrombosis following arterial injury in human C-reactive protein transgenic mice. Circulation 108:512–515
    Google Scholar
  5. Paul A, Ko KWS, Li L, Yechoor V, McCrory MA, Szalai AJ, Chan L (2003) C-reactive protein accelerates the progression of atherosclerosis in apolipoprotein E-deficient mice. Circulation 109:647–655
    Google Scholar
  6. Szalai AJ, Weaver CT, McCrory MA, van Ginkel FW, Reiman RM, Kearney JF, Marion TN, Volanakis JE (2003) Delayed lupus onset in (NZB × NZW)F1 mice expressing a human C-reactive protein transgene. Arthritis Rheum 48:1602–1611
    Google Scholar
  7. Ballou SP, Kushner I (1992) C-reactive protein and the acute phase response. Adv Intern Med 37:313–336
    Google Scholar
  8. Agrawal A, Cha-Molstad H, Samols D, Kushner I (2001) Transactivation of C-reactive protein by IL-6 requires synergistic interactions of CCAAT/enhancer binding protein β (C/EBPβ) and Rel p50. J Immunol 166:2378–2384
    Google Scholar
  9. Agrawal A, Cha-Molstad H, Samols D, Kushner I (2003) Overexpressed nuclear factor κB can participate in endogenous C-reactive protein induction, and enhances the effect of C/EBPβ and signal transducer and activator of transcription-3. Immunology 108:539–547
    Google Scholar
  10. Vickers MA, Green FR, Terry C, Mayosi BM, Julier C, Lathrop M, Ratcliffe PJ, Watkins HC, Keavney B (2002) Genotype at a promoter polymorphism of the interleukin-6 gene is associated with baseline plasma C-reactive protein. Cardiovasc Res 53:1029–1034
    Google Scholar
  11. Berger P, McConnell JP, Nunn M, Kornman KS, Sorrell J, Stephenson K, Duff GW (2002) C-reactive protein levels are influenced by common IL-1 gene variations. Cytokine 17:171–174
    Google Scholar
  12. Pearson TA, Mensah GA, Alexander RW, Anderson JL, Cannon RO III, Criqui M, Fadl YY, Fortmann SP, Hong Y, Myers GL, Rifai N, Smith SC Jr, Taubert K, Tracy RP, Vinicor F; Centers for Disease Control and Prevention; American Heart Association (2003) Markers of inflammation and cardiovascular disease: application to clinical and public health practice. Circulation 107:499–511
    Article PubMed Google Scholar
  13. Ridker PM, Cushman M, Stampfer MJ, Tracy RP, Hennekens CH (1997) Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. New Engl J Med 336:973–979
    Google Scholar
  14. Koenig W (2003) Update on C-reactive protein as a risk marker in cardiovascular disease. Kidney Int 84:S58
    Google Scholar
  15. Pankow JS, Folsom AR, Cushman M, Borecki IB, Hopkins PN, Eckfeldt JH, Tracy RP (2001) Familial and genetic determinants of systemic markers of inflammation: the NHLBI family heart study. Atheriosclerosis 154:681–689
    Google Scholar
  16. Zee RY, Ridker PM (2002) Polymorphism in the human C-reactive protein (CRP) gene, plasma concentrations of CRP, and the risk of future arterial thrombosis. Atherosclerosis 162:217–219
    Article CAS PubMed Google Scholar
  17. Szalai AJ, McCrory MA, Cooper GS, Wu J, Kimberly RP (2002) Association between baseline levels of C-reactive protein (CRP) and a dinucleotide repeat polymorphism in the intron of the CRP gene. Gen Immun 3:14–19
    Google Scholar
  18. Brull DJ, Serrano N, Zito F, Montgomery HE, Rumley A, Sharma P, Lowe GD, World MJ, Humphries SE, Hingorani AD (2003) Human CRP gene polymorphism influences CRP levels: implications for the prediction and pathogenesis of coronary heart disease. Arterioscler Thromb Vasc Biol 23:2063–2069
    Article CAS PubMed Google Scholar
  19. Wu J, Metz C, Xu X, Abe R, Gibson AW, Edberg JC, Cooke J, Xie F, Cooper GS, Kimberly RP (2003) A novel polymorphic CAAT/enhancer-binding protein beta element in the FasL gene promoter alters Fas ligand expression: a candidate background gene in African American systemic lupus erythematosus patients. J Immunol 170:132–138
    Google Scholar
  20. Szalai AJ, Briles DE, Volanakis JE (1995) Human C-reactive protein is protective against fatal Streptococcus pneumoniae infection in transgenic mice. J Immunol 155:2557–2563
    Google Scholar
  21. Arcone R, Gualandi G, Ciliberto G (1998) Identification of sequences responsible for acute-phase induction of human C-reactive protein. Nucleic Acids Res 16:3195–3207
    Google Scholar
  22. Murphy C, Beckers J, Rüther U (1995) Regulation of the human C-reactive protein gene in transgenic mice. J Biol Chem 270:704–708
    Google Scholar
  23. Baudino TA, Cleveland JL (2001) The Max network gone Mad. Mol Cell Biol 21:691–702
    Article CAS PubMed Google Scholar
  24. Sirito M, Lin Q, Deng JM, Behringer RR, Sawadogo M (1998) Overlapping roles and asymmetrical cross-regulation of the USF proteins in mice. Proc Natl Acad Sci USA 95:3758–3763
    Google Scholar
  25. Danesh J, Wheeler JG, Hirschfield GM, Eda S, Eiriksdottir G, Rumley A, Lowe GD, Pepys MB, Gudnason V (2004) C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N Engl J Med 350:1387–1397
    Article CAS PubMed Google Scholar
  26. Danesh J, Whincup P, Walker M, Lennon L, Thomson A, Appleby P, Gallimore JR, Pepys MB (2000) Low grade inflammation and coronary heart disease: prospective study and up-dated meta-analyses. Br Med J 321:199–204
    Google Scholar
  27. Wolford JK, Gruber JD, Ossowski VM, Vozarova B, Antonio Tataranni P, Bogardus C, Hanson RL (2003) A C-reactive protein promoter polymorphism is associated with type 2 diabetes mellitus in Pima Indians. Mol Genet Metabol 78:136–144
    Article Google Scholar
  28. Freeman DJ, Norrie J, Caslake MJ, Gaw A, Ford I, Lowe GD, O’Reilly DS, Packard CJ, Sattar N; West of Scotland Coronary Prevention Study (2002) C-reactive protein is an independent predictor of risk for the development of diabetes in the west of Scotland: coronary prevention study. Diabetes 51:1596–1600
    CAS PubMed Google Scholar
  29. Cao H, Hegele RH (2000) Human C-reactive protein (CRP) 1059G/C polymorphism. J Hum Genet 45:100–101
    Article CAS PubMed Google Scholar
  30. Hegele RA, Ban MR, Young TK (2001) Serum C-reactive protein in Canadian Inuit and its association with genetic variation of 1q21. Clin Chem 47:1707–1709
    Google Scholar
  31. Zito F, Hingorani A, Hawe E, Miller G, Humphries SE (2001) Identification of a novel (−748G>A) polymorphism in the promoter of the gene for CRP: lack of association with CRP levels in healthy men. BMC Meeting abstracts: 2nd Hot Topic Workshop on CRP. 1:50
  32. Russell AI, Cunninghame Graham DS, Shepherd C, Roberton CA, Whittaker J, Meeks J, Powell RJ, Isenberg DA, Walport MJ, Vyse TJ (2004) Polymorphism at the C-reactive protein locus influences gene expression and predisposes to systemic lupus erythematosus. Hum Mol Genet 13:137–147
    Google Scholar
  33. Chen J, Zhao J, Huang J, Su S, Qiang B, Gu D (2004) −717A>G polymorphism of human C-reactive protein gene associated with coronary heart disease in ethnic Han Chinese: the Beijing atherosclerosis study. J Mol Med 83:72–78
    Google Scholar
  34. Turner DM, Pravica V, Sinnott PJ, Hutchinson IV (2001) Polymorphism in the promoter region of the gene encoding human allograft inflammatory factor-1. Eur J Immunogenet 28:449–450
    Google Scholar
  35. Mandola MV, Stoehlmacher J, Muller-Weeks S, Cesarone G, Yu MC, Lenz H-J, Ladner RD (2003) A novel single nucleotide polymorphism within the 5′ tandem repeat polymorphism of the thymidylate synthase gene abolishes USF-1 binding and alters transcriptional activity. Cancer Res 63:2898–2904
    Google Scholar

Download references