Cellular populations and thermosensing mechanisms of the hypothalamic thermoregulatory center (original) (raw)
Abbott SB, Machado NL, Geerling JC, Saper CB (2016) Reciprocal control of drinking behavior by median preoptic neurons in mice. The Journal of neuroscience : the official journal of the Society for Neuroscience 36(31):8228–8237. https://doi.org/10.1523/JNEUROSCI.1244-16.2016 ArticleCAS Google Scholar
Bautista DM, Siemens J, Glazer JM, Tsuruda PR, Basbaum AI, Stucky CL, Jordt SE, Julius D (2007) The menthol receptor TRPM8 is the principal detector of environmental cold. Nature 448(7150):204–208. https://doi.org/10.1038/nature05910 ArticlePubMedCAS Google Scholar
Boulant JA (1986) Single neuron studies and their usefulness in understanding thermoregulation. The Yale journal of biology and medicine 59(2):179–188 PubMedPubMed CentralCAS Google Scholar
Boulant JA (2006) Counterpoint: heat-induced membrane depolarization of hypothalamic neurons: an unlikely mechanism of central thermosensitivity. American journal of physiology Regulatory, integrative and comparative physiology 290:R1481–R1484; discussion R1484
Cavanaugh DJ, Chesler AT, Jackson AC, Sigal YM, Yamanaka H, Grant R, O'Donnell D, Nicoll RA, Shah NM, Julius D, Basbaum AI (2011) Trpv1 reporter mice reveal highly restricted brain distribution and functional expression in arteriolar smooth muscle cells. The Journal of neuroscience : the official journal of the Society for Neuroscience 31(13):5067–5077. https://doi.org/10.1523/JNEUROSCI.6451-10.2011 ArticleCAS Google Scholar
Chung S, Weber F, Zhong P, Tan CL, Nguyen TN, Beier KT, Hormann N, Chang WC, Zhang Z, Do JP, Yao S, Krashes MJ, Tasic B, Cetin A, Zeng H, Knight ZA, Luo L, Dan Y (2017) Identification of preoptic sleep neurons using retrograde labelling and gene profiling. Nature 545(7655):477–481. https://doi.org/10.1038/nature22350 ArticlePubMedPubMed CentralCAS Google Scholar
Ciura S, Liedtke W, Bourque CW (2011) Hypertonicity sensing in organum vasculosum lamina terminalis neurons: a mechanical process involving TRPV1 but not TRPV4. The Journal of neuroscience : the official journal of the Society for Neuroscience 31(41):14669–14676. https://doi.org/10.1523/JNEUROSCI.1420-11.2011 ArticleCAS Google Scholar
Conti B, Sanchez-Alavez M, Winsky-Sommerer R, Morale MC, Lucero J, Brownell S, Fabre V, Huitron-Resendiz S, Henriksen S, Zorrilla EP, de Lecea L, Bartfai T (2006) Transgenic mice with a reduced core body temperature have an increased life span. Science 314(5800):825–828. https://doi.org/10.1126/science.1132191 ArticlePubMedCAS Google Scholar
de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE, Danielson PE, Fukuhara C, Battenberg EL, Gautvik VT, Bartlett FS 2nd, Frankel WN, van den Pol AN, Bloom FE, Gautvik KM, Sutcliffe JG (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci U S A 95(1):322–327. https://doi.org/10.1073/pnas.95.1.322 ArticlePubMedPubMed Central Google Scholar
de Velasco B, Erclik T, Shy D, Sclafani J, Lipshitz H, McInnes R, Hartenstein V (2007) Specification and development of the pars intercerebralis and pars lateralis, neuroendocrine command centers in the drosophila brain. Dev Biol 302(1):309–323. https://doi.org/10.1016/j.ydbio.2006.09.035 ArticlePubMedCAS Google Scholar
Delgado JM, Hanai T (1966) Intracerebral temperatures in free-moving cats. Am J Phys 211:755–769 CAS Google Scholar
Eberwine J, Bartfai T (2011) Single cell transcriptomics of hypothalamic warm sensitive neurons that control core body temperature and fever response: signaling asymmetry and an extension of chemical neuroanatomy. Pharmacol Ther 129(3):241–259. https://doi.org/10.1016/j.pharmthera.2010.09.010 ArticlePubMedCAS Google Scholar
Feketa VV, Marrelli SP (2015) Induction of therapeutic hypothermia by pharmacological modulation of temperature-sensitive TRP channels: theoretical framework and practical considerations. Temperature 2(2):244–257. https://doi.org/10.1080/23328940.2015.1024383 Article Google Scholar
Gould SJ, Lewontin RC (1979) The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proceedings of the Royal Society of London Series B, Biological sciences 205(1161):581–598. https://doi.org/10.1098/rspb.1979.0086 ArticlePubMedCAS Google Scholar
Hara Y, Wakamori M, Ishii M, Maeno E, Nishida M, Yoshida T, Yamada H, Shimizu S, Mori E, Kudoh J, Shimizu N, Kurose H, Okada Y, Imoto K, Mori Y (2002) LTRPC2 Ca2+−permeable channel activated by changes in redox status confers susceptibility to cell death. Mol Cell 9(1):163–173. https://doi.org/10.1016/S1097-2765(01)00438-5 ArticlePubMedCAS Google Scholar
Heller HC, Crawshaw LI, Hammel HT (1978) The thermostat of vertebrate animals. Sci Am 239(102–110):112–103 Google Scholar
Hellon RF (1986) Are single-unit recordings useful in understanding thermoregulation? The Yale journal of biology and medicine 59(2):197–203 PubMedPubMed CentralCAS Google Scholar
Horvath TL, Warden CH, Hajos M, Lombardi A, Goglia F, Diano S (1999) Brain uncoupling protein 2: uncoupled neuronal mitochondria predict thermal synapses in homeostatic centers. The Journal of neuroscience : the official journal of the Society for Neuroscience 19(23):10417–10427 ArticleCAS Google Scholar
Jacobson FH, Squires RD (1970) Thermoregulatory responses of the cat to preoptic and environmental temperatures. Am J Phys 218:1575–1582 CAS Google Scholar
Janas S, Seghers F, Schakman O, Alsady M, Deen P, Vriens J, Tissir F, Nilius B, Loffing J, Gailly P, Devuyst O (2016) TRPV4 is associated with central rather than nephrogenic osmoregulation. Pflugers Archiv : European journal of physiology 468(9):1595–1607. https://doi.org/10.1007/s00424-016-1850-5 ArticlePubMedCAS Google Scholar
Kashio M, Sokabe T, Shintaku K, Uematsu T, Fukuta N, Kobayashi N, Mori Y, Tominaga M (2012) Redox signal-mediated sensitization of transient receptor potential melastatin 2 (TRPM2) to temperature affects macrophage functions. Proc Natl Acad Sci U S A 109(17):6745–6750. https://doi.org/10.1073/pnas.1114193109 ArticlePubMedPubMed Central Google Scholar
Kelso SR, Boulant JA (1982) Effect of synaptic blockade on thermosensitive neurons in hypothalamic tissue slices. Am J Phys 243:R480–R490 CAS Google Scholar
Kelso SR, Perlmutter MN, Boulant JA (1982) Thermosensitive single-unit activity of in vitro hypothalamic slices. Am J Phys 242:R77–R84 CAS Google Scholar
Kobayashi S, Hori A, Matsumura K, Hosokawa H (2006) Point: heat-induced membrane depolarization of hypothalamic neurons: a putative mechanism of central thermosensitivity. American journal of physiology Regulatory, integrative and comparative physiology 290:R1479–R1480; discussion R1484. doi:https://doi.org/10.1152/ajpregu.00655.2005, 5
Lazarus M, Yoshida K, Coppari R, Bass CE, Mochizuki T, Lowell BB, Saper CB (2007) EP3 prostaglandin receptors in the median preoptic nucleus are critical for fever responses. Nat Neurosci 10(9):1131–1133. https://doi.org/10.1038/nn1949 ArticlePubMedCAS Google Scholar
Madisen L, Garner AR, Shimaoka D, Chuong AS, Klapoetke NC, Li L, van der Bourg A, Niino Y, Egolf L, Monetti C, Gu H, Mills M, Cheng A, Tasic B, Nguyen TN, Sunkin SM, Benucci A, Nagy A, Miyawaki A, Helmchen F, Empson RM, Knopfel T, Boyden ES, Reid RC, Carandini M, Zeng H (2015) Transgenic mice for intersectional targeting of neural sensors and effectors with high specificity and performance. Neuron 85(5):942–958. https://doi.org/10.1016/j.neuron.2015.02.022 ArticlePubMedPubMed CentralCAS Google Scholar
Magoun HW, Harrison F, Brobeck JR, Ranson SW (1938) Activation of heat loss mechanisms by local heating of the brain. J Neurophysiol 1:101 Article Google Scholar
Perraud AL, Fleig A, Dunn CA, Bagley LA, Launay P, Schmitz C, Stokes AJ, Zhu Q, Bessman MJ, Penner R, Kinet JP, Scharenberg AM (2001) ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature 411(6837):595–599. https://doi.org/10.1038/35079100 ArticlePubMedCAS Google Scholar
Siesjo B (1978) Brain energy metabolism. Wiley, New York Google Scholar
Simon E (2006) Ion channel proteins in neuronal temperature transduction: from inferences to testable theories of deep-body thermosensitivity. American journal of physiology Regulatory, integrative and comparative physiology 291(3):R515–R517. https://doi.org/10.1152/ajpregu.00239.2006 ArticlePubMedCAS Google Scholar
Sudbury JR, Bourque CW (2013) Dynamic and permissive roles of TRPV1 and TRPV4 channels for thermosensation in mouse supraoptic magnocellular neurosecretory neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience 33(43):17160–17165. https://doi.org/10.1523/JNEUROSCI.1048-13.2013 ArticleCAS Google Scholar
Tessmar-Raible K, Raible F, Christodoulou F, Guy K, Rembold M, Hausen H, Arendt D (2007) Conserved sensory-neurosecretory cell types in annelid and fish forebrain: insights into hypothalamus evolution. Cell 129(7):1389–1400. https://doi.org/10.1016/j.cell.2007.04.041 ArticlePubMedCAS Google Scholar
Vriens J, Owsianik G, Hofmann T, Philipp SE, Stab J, Chen X, Benoit M, Xue F, Janssens A, Kerselaers S, Oberwinkler J, Vennekens R, Gudermann T, Nilius B, Voets T (2011) TRPM3 is a nociceptor channel involved in the detection of noxious heat. Neuron 70(3):482–494. https://doi.org/10.1016/j.neuron.2011.02.051 ArticlePubMedCAS Google Scholar
Wechselberger M, Wright CL, Bishop GA, Boulant JA (2006) Ionic channels and conductance-based models for hypothalamic neuronal thermosensitivity. American journal of physiology Regulatory, integrative and comparative physiology 291(3):R518–R529. https://doi.org/10.1152/ajpregu.00039.2006 ArticlePubMedCAS Google Scholar
Wehage E, Eisfeld J, Heiner I, Jungling E, Zitt C, Luckhoff A (2002) Activation of the cation channel long transient receptor potential channel 2 (LTRPC2) by hydrogen peroxide. A splice variant reveals a mode of activation independent of ADP-ribose. J Biol Chem 277(26):23150–23156. https://doi.org/10.1074/jbc.M112096200 ArticlePubMedCAS Google Scholar
Yu S, Qualls-Creekmore E, Rezai-Zadeh K, Jiang Y, Berthoud HR, Morrison CD, Derbenev AV, Zsombok A, Munzberg H (2016) Glutamatergic preoptic area neurons that express leptin receptors drive temperature-dependent body weight homeostasis. The Journal of neuroscience : the official journal of the Society for Neuroscience 36(18):5034–5046. https://doi.org/10.1523/JNEUROSCI.0213-16.2016 ArticleCAS Google Scholar
Zhao ZD, Yang WZ, Gao CC, Fu X, Zhang W, Zhou Q, Chen WP, Ni XY, Lin JK, Yang J, Xu XH, Shen WL (2017) A hypothalamic circuit that controls body temperature. P Natl Acad Sci USA 114(8):2042–2047. https://doi.org/10.1073/pnas.1616255114 ArticleCAS Google Scholar