Human TNF-α induces differential protein phosphorylation in Schistosoma mansoni adult male worms (original) (raw)
Agarwal S, Kulshreshtha P, Bambah Mukku D, Bhatnagar R (2008) Alpha-enolase binds to human plasminogen on the surface of Bacillus anthracis. Biochim Biophys Acta 1784(7-8):986–94. doi:10.1016/j.bbapap.2008.03.017 ArticleCASPubMed Google Scholar
Amiri P et al (1992) Tumour necrosis factor alpha restores granulomas and induces parasite egg-laying in schistosome-infected SCID mice. Nature 356(6370):604–607 ArticleCASPubMed Google Scholar
Avilan L et al (2011) Enolase: a key player in the metabolism and a probable virulence factor of trypanosomatid parasites-perspectives for its use as a therapeutic target. Enzyme Res 2011:932549. doi:10.4061/2011/932549 ArticlePubMed CentralPubMed Google Scholar
Blom N, Gammeltoft S, Brunak S (1999) Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294(5):1351–62 ArticleCASPubMed Google Scholar
Bouwmeester T et al (2004) A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway. Nat Cell Biol 6(2):97–105. doi:10.1038/ncb1086 ArticleCASPubMed Google Scholar
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–54 ArticleCASPubMed Google Scholar
Braschi S, Curwen RS, Ashton PD, Verjovski-Almeida S, Wilson A (2006) The tegument surface membranes of the human blood parasite Schistosoma mansoni: a proteomic analysis after differential extraction. Proteomics 6(5):1471–1482 ArticleCASPubMed Google Scholar
Cheever AW, Poindexter RW, Wynn TA (1999) Egg laying is delayed but worm fecundity is normal in SCID mice infected with Schistosoma japonicum and S. mansoni with or without recombinant tumor necrosis factor alpha treatment. Infect Immun 67(5):2201–8 PubMed CentralCASPubMed Google Scholar
Davies SJ et al (2004) Involvement of TNF in limiting liver pathology and promoting parasite survival during schistosome infection. Int J Parasitol 34(1):27–36 ArticlePubMed CentralCASPubMed Google Scholar
De Corte V, Gettemans J, Vandekerckhove J (1997) Phosphatidylinositol 4,5-bisphosphate specifically stimulates PP60(c-src) catalyzed phosphorylation of gelsolin and related actin-binding proteins. FEBS Lett 401(2-3):191–6 ArticlePubMed Google Scholar
Freitas TC, Pearce EJ (2010) Growth factors and chemotactic factors from parasitic helminths: molecular evidence for roles in host-parasite interactions versus parasite development. Int J Parasitol 40(7):761–73. doi:10.1016/j.ijpara.2010.02.013 ArticleCASPubMed Google Scholar
Haseeb MA, Solomon WB, Palma JF (1996) Schistosoma mansoni: effect of recombinant tumor necrosis factor alpha on fecundity and [14C]-tyrosine uptake in females maintained in vitro. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 115(3):265–9 ArticleCASPubMed Google Scholar
Hojlund K et al (2003) Proteome analysis reveals phosphorylation of ATP synthase beta -subunit in human skeletal muscle and proteins with potential roles in type 2 diabetes. J Biol Chem 278(12):10436–42. doi:10.1074/jbc.M212881200 ArticleCASPubMed Google Scholar
Hynes GM, Willison KR (2000) Individual subunits of the eukaryotic cytosolic chaperonin mediate interactions with binding sites located on subdomains of beta-actin. J Biol Chem 275(25):18985–94. doi:10.1074/jbc.M910297199 ArticleCASPubMed Google Scholar
Koukouritaki SB, Vardaki EA, Papakonstanti EA, Lianos E, Stournaras C, Emmanouel DS (1999) TNF-alpha induces actin cytoskeleton reorganization in glomerular epithelial cells involving tyrosine phosphorylation of paxillin and focal adhesion kinase. Mol Med 5(6):382–92 PubMed CentralCASPubMed Google Scholar
Liang P, MacRae TH (1997) Molecular chaperones and the cytoskeleton. J Cell Sci 110(Pt 13):1431–40 CASPubMed Google Scholar
Luo R, Zhou C, Lin J, Yang D, Shi Y, Cheng G (2012) Identification of in vivo protein phosphorylation sites in human pathogen Schistosoma japonicum by a phosphoproteomic approach. J Proteome 75(3):868–77. doi:10.1016/j.jprot.2011.10.003 ArticleCAS Google Scholar
Maule AG, Marks NJ (2006) Parasitic flatworms: molecular biology, biochemistry, immunology and physiology. CABI, Centre for Agriculture and Biosciences International, Oxfordshire Google Scholar
McGonigle S, Loschiavo M, Pearce EJ (2002) 14-3-3 proteins in Schistosoma mansoni; identification of a second epsilon isoform. Int J Parasitol 32(6):685–93 ArticleCASPubMed Google Scholar
Nettelblad FA, Engstrom L (1987) The kinetic effects of in vitro phosphorylation of rabbit muscle enolase by protein kinase C. A possible new kind of enzyme regulation. FEBS Lett 214(2):249–52 ArticleCASPubMed Google Scholar
Pancholi V (2001) Multifunctional alpha-enolase: its role in diseases. Cell Mol Life Sci: CMLS 58(7):902–20 ArticleCASPubMed Google Scholar
Perez-Sanchez R, Valero ML, Ramajo-Hernandez A, Siles-Lucas M, Ramajo-Martin V, Oleaga A (2008) A proteomic approach to the identification of tegumental proteins of male and female Schistosoma bovis worms. Mol Biochem Parasitol 161(2):112–23. doi:10.1016/j.molbiopara.2008.06.011 ArticleCASPubMed Google Scholar
Qian CY et al (2011) Kinetics of circulating antigen 14-3-3 in sera of rabbits firstly infected with Schistosoma japonicum and treated with/without praziquantel. Parasitol Res 108(2):493–5. doi:10.1007/s00436-010-2112-7 ArticlePubMed Google Scholar
Qian CY et al (2012) Characterization of IgG responses of rabbits to Sj14-3-3 protein after experimental infection with Schistosoma japonicum. Parasitol Res 111(5):2209–11. doi:10.1007/s00436-012-2973-z ArticlePubMed Google Scholar
Schechtman D et al (2001) Expression and immunolocalization of the 14-3-3 protein of Schistosoma mansoni. Parasitology 123(Pt 6):573–82 CASPubMed Google Scholar
Van Der Hoeven PC, Van Der Wal JC, Ruurs P, Van Blitterswijk WJ (2000) Protein kinase C activation by acidic proteins including 14-3-3. Biochem J 347(Pt 3):781–5 Article Google Scholar
Vaughan RA, Garcia-Smith R, Trujillo KA, Bisoffi M (2013) Tumor necrosis factor alpha increases aerobic glycolysis and reduces oxidative metabolism in prostate epithelial cells. Prostate 73(14):1538–46. doi:10.1002/pros.22703 ArticleCASPubMed Google Scholar
Wang X et al (2012) Identification and molecular characterization of a novel signaling molecule 14-3-3 epsilon in Clonorchis sinensis excretory/secretory products. Parasitol Res 110(4):1411–20. doi:10.1007/s00436-011-2642-7 ArticlePubMed Google Scholar
Woodcock JM, Murphy J, Stomski FC, Berndt MC, Lopez AF (2003) The dimeric versus monomeric status of 14-3-3zeta is controlled by phosphorylation of Ser58 at the dimer interface. J Biol Chem 278(38):36323–7. doi:10.1074/jbc.M304689200 ArticleCASPubMed Google Scholar
Xiong ZJ, Storey KB (2012) Regulation of liver lactate dehydrogenase by reversible phosphorylation in response to anoxia in a freshwater turtle. Comp Biochem Physiol B Biochem Mol Biol 163(2):221–8. doi:10.1016/j.cbpb.2012.06.001 ArticleCASPubMed Google Scholar
Yang LL et al (2009) Schistosoma japonicum: proteomics analysis of differentially expressed proteins from ultraviolet-attenuated cercariae compared to normal cercariae. Parasitol Res 105(1):237–48. doi:10.1007/s00436-009-1387-z ArticlePubMed Google Scholar
Yokota S, Yanagi H, Yura T, Kubota H (2001) Cytosolic chaperonin-containing t-complex polypeptide 1 changes the content of a particular subunit species concomitant with substrate binding and folding activities during the cell cycle. Eur J Biochem/FEBS 268(17):4664–73 ArticleCAS Google Scholar
Zuo S et al (2010) 14-3-3 epsilon dynamically interacts with key components of mitogen-activated protein kinase signal module for selective modulation of the TNF-alpha-induced time course-dependent NF-kappaB activity. J Proteome Res 9(7):3465–78. doi:10.1021/pr9011377 ArticleCASPubMed Google Scholar