A physical and functional map of the human TNF-α/NF-κB signal transduction pathway (original) (raw)

References

  1. Gavin, A.C. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147 (2002).
    Article CAS Google Scholar
  2. Ghosh, S. & Karin, M. Missing pieces in the NF-κB puzzle. Cell 109 (Suppl.), S81–S96 (2002).
    Article CAS Google Scholar
  3. Ghosh, S., May, M.J. & Kopp, E.B. NF-κB and Rel proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 16, 225–260 (1998).
    Article CAS Google Scholar
  4. Xiao, G., Harhaj, E.W. & Sun, S.C. NF-κB-inducing kinase regulates the processing of NF-κB2 p100. Mol. Cell 7, 401–409 (2001).
    Article CAS Google Scholar
  5. Senftleben, U. et al. Activation by IKKα of a second, evolutionary conserved, NF-κB signaling pathway. Science 293, 1495–1499 (2001).
    Article CAS Google Scholar
  6. Rigaut, G. et al. A generic protein purification method for protein complex characterization and proteome exploration. Nature Biotechnol. 17, 1030–1032 (1999).
    Article CAS Google Scholar
  7. Chen, C.Y. et al. AU binding proteins recruit the exosome to degrade ARE-containing mRNAs. Cell 107, 451–464 (2001).
    Article CAS Google Scholar
  8. Kemmeren, P. et al. Protein interaction verification and functional annotation by integrated analysis of genome-scale data. Mol. Cell 9, 1133–1143 (2002).
    Article CAS Google Scholar
  9. von Mering, C. et al. Comparative assessment of large-scale data sets of protein–protein interactions. Nature 417, 399–403 (2002).
    Article CAS Google Scholar
  10. Saccani, S., Pantano, S. & Natoli, G. Modulation of NF-κB activity by exchange of dimers. Mol. Cell 11, 1563–1574 (2003).
    Article CAS Google Scholar
  11. Fenwick, C. et al. A subclass of Ras proteins that regulate the degradation of IκB. Science 287, 869–873 (2000).
    Article CAS Google Scholar
  12. Dixit, V. & Mak, T.W. NF-κB signaling. Many roads lead to Madrid. Cell 111, 615–619 (2002).
    Article CAS Google Scholar
  13. Mordmuller, B., Krappmann, D., Esen, M., Wegener, E. & Scheidereit, C. Lymphotoxin and lipopolysaccharide induce NF-κB–p52 generation by a co-translational mechanism. EMBO Rep. 4, 82–87 (2003).
    Article CAS Google Scholar
  14. Fong, A., Zhang, M., Neely, J. & Sun, S.C. S9, a 19 S proteasome subunit interacting with ubiquitinated NF-κB2/p100. J. Biol. Chem. 277, 40697–40702 (2002).
    Article CAS Google Scholar
  15. Fong, A. & Sun, S.C. Genetic evidence for the essential role of beta-transducin repeat-containing protein in the inducible processing of NF-κB2/p100. J. Biol. Chem. 277, 22111–22114 (2002).
    Article CAS Google Scholar
  16. Heusch, M., Lin, L., Geleziunas, R. & Greene, W.C. The generation of NFκB2 p52: mechanism and efficiency. Oncogene 18, 6201–6208 (1999).
    Article CAS Google Scholar
  17. Kinzler, K.W. et al. Identification of a gene located at chromosome 5q21 that is mutated in colorectal cancers. Science 251, 1366–1370 (1991).
    Article CAS Google Scholar
  18. Matsumine, A. et al. MCC, a cytoplasmic protein that blocks cell cycle progression from the G0/G1 to S phase. J. Biol. Chem. 271, 10341–10346 (1996).
    Article CAS Google Scholar
  19. Lee, C.M., Onesime, D., Reddy, C.D., Dhanasekaran, N. & Reddy, E.P. JLP: A scaffolding protein that tethers JNK/p38MAPK signaling modules and transcription factors. Proc. Natl Acad. Sci. USA 99, 14189–14194 (2002).
    Article CAS Google Scholar
  20. Nair, S.C. et al. Molecular cloning of human FKBP51 and comparisons of immunophilin interactions with Hsp90 and progesterone receptor. Mol. Cell. Biol. 17, 594–603 (1997).
    Article CAS Google Scholar
  21. Chen, G., Cao, P. & Goeddel, D.V. TNF-induced recruitment and activation of the IKK complex require Cdc37 and Hsp90. Mol. Cell 9, 401–410 (2002).
    Article CAS Google Scholar
  22. Yang, J. et al. The essential role of MEKK3 in TNF-induced NF-κB activation. Nature Immunol. 2, 620–624 (2001).
    Article CAS Google Scholar
  23. Humbert, P., Russell, S. & Richardson, H. Dlg, Scribble and Lgl in cell polarity, cell proliferation and cancer. BioEssays 25, 542–553 (2003).
    Article CAS Google Scholar
  24. Wang, C. et al. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412, 346–351 (2001).
    Article CAS Google Scholar
  25. Shevchenko, A., Wilm, M., Vorm, O. & Mann, M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 68, 850–858 (1996).
    Article CAS Google Scholar

Download references