Global daily dynamics of the pineal transcriptome (original) (raw)
Arendt J (1994) Melatonin and the mammalian pineal gland, 1st edn. Chapman & Hall, New York Google Scholar
Bailey MJ, Coon SL, Carter DA, Humphries A, Kim JS, Shi Q, Gaildrat P, Morin F, Ganguly S, Hogenesch JB et al (2009) Night/day changes in pineal expression of >600 genes: central role of adrenergic/cAMP signaling. J Biol Chem 284:7606–7622 ArticlePubMedCAS Google Scholar
Chik CL, Arnason TG, Dukewich WG, Price DM, Ranger A, Ho AK (2007) Histone H3 phosphorylation in the rat pineal gland: adrenergic regulation and diurnal variation. Endocrinology 148:1465–1472 ArticlePubMedCAS Google Scholar
Do MT, Kang SH, Xue T, Zhong H, Liao HW, Bergles DE, Yau KW (2009) Photon capture and signalling by melanopsin retinal ganglion cells. Nature 457:281–287 ArticlePubMedCAS Google Scholar
Estivill-Torrus G, Vitalis T, Fernandez-Llebrez P, Price DJ (2001) The transcription factor Pax6 is required for development of the diencephalic dorsal midline secretory radial glia that form the subcommissural organ. Mech Dev 109:215–224 ArticlePubMedCAS Google Scholar
Franco R, Casado V, Cortes A, Ferrada C, Mallol J, Woods A, Lluis C, Canela EI, Ferre S (2007) Basic concepts in G-protein-coupled receptor homo- and heterodimerization. ScientificWorldJournal 7:48–57 PubMed Google Scholar
Ganguly S, Grodzki C, Sugden D, Møller M, Odom S, Gaildrat P, Gery I, Siraganian RP, Rivera J, Klein DC (2007) Neural adrenergic/cyclic AMP regulation of the immunoglobulin E receptor alpha-subunit expression in the mammalian pinealocyte: a neuroendocrine/immune response link? J Biol Chem 282:32758–32764 ArticlePubMedCAS Google Scholar
Haldar-Misra C, Pevet P (1983) The influence of different 5-methoxyindoles on the process of protein/peptide secretion characterized by the formation of granular vesicles in the mouse pineal gland. An in vitro study. Cell Tissue Res 230:113–126 ArticlePubMedCAS Google Scholar
Hannibal J, Møller M, Ottersen OP, Fahrenkrug J (2000) PACAP and glutamate are co-stored in the retinohypothalamic tract. J Comp Neurol 418:147–155 ArticlePubMedCAS Google Scholar
Ho AK, Chik CL (1990) Post-receptor mechanism in dual receptors regulation of second messengers in rat pineal gland. Prog Clin Biol Res 342:139–145 PubMedCAS Google Scholar
Ho AK, Chik CL (2010) Modulation of Aanat gene transcription in the rat pineal gland. J Neurochem 112:321–331 ArticlePubMedCAS Google Scholar
Ho AK, Price DM, Dukewich WG, Steinberg N, Arnason TG, Chik CL (2007) Acetylation of histone H3 and adrenergic-regulated gene transcription in rat pinealocytes. Endocrinology 148:4592–4600 ArticlePubMedCAS Google Scholar
Ho AK, Thomas TP, Chik CL, Anderson WB, Klein DC (1988) Protein kinase C: subcellular redistribution by increased Ca2+ influx. Evidence that Ca2+-dependent subcellular redistribution of protein kinase C is involved in potentiation of beta-adrenergic stimulation of pineal cAMP and cGMP by K+ and A23187. J Biol Chem 263:9292–9297 PubMedCAS Google Scholar
Kanyo R, Price DM, Chik CL, Ho AK (2009) Salt-inducible kinase 1 in the rat pinealocyte: adrenergic regulation and role in arylalkylamine N-acetyltransferase gene transcription. Endocrinology 150:4221–4230 ArticlePubMedCAS Google Scholar
Kappers JA (1965) Survey of the innervation of the epiphysis cerebri and the accessory pineal organs of vertebrates. Prog Brain Res 10:87–153 ArticlePubMedCAS Google Scholar
Kim JS, Coon SL, Blackshaw S, Cepko CL, Møller M, Mukda S, Zhao WQ, Charlton CG, Klein DC (2005) Methionine adenosyltransferase:adrenergic-cAMP mechanism regulates a daily rhythm in pineal expression. J Biol Chem 280:677–684 PubMedCAS Google Scholar
Kim JS, Bailey MJ, Ho AK, Møller M, Gaildrat P, Klein DC (2007) Daily rhythm in pineal phosphodiesterase (PDE) activity reflects adrenergic/3′, 5′-cyclic adenosine 5′-monophosphate induction of the PDE4B2 variant. Endocrinology 148:1475–1485 ArticlePubMedCAS Google Scholar
Kim JS, Coon SL, Weller JL, Blackshaw S, Rath MF, Møller M, Klein DC (2009) Muscleblind-like 2: circadian expression in the mammalian pineal gland is controlled by an adrenergic-cAMP mechanism. J Neurochem 110:756–764 ArticlePubMedCAS Google Scholar
Kim JS, Bailey MJ, Weller JL, Sugden D, Rath MF, Møller M, Klein DC (2010) Thyroid hormone and adrenergic signaling interact to control pineal expression of the dopamine receptor D4 gene (Drd4). Mol Cell Endocrinol 314:128–135 ArticlePubMedCAS Google Scholar
Klein DC (1985) Photoneural regulation of the mammalian pineal gland. Ciba Found Symp 117:38–56 PubMedCAS Google Scholar
Klein DC (2004) The 2004 Aschoff/Pittendrigh lecture: theory of the origin of the pineal gland—a tale of conflict and resolution. J Biol Rhythms 19:264–279 ArticlePubMedCAS Google Scholar
Klein DC (2007) Arylalkylamine N-acetyltransferase: "the timezyme". J Biol Chem 282:4233–4237 ArticlePubMedCAS Google Scholar
Klein DC, Moore RY, Reppert SM (1991) Suprachiasmatic nucleus: the mind’s clock. Oxford University Press, New York Google Scholar
Klein DC, Coon SL, Roseboom PH, Weller JL, Bernard M, Gastel JA, Zatz M, Iuvone PM, Rodriguez IR, Begay V et al (1997) The melatonin rhythm-generating enzyme: molecular regulation of serotonin N-acetyltransferase in the pineal gland. Recent Prog Horm Res 52:307–358 PubMedCAS Google Scholar
Klein DC, Baler R, Roseboom PH, Weller JL, Bernard M, Gastel JA, Zatz M, Iuvone PM, Begay V, Falcon J et al (1999) The molecular basis of the pineal melatonin rhythm: regulation of serotonin _N_-acetylation. In: Lydic R, Baghdoyan HA (eds) Handbook of behavioral state control: cellular and molecular mechanisms. CRC Press, Boca Raton, pp 45–55 Google Scholar
Klein DC, Bailey MJ, Carter DA, Kim JS, Shi Q, Ho AK, Chik CL, Gaildrat P, Morin F, Ganguly S et al (2010) Pineal function: impact of microarray analysis. Mol Cell Endocrinol 314:170–183 ArticlePubMedCAS Google Scholar
Lolley RN, Craft CM, Lee RH (1992) Photoreceptors of the retina and pinealocytes of the pineal gland share common components of signal transduction.Neurochem Res 17:81–89 ArticlePubMedCAS Google Scholar
Marquardt T, Ashery-Padan R, Andrejewski N, Scardigli R, Guillemot F, Gruss P (2001) Pax6 is required for the multipotent state of retinal progenitor cells. Cell 105:43–55 ArticlePubMedCAS Google Scholar
Mata MM, Schrier BK, Klein DC, Weller JL, Chiou CY (1976) On GABA function and physiology in the pineal gland. Brain Res 118:383–394 ArticlePubMedCAS Google Scholar
Møller M (1976) The ultrastructure of the human fetal pineal gland. II. Innervation and cell junctions. Cell Tissue Res 169:7–21 ArticlePubMed Google Scholar
Møller M (1979) Presence of a pineal nerve (nervus pinealis) in fetal mammals. Prog Brain Res 52:103–106 ArticlePubMed Google Scholar
Møller M, Baeres FM (2002) The anatomy and innervation of the mammalian pineal gland. Cell Tissue Res 309:139–150 ArticlePubMed Google Scholar
Møller M, Ingild A, Bock E (1978a) Immunohistochemical demonstration of S-100 protein and GFA protein in interstitial cells of rat pineal gland. Brain Res 140:1–13 ArticlePubMed Google Scholar
Møller M, Deurs B van, Westergaard E (1978b) Vascular permeability to proteins and peptides in the mouse pineal gland. Cell Tissue Res 195:1–15 ArticlePubMed Google Scholar
Møller M, Rath MF, Klein DC (2006) The perivascular phagocyte of the mouse pineal gland: an antigen-presenting cell. Chronobiol Int 23:393–401 ArticlePubMed Google Scholar
Moore RY, Speh JC, Leak RK (2002) Suprachiasmatic nucleus organization. Cell Tissue Res 309:89–98 ArticlePubMedCAS Google Scholar
Moriyama Y, Yamamoto A (1995) Vesicular L-glutamate transporter in microvesicles from bovine pineal glands. Driving force, mechanism of chloride anion activation, and substrate specificity. J Biol Chem 270:22314–22320 ArticlePubMedCAS Google Scholar
Parfitt AG, Klein DC (1976) Sympathetic nerve endings in the pineal gland protect against acute stress-induced increase in N-acetyltransferase (EC 2.3.1.5.) activity. Endocrinology 99:840–851 ArticlePubMedCAS Google Scholar
Price DM, Kanyo R, Steinberg N, Chik CL, Ho AK (2009) Nocturnal activation of aurora C in rat pineal gland: its role in the norepinephrine-induced phosphorylation of histone H3 and gene expression. Endocrinology 150:2334–2341 ArticlePubMedCAS Google Scholar
Provencio I, Jiang G, De Grip WJ, Hayes WP, Rollag MD (1998) Melanopsin: an opsin in melanophores, brain, and eye. Proc Natl Acad Sci USA 95:340–345 ArticlePubMedCAS Google Scholar
Rath MF, Munoz E, Ganguly S, Morin F, Shi Q, Klein DC, Møller M (2006) Expression of the Otx2 homeobox gene in the developing mammalian brain: embryonic and adult expression in the pineal gland. J Neurochem 97:556–566 ArticlePubMedCAS Google Scholar
Rath MF, Bailey MJ, Kim JS, Ho AK, Gaildrat P, Coon SL, Møller M, Klein DC (2009) Developmental and diurnal dynamics of Pax4 expression in the mammalian pineal gland: nocturnal down-regulation is mediated by adrenergic-cyclic adenosine 3′, 5′-monophosphate signaling. Endocrinology 150:803–811 ArticlePubMedCAS Google Scholar
Roseboom PH, Coon SL, Baler R, McCune SK, Weller JL, Klein DC (1996) Melatonin synthesis: analysis of the more than 150-fold nocturnal increase in serotonin N-acetyltransferase messenger ribonucleic acid in the rat pineal gland. Endocrinology 137:3033–3045 ArticlePubMedCAS Google Scholar
Sugden D, Klein DC (1983) Adrenergic stimulation of rat pineal hydroxyindole-O-methyltransferase. Brain Res 265:348–351 ArticlePubMedCAS Google Scholar
Sugden D, Klein DC (1984) Rat pineal alpha 1-adrenoceptors: identification and characterization using [125I]iodo-2-[beta-(4-hydroxyphenyl)-ethylaminomethyl]tetralone. Endocrinology 114:435–440 ArticlePubMedCAS Google Scholar
Sugden D, Klein DC (1987) A cholera toxin substrate regulates cyclic GMP content of rat pinealocytes. J Biol Chem 262:7447–7450 PubMedCAS Google Scholar
Sugden D, Klein DC (1988) Activators of protein kinase C act at a postreceptor site to amplify cyclic AMP production in rat pinealocytes. J Neurochem 50:149–155 ArticlePubMedCAS Google Scholar
Sugden D, Vanecek J, Klein DC, Thomas TP, Anderson WB (1985) Activation of protein kinase C potentiates isoprenaline-induced cyclic AMP accumulation in rat pinealocytes. Nature 314:359–361 ArticlePubMedCAS Google Scholar
Tsai SY, McNulty JA (1999) Interleukin-1beta expression in the pineal gland of the rat. J Pineal Res 27:42–48 ArticlePubMedCAS Google Scholar
Tsai SY, O'Brien TE, McNulty JA (2001a) Microglia play a role in mediating the effects of cytokines on the structure and function of the rat pineal gland. Cell Tissue Res 303:423–431 ArticlePubMedCAS Google Scholar
Tsai SY, Schluns KS, Le PT, McNulty JA (2001b) TGF-beta1 and IL-6 expression in rat pineal gland is regulated by norepinephrine and interleukin-1beta. Histol Histopathol 16:1135–1141 PubMedCAS Google Scholar
Vanecek J, Sugden D, Weller J, Klein DC (1985) Atypical synergistic alpha 1- and beta-adrenergic regulation of adenosine 3′, 5′-monophosphate and guanosine 3′, 5′-monophosphate in rat pinealocytes. Endocrinology 116:2167–2173 ArticlePubMedCAS Google Scholar
Vigh-Teichmann I, Korf HW, Oksche A, Vigh B (1982) Opsin-immunoreactive outer segments and acetylcholinesterase-positive neurons in the pineal complex of Phoxinus phoxinus (Teleostei, Cyprinidae). Cell Tissue Res 227:351–369 ArticlePubMedCAS Google Scholar
Yatsushiro S, Yamada H, Kozaki S, Kumon H, Michibata H, Yamamoto A, Moriyama Y (1997) L-aspartate but not the D form is secreted through microvesicle-mediated exocytosis and is sequestered through Na+-dependent transporter in rat pinealocytes. J Neurochem 69:340–347 ArticlePubMedCAS Google Scholar