Novel insights in the genetics of steroid-sensitive nephrotic syndrome in childhood (original) (raw)

References

  1. Downie ML, Gallibois C, Parekh RS, Noone DG (2017) Nephrotic syndrome in infants and children: pathophysiology and management. Paediatr Int Child Health 37:248–258. https://doi.org/10.1080/20469047.2017.1374003
    Article PubMed Google Scholar
  2. A report of the International Study of Kidney Disease in Children (1981) The primary nephrotic syndrome in children. Identification of patients with minimal change nephrotic syndrome from initial response to prednisone. J Pediatr 98 (4):561–564. https://doi.org/10.1016/S0022-3476(81)80760-3
  3. D’Agati VD, Kaskel FJ, Falk RJ (2011) Focal segmental glomerulosclerosis. N Engl J Med 365:2398–2411. https://doi.org/10.1056/NEJMra1106556
    Article PubMed Google Scholar
  4. Sadowski CE, Lovric S, Ashraf S, Pabst WL, Gee HY, Kohl S, Engelmann S, Vega-Warner V, Fang H, Halbritter J (2015) A single-gene cause in 29.5% of cases of steroid-resistant nephrotic syndrome. J Am Soc Nephrol 26:1279–1289
    Article CAS PubMed Google Scholar
  5. Ruf RG, Fuchshuber A, Karle SM, Lemainque A, Huck K, Wienker T, Otto E, Hildebrandt F (2003) Identification of the first gene locus (SSNS1) for steroid-sensitive nephrotic syndrome on chromosome 2p. J Am Soc Nephrol 14:1897–1900
    Article CAS PubMed Google Scholar
  6. Tam V, Patel N, Turcotte M, Bosse Y, Pare G, Meyre D (2019) Benefits and limitations of genome-wide association studies. Nat Rev Genet 20:467–484. https://doi.org/10.1038/s41576-019-0127-1
    Article CAS PubMed Google Scholar
  7. Debiec H, Dossier C, Letouze E, Gillies CE, Vivarelli M, Putler RK, Ars E, Jacqz-Aigrain E, Elie V, Colucci M, Debette S, Amouyel P, Elalaoui SC, Sefiani A, Dubois V, Simon T, Kretzler M, Ballarin J, Emma F, Sampson MG, Deschenes G, Ronco P (2018) Transethnic, genome-wide analysis reveals immune-related risk alleles and phenotypic correlates in pediatric steroid-sensitive nephrotic syndrome. J Am Soc Nephrol 29:2000–2013. https://doi.org/10.1681/ASN.2017111185
    Article CAS PubMed PubMed Central Google Scholar
  8. Dufek S, Cheshire C, Levine AP, Trompeter RS, Issler N, Stubbs M, Mozere M, Gupta S, Klootwijk E, Patel V, Hothi D, Waters A, Webb H, Tullus K, Jenkins L, Godinho L, Levtchenko E, Wetzels J, Knoers N, Teeninga N, Nauta J, Shalaby M, Eldesoky S, Kari JA, Thalgahagoda S, Ranawaka R, Abeyagunawardena A, Adeyemo A, Kristiansen M, Gbadegesin R, Webb NJ, Gale DP, Stanescu HC, Kleta R, Bockenhauer D (2019) Genetic identification of two novel loci associated with steroid-sensitive nephrotic syndrome. J Am Soc Nephrol 30:1375–1384. https://doi.org/10.1681/ASN.2018101054
    Article CAS PubMed PubMed Central Google Scholar
  9. Jia X, Horinouchi T, Hitomi Y, Shono A, Khor SS, Omae Y, Kojima K, Kawai Y, Nagasaki M, Kaku Y, Okamoto T, Ohwada Y, Ohta K, Okuda Y, Fujimaru R, Hatae K, Kumagai N, Sawanobori E, Nakazato H, Ohtsuka Y, Nakanishi K, Shima Y, Tanaka R, Ashida A, Kamei K, Ishikura K, Nozu K, Tokunaga K, Iijima K, Research Consortium on Genetics of Childhood Idiopathic Nephrotic Syndrome in Japan (2018) Strong association of the HLA-DR/DQ locus with childhood steroid-sensitive nephrotic syndrome in the Japanese population. J Am Soc Nephrol 29:2189–2199. https://doi.org/10.1681/ASN.2017080859
    Article CAS PubMed PubMed Central Google Scholar
  10. Jia X, Yamamura T, Gbadegesin R, McNulty MT, Song K, Nagano C, Hitomi Y, Lee D, Aiba Y, Khor S-S, Ueno K, Kawai Y, Nagasaki M, Noiri E, Horinouchi T, Kaito H, Hamada R, Okamoto T, Kamei K, Kaku Y, Fujimaru R, Tanaka R, Shima Y, Baek J, Kang HG, Ha I-S, Han KH, Yang EM, Abeyagunawardena A, Lane B, Chryst-Stangl M, Esezobor C, Solarin A, Dossier C, Deschênes G, Vivarelli M, Debiec H, Ishikura K, Matsuo M, Nozu K, Ronco P, Cheong HI, Sampson MG, Tokunaga K, Iijima K (2020) Common risk variants in NPHS1 and TNFSF15 are associated with childhood steroid-sensitive nephrotic syndrome. Kidney Int. https://doi.org/10.1016/j.kint.2020.05.029
  11. Xia Y, Mao J, Jin X, Wang W, Du L, Liu A (2013) Familial steroid-sensitive idiopathic nephrotic syndrome: seven cases from three families in China. Clinics 68:628–631
    Article PubMed PubMed Central Google Scholar
  12. Motoyama O, Sugawara H, Hatano M, Fujisawa T, Iitaka K (2009) Steroid-sensitive nephrotic syndrome in two families. Clin Exp Nephrol 13:170–173
    Article PubMed Google Scholar
  13. Korsgaard T, Joshi S, Andersen RF, Moeller K, Seeman T, Podracka L, Eiberg H, Rittig S (2020) Human leukocyte antigen association with familial steroid-sensitive nephrotic syndrome. Eur J Pediatr. https://doi.org/10.1007/s00431-020-03634-3
  14. White RH (1973) The familial nephrotic syndrome. I.A European Survey. Clinical nephrology 1(4):215–219
  15. Banh TH, Hussain-Shamsy N, Patel V, Vasilevska-Ristovska J, Borges K, Sibbald C, Lipszyc D, Brooke J, Geary D, Langlois V, Reddon M, Pearl R, Levin L, Piekut M, Licht CP, Radhakrishnan S, Aitken-Menezes K, Harvey E, Hebert D, Piscione TD, Parekh RS (2016) Ethnic differences in incidence and outcomes of childhood nephrotic syndrome. Clin J Am Soc Nephrol 11:1760–1768. https://doi.org/10.2215/CJN.00380116
    Article CAS PubMed PubMed Central Google Scholar
  16. Srivastava T, Simon SD, Alon US (1999) High incidence of focal segmental glomerulosclerosis in nephrotic syndrome of childhood. Pediatr Nephrol 13:13–18. https://doi.org/10.1007/s004670050555
    Article CAS PubMed Google Scholar
  17. Boyer O, Moulder JK, Somers MJ (2007) Focal and segmental glomerulosclerosis in children: a longitudinal assessment. Pediatr Nephrol 22:1159–1166. https://doi.org/10.1007/s00467-007-0493-3
    Article PubMed Google Scholar
  18. Maas RJ, Deegens JK, Smeets B, Moeller MJ, Wetzels JF (2016) Minimal change disease and idiopathic FSGS: manifestations of the same disease. Nat Rev Nephrol 12:768–776
    Article PubMed Google Scholar
  19. Trautmann A, Vivarelli M, Samuel S, Gipson D, Sinha A, Schaefer F, Hui NK, Boyer O, Saleem MA, Feltran L, Muller-Deile J, Becker JU, Cano F, Xu H, Lim YN, Smoyer W, Anochie I, Nakanishi K, Hodson E, Haffner D, International Pediatric Nephrology Association (2020) IPNA clinical practice recommendations for the diagnosis and management of children with steroid-resistant nephrotic syndrome. Pediatr Nephrol. https://doi.org/10.1007/s00467-020-04519-1
  20. Mason AE, Sen ES, Bierzynska A, Colby E, Afzal M, Dorval G, Koziell AB, Williams M, Boyer O, Welsh GI, Saleem MA, UK RaDaR/NephroS Study (2020) Response to first course of intensified immunosuppression in genetically stratified steroid resistant nephrotic syndrome. Clin J Am Soc Nephrol 15:983–994. https://doi.org/10.2215/CJN.13371019
    Article CAS PubMed PubMed Central Google Scholar
  21. Kitamura A, Tsukaguchi H, Hiramoto R, Shono A, Doi T, Kagami S, Iijima K (2007) A familial childhood-onset relapsing nephrotic syndrome. Kidney Int 71:946–951. https://doi.org/10.1038/sj.ki.5002110
    Article CAS PubMed Google Scholar
  22. Gellermann J, Stefanidis CJ, Mitsioni A, Querfeld U (2010) Successful treatment of steroid-resistant nephrotic syndrome associated with WT1 mutations. Pediatr Nephrol 25:1285–1289. https://doi.org/10.1007/s00467-010-1468-3
    Article PubMed Google Scholar
  23. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alfoldi J, Wang Q, Collins RL, Laricchia KM, Ganna A, Birnbaum DP, Gauthier LD, Brand H, Solomonson M, Watts NA, Rhodes D, Singer-Berk M, England EM, Seaby EG, Kosmicki JA, Walters RK, Tashman K, Farjoun Y, Banks E, Poterba T, Wang A, Seed C, Whiffin N, Chong JX, Samocha KE, Pierce-Hoffman E, Zappala Z, O’Donnell-Luria AH, Minikel EV, Weisburd B, Lek M, Ware JS, Vittal C, Armean IM, Bergelson L, Cibulskis K, Connolly KM, Covarrubias M, Donnelly S, Ferriera S, Gabriel S, Gentry J, Gupta N, Jeandet T, Kaplan D, Llanwarne C, Munshi R, Novod S, Petrillo N, Roazen D, Ruano-Rubio V, Saltzman A, Schleicher M, Soto J, Tibbetts K, Tolonen C, Wade G, Talkowski ME, Genome Aggregation Database C, Neale BM, Daly MJ, MacArthur DG (2020) The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581:434–443. https://doi.org/10.1038/s41586-020-2308-7
    Article CAS PubMed PubMed Central Google Scholar
  24. Gale DP, Mallett A, Patel C, Sneddon TP, Rehm HL, Sampson MG, Bockenhauer D (2020) Diagnoses of uncertain significance: kidney genetics in the 21st century. Nat Rev Nephrol. https://doi.org/10.1038/s41581-020-0277-6
  25. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, Voelkerding K, Rehm HL, ACMG Laboratory Quality Assurance Committee (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17:405–424. https://doi.org/10.1038/gim.2015.30
  26. Ashraf S, Kudo H, Rao J, Kikuchi A, Widmeier E, Lawson JA, Tan W, Hermle T, Warejko JK, Shril S, Airik M, Jobst-Schwan T, Lovric S, Braun DA, Gee HY, Schapiro D, Majmundar AJ, Sadowski CE, Pabst WL, Daga A, van der Ven AT, Schmidt JM, Low BC, Gupta AB, Tripathi BK, Wong J, Campbell K, Metcalfe K, Schanze D, Niihori T, Kaito H, Nozu K, Tsukaguchi H, Tanaka R, Hamahira K, Kobayashi Y, Takizawa T, Funayama R, Nakayama K, Aoki Y, Kumagai N, Iijima K, Fehrenbach H, Kari JA, El Desoky S, Jalalah S, Bogdanovic R, Stajic N, Zappel H, Rakhmetova A, Wassmer SR, Jungraithmayr T, Strehlau J, Kumar AS, Bagga A, Soliman NA, Mane SM, Kaufman L, Lowy DR, Jairajpuri MA, Lifton RP, Pei Y, Zenker M, Kure S, Hildebrandt F (2018) Mutations in six nephrosis genes delineate a pathogenic pathway amenable to treatment. Nat Commun 9:1960. https://doi.org/10.1038/s41467-018-04193-w
    Article CAS PubMed PubMed Central Google Scholar
  27. Wang L, Ellis MJ, Gomez JA, Eisner W, Fennell W, Howell DN, Ruiz P, Fields TA, Spurney RF (2012) Mechanisms of the proteinuria induced by Rho GTPases. Kidney Int 81:1075–1085. https://doi.org/10.1038/ki.2011.472
    Article CAS PubMed PubMed Central Google Scholar
  28. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, Manolio TA (2009) Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A 106:9362–9367
    Article CAS PubMed PubMed Central Google Scholar
  29. Gloss BS, Dinger ME (2018) Realizing the significance of noncoding functionality in clinical genomics. Exp Mol Med 50:97. https://doi.org/10.1038/s12276-018-0087-0
    Article CAS PubMed Central Google Scholar
  30. Clark AGB, Vaughan RW, Stephens HA, Chantler C, Williams DG, Welsh KI (1990) Genes encoding the β-chains of HLA-DR7 and HLA-DQw2 define major susceptibility determinants for idiopathic nephrotic syndrome. Clin Sci 78:391–397
    Article CAS Google Scholar
  31. Lagueruela CC, Buettner TL, Cole BR, Kissane JM, Robson AM (1990) HLA extended haplotypes in steroid-sensitive nephrotic syndrome of childhood. Kidney Int 38:145–150
    Article CAS PubMed Google Scholar
  32. Konrad M, Mytilineos J, Bouissou F, Scherer S, Gulli MP, Meissner I, Cambon-Thomsen A, Opelz G, Schärer K (1994) HLA class II associations with idiopathic nephrotic syndrome in children. Tissue Antigens 43:275–280
    Article CAS PubMed Google Scholar
  33. Kobayashi T, Ogawa A, Takahashi K, Uchiyama M (1995) HLA-DQB1 allele associates with idiopathic nephrotic syndrome in Japanese children. Pediatr Int 37:293–296
    Article CAS Google Scholar
  34. Huang Y-Y, Lin F-J, Fu L-S, Lan J-L (2009) HLA-DR,-DQB typing of steroid-sensitive idiopathic nephrotic syndrome children in Taiwan. Nephron Clin Pract 112:c57–c64
    Article CAS PubMed Google Scholar
  35. Ramanathan ASK, Senguttuvan P, Chinniah R, Vijayan M, Thirunavukkarasu M, Raju K, Mani D, Ravi PM, Rajendran P, Krishnan JI (2016) Association of HLA-DR/DQ alleles and haplotypes with nephrotic syndrome. Nephrology 21:745–752
    Article CAS PubMed Google Scholar
  36. Adeyemo A, Esezobor C, Solarin A, Abeyagunawardena A, Kari JA, El Desoky S, Greenbaum LA, Kamel M, Kallash M, Silva C, Young A, Hunley TE, de Jesus-Gonzalez N, Srivastava T, Gbadegesin R (2018) HLA-DQA1 and APOL1 as risk loci for childhood-onset steroid-sensitive and steroid-resistant nephrotic syndrome. Am J Kidney Dis 71:399–406. https://doi.org/10.1053/j.ajkd.2017.10.013
    Article CAS PubMed Google Scholar
  37. Gbadegesin RA, Adeyemo A, Webb NJ, Greenbaum LA, Abeyagunawardena A, Thalgahagoda S, Kale A, Gipson D, Srivastava T, Lin JJ, Chand D, Hunley TE, Brophy PD, Bagga A, Sinha A, Rheault MN, Ghali J, Nicholls K, Abraham E, Janjua HS, Omoloja A, Barletta GM, Cai Y, Milford DD, O’Brien C, Awan A, Belostotsky V, Smoyer WE, Homstad A, Hall G, Wu G, Nagaraj S, Wigfall D, Foreman J, Winn MP, Mid-West Pediatric Nephrology Consortium (2015) HLA-DQA1 and PLCG2 are candidate risk loci for childhood-onset steroid-sensitive nephrotic syndrome. J Am Soc Nephrol 26:1701–1710. https://doi.org/10.1681/ASN.2014030247
  38. Karp AM, Gbadegesin RA (2017) Genetics of childhood steroid-sensitive nephrotic syndrome. Pediatr Nephrol 32:1481–1488. https://doi.org/10.1007/s00467-016-3456-8
    Article PubMed Google Scholar
  39. Gonzalez-Galarza FF, McCabe A, Santos E, Jones J, Takeshita L, Ortega-Rivera ND, Cid-Pavon GMD, Ramsbottom K, Ghattaoraya G, Alfirevic A, Middleton D, Jones AR (2020) Allele frequency net database (AFND) 2020 update: gold-standard data classification, open access genotype data and new query tools. Nucleic Acids Res 48:D783–D788. https://doi.org/10.1093/nar/gkz1029
    Article CAS PubMed Google Scholar
  40. Nakajima F, Nakamura J, Yokota T (2001) Analysis of HLA haplotypes in Japanese, using high resolution allele typing. Major Histocompatibility. Complex 8:1–32. https://doi.org/10.12667/mhc.8.1
    Article CAS Google Scholar
  41. Sekula P, Li Y, Stanescu HC, Wuttke M, Ekici AB, Bockenhauer D, Walz G, Powis SH, Kielstein JT, Brenchley P, Investigators G, Eckardt KU, Kronenberg F, Kleta R, Kottgen A (2016) Genetic risk variants for membranous nephropathy: extension of and association with other chronic kidney disease aetiologies. Nephrol Dial Transplant. https://doi.org/10.1093/ndt/gfw001
  42. Stanescu HC, Arcos-Burgos M, Medlar A, Bockenhauer D, Kottgen A, Dragomirescu L, Voinescu C, Patel N, Pearce K, Hubank M, Stephens HA, Laundy V, Padmanabhan S, Zawadzka A, Hofstra JM, Coenen MJ, den Heijer M, Kiemeney LA, Bacq-Daian D, Stengel B, Powis SH, Brenchley P, Feehally J, Rees AJ, Debiec H, Wetzels JF, Ronco P, Mathieson PW, Kleta R (2011) Risk HLA-DQA1 and PLA(2)R1 alleles in idiopathic membranous nephropathy. N Engl J Med 364:616–626. https://doi.org/10.1056/NEJMoa1009742
    Article CAS PubMed Google Scholar
  43. Moon CM, Kim SW, Ahn JB, Ma HW, Che X, Kim TI, Kim WH, Cheon JH (2018) Deep resequencing of ulcerative colitis-associated genes identifies novel variants in candidate genes in the Korean population. Inflamm Bowel Dis 24:1706–1717. https://doi.org/10.1093/ibd/izy122
    Article PubMed Google Scholar
  44. Jin Y, Birlea SA, Fain PR, Gowan K, Riccardi SL, Holland PJ, Mailloux CM, Sufit AJ, Hutton SM, Amadi-Myers A, Bennett DC, Wallace MR, McCormack WT, Kemp EH, Gawkrodger DJ, Weetman AP, Picardo M, Leone G, Taieb A, Jouary T, Ezzedine K, van Geel N, Lambert J, Overbeck A, Spritz RA (2010) Variant of TYR and autoimmunity susceptibility loci in generalized vitiligo. N Engl J Med 362:1686–1697. https://doi.org/10.1056/NEJMoa0908547
    Article CAS PubMed PubMed Central Google Scholar
  45. Nguyen T, Liu XK, Zhang Y, Dong C (2006) BTNL2, a butyrophilin-like molecule that functions to inhibit T cell activation. J Immunol 176:7354–7360
    Article CAS PubMed Google Scholar
  46. Swanson RM, Gavin MA, Escobar SS, Rottman JB, Lipsky BP, Dube S, Li L, Bigler J, Wolfson M, Arnett HA, Viney JL (2013) Butyrophilin-like 2 modulates B7 costimulation to induce Foxp3 expression and regulatory T cell development in mature T cells. J Immunol 190:2027–2035. https://doi.org/10.4049/jimmunol.1201760
    Article CAS PubMed Google Scholar
  47. Colucci M, Carsetti R, Cascioli S, Casiraghi F, Perna A, Ravà L, Ruggiero B, Emma F, Vivarelli M (2016) B cell reconstitution after rituximab treatment in idiopathic nephrotic syndrome. J Am Soc Nephrol 27:1811–1822. https://doi.org/10.1681/asn.2015050523
    Article CAS PubMed Google Scholar
  48. Lensen JFM, van der Vlag J, Versteeg EMM, Wetzels JFM, van den Heuvel LPWJ, Berden JHM, van Kuppevelt TH, Rops ALWMM (2015) Differential expression of specific dermatan sulfate domains in renal pathology. PLoS One 10:e0134946–e0134946. https://doi.org/10.1371/journal.pone.0134946
    Article CAS PubMed PubMed Central Google Scholar
  49. Malik U, Javed A, Ali A, Asghar K (2017) Structural and functional annotation of human FAM26F: a multifaceted protein having a critical role in the immune system. Gene 597:66–75. https://doi.org/10.1016/j.gene.2016.10.029
    Article CAS PubMed Google Scholar
  50. Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson Å, Kampf C, Sjöstedt E, Asplund A, Olsson I, Edlund K, Lundberg E, Navani S, Szigyarto CA-K, Odeberg J, Djureinovic D, Takanen JO, Hober S, Alm T, Edqvist P-H, Berling H, Tegel H, Mulder J, Rockberg J, Nilsson P, Schwenk JM, Hamsten M, von Feilitzen K, Forsberg M, Persson L, Johansson F, Zwahlen M, von Heijne G, Nielsen J, Pontén F (2015) Tissue-based map of the human proteome. Science 347:1260419. https://doi.org/10.1126/science.1260419
    Article CAS PubMed Google Scholar
  51. Javed A (2012) Gene expression pattern and functional analysis of CD8+ T cells from individuals with or without anti HIV/SIV noncytolytic activity. Doctoral Thesis. Niedersächsische Staats-und Universitätsbibliothek Göttingen
  52. Taruno A, Vingtdeux V, Ohmoto M, Ma Z, Dvoryanchikov G, Li A, Adrien L, Zhao H, Leung S, Abernethy M, Koppel J, Davies P, Civan MM, Chaudhari N, Matsumoto I, Hellekant G, Tordoff MG, Marambaud P, Foskett JK (2013) CALHM1 ion channel mediates purinergic neurotransmission of sweet, bitter and umami tastes. Nature 495:223–226. https://doi.org/10.1038/nature11906
    Article CAS PubMed PubMed Central Google Scholar
  53. Nagy PV, Fehér T, Morga S, Matkó J (2000) Apoptosis of murine thymocytes induced by extracellular ATP is dose-and cytosolic pH-dependent. Immunol Lett 72:23–30
    Article CAS PubMed Google Scholar
  54. Trautmann A (2009) Extracellular ATP in the immune system: more than just a “danger signal”. Sci Signal 2:pe6. https://doi.org/10.1126/scisignal.256pe6
    Article CAS PubMed Google Scholar
  55. Shao XS, Yang XQ, Zhao XD, Li Q, Xie YY, Wang XG, Wang M, Zhang W (2009) The prevalence of Th17 cells and FOXP3 regulate T cells (Treg) in children with primary nephrotic syndrome. Pediatr Nephrol 24:1683–1690
    Article PubMed Google Scholar
  56. L-l L, Qin Y, J-f C, Wang H-y, J-l T, Li H, L-m C, M-x L, X-m L, X-w L (2011) Th17/Treg imbalance in adult patients with minimal change nephrotic syndrome. Clin Immunol 139:314–320. https://doi.org/10.1016/j.clim.2011.02.018
    Article CAS Google Scholar
  57. Fritsch-Stork R, Silva-Cardoso S, Groot MK, Broen J, Lafeber F, Bijlsma J (2016) Expression of ERAP2 and LST1 is increased before start of therapy in rheumatoid arthritis patients with good clinical response to glucocorticoids. Clin Exp Rheumatol 34:685–689
    PubMed Google Scholar
  58. Jeansson M, Haraldsson B (2006) Morphological and functional evidence for an important role of the endothelial cell glycocalyx in the glomerular barrier. Am J Physiol Ren Physiol 290:F111–F116. https://doi.org/10.1152/ajprenal.00173.2005
    Article CAS Google Scholar
  59. Koshiishi I, Hasegawa T, Imanari T (2002) Quantitative and qualitative alterations of chondroitin/dermatan sulfates accompanied with development of tubulointerstitial nephritis. Arch Biochem Biophys 401:38–43
    Article CAS PubMed Google Scholar
  60. Fladeby C, Gupta SN, Barois N, Lorenzo PI, Simpson JC, Saatcioglu F, Bakke O (2008) Human PARM-1 is a novel mucin-like, androgen-regulated gene exhibiting proliferative effects in prostate cancer cells. Int J Cancer 122:1229–1235. https://doi.org/10.1002/ijc.23185
    Article CAS PubMed Google Scholar
  61. Hitomi Y, Kawashima M, Aiba Y, Nishida N, Matsuhashi M, Okazaki H, Nakamura M, Tokunaga K (2015) Human primary biliary cirrhosis-susceptible allele of rs4979462 enhances TNFSF15 expression by binding NF-1. Hum Genet 134:737–747. https://doi.org/10.1007/s00439-015-1556-3
    Article CAS PubMed Google Scholar

Download references