A report of the International Study of Kidney Disease in Children (1981) The primary nephrotic syndrome in children. Identification of patients with minimal change nephrotic syndrome from initial response to prednisone. J Pediatr 98 (4):561–564. https://doi.org/10.1016/S0022-3476(81)80760-3
Sadowski CE, Lovric S, Ashraf S, Pabst WL, Gee HY, Kohl S, Engelmann S, Vega-Warner V, Fang H, Halbritter J (2015) A single-gene cause in 29.5% of cases of steroid-resistant nephrotic syndrome. J Am Soc Nephrol 26:1279–1289 ArticleCASPubMed Google Scholar
Ruf RG, Fuchshuber A, Karle SM, Lemainque A, Huck K, Wienker T, Otto E, Hildebrandt F (2003) Identification of the first gene locus (SSNS1) for steroid-sensitive nephrotic syndrome on chromosome 2p. J Am Soc Nephrol 14:1897–1900 ArticleCASPubMed Google Scholar
Debiec H, Dossier C, Letouze E, Gillies CE, Vivarelli M, Putler RK, Ars E, Jacqz-Aigrain E, Elie V, Colucci M, Debette S, Amouyel P, Elalaoui SC, Sefiani A, Dubois V, Simon T, Kretzler M, Ballarin J, Emma F, Sampson MG, Deschenes G, Ronco P (2018) Transethnic, genome-wide analysis reveals immune-related risk alleles and phenotypic correlates in pediatric steroid-sensitive nephrotic syndrome. J Am Soc Nephrol 29:2000–2013. https://doi.org/10.1681/ASN.2017111185 ArticleCASPubMedPubMed Central Google Scholar
Dufek S, Cheshire C, Levine AP, Trompeter RS, Issler N, Stubbs M, Mozere M, Gupta S, Klootwijk E, Patel V, Hothi D, Waters A, Webb H, Tullus K, Jenkins L, Godinho L, Levtchenko E, Wetzels J, Knoers N, Teeninga N, Nauta J, Shalaby M, Eldesoky S, Kari JA, Thalgahagoda S, Ranawaka R, Abeyagunawardena A, Adeyemo A, Kristiansen M, Gbadegesin R, Webb NJ, Gale DP, Stanescu HC, Kleta R, Bockenhauer D (2019) Genetic identification of two novel loci associated with steroid-sensitive nephrotic syndrome. J Am Soc Nephrol 30:1375–1384. https://doi.org/10.1681/ASN.2018101054 ArticleCASPubMedPubMed Central Google Scholar
Jia X, Horinouchi T, Hitomi Y, Shono A, Khor SS, Omae Y, Kojima K, Kawai Y, Nagasaki M, Kaku Y, Okamoto T, Ohwada Y, Ohta K, Okuda Y, Fujimaru R, Hatae K, Kumagai N, Sawanobori E, Nakazato H, Ohtsuka Y, Nakanishi K, Shima Y, Tanaka R, Ashida A, Kamei K, Ishikura K, Nozu K, Tokunaga K, Iijima K, Research Consortium on Genetics of Childhood Idiopathic Nephrotic Syndrome in Japan (2018) Strong association of the HLA-DR/DQ locus with childhood steroid-sensitive nephrotic syndrome in the Japanese population. J Am Soc Nephrol 29:2189–2199. https://doi.org/10.1681/ASN.2017080859 ArticleCASPubMedPubMed Central Google Scholar
Jia X, Yamamura T, Gbadegesin R, McNulty MT, Song K, Nagano C, Hitomi Y, Lee D, Aiba Y, Khor S-S, Ueno K, Kawai Y, Nagasaki M, Noiri E, Horinouchi T, Kaito H, Hamada R, Okamoto T, Kamei K, Kaku Y, Fujimaru R, Tanaka R, Shima Y, Baek J, Kang HG, Ha I-S, Han KH, Yang EM, Abeyagunawardena A, Lane B, Chryst-Stangl M, Esezobor C, Solarin A, Dossier C, Deschênes G, Vivarelli M, Debiec H, Ishikura K, Matsuo M, Nozu K, Ronco P, Cheong HI, Sampson MG, Tokunaga K, Iijima K (2020) Common risk variants in NPHS1 and TNFSF15 are associated with childhood steroid-sensitive nephrotic syndrome. Kidney Int. https://doi.org/10.1016/j.kint.2020.05.029
Xia Y, Mao J, Jin X, Wang W, Du L, Liu A (2013) Familial steroid-sensitive idiopathic nephrotic syndrome: seven cases from three families in China. Clinics 68:628–631 ArticlePubMedPubMed Central Google Scholar
Motoyama O, Sugawara H, Hatano M, Fujisawa T, Iitaka K (2009) Steroid-sensitive nephrotic syndrome in two families. Clin Exp Nephrol 13:170–173 ArticlePubMed Google Scholar
Korsgaard T, Joshi S, Andersen RF, Moeller K, Seeman T, Podracka L, Eiberg H, Rittig S (2020) Human leukocyte antigen association with familial steroid-sensitive nephrotic syndrome. Eur J Pediatr. https://doi.org/10.1007/s00431-020-03634-3
White RH (1973) The familial nephrotic syndrome. I.A European Survey. Clinical nephrology 1(4):215–219
Banh TH, Hussain-Shamsy N, Patel V, Vasilevska-Ristovska J, Borges K, Sibbald C, Lipszyc D, Brooke J, Geary D, Langlois V, Reddon M, Pearl R, Levin L, Piekut M, Licht CP, Radhakrishnan S, Aitken-Menezes K, Harvey E, Hebert D, Piscione TD, Parekh RS (2016) Ethnic differences in incidence and outcomes of childhood nephrotic syndrome. Clin J Am Soc Nephrol 11:1760–1768. https://doi.org/10.2215/CJN.00380116 ArticleCASPubMedPubMed Central Google Scholar
Maas RJ, Deegens JK, Smeets B, Moeller MJ, Wetzels JF (2016) Minimal change disease and idiopathic FSGS: manifestations of the same disease. Nat Rev Nephrol 12:768–776 ArticlePubMed Google Scholar
Trautmann A, Vivarelli M, Samuel S, Gipson D, Sinha A, Schaefer F, Hui NK, Boyer O, Saleem MA, Feltran L, Muller-Deile J, Becker JU, Cano F, Xu H, Lim YN, Smoyer W, Anochie I, Nakanishi K, Hodson E, Haffner D, International Pediatric Nephrology Association (2020) IPNA clinical practice recommendations for the diagnosis and management of children with steroid-resistant nephrotic syndrome. Pediatr Nephrol. https://doi.org/10.1007/s00467-020-04519-1
Mason AE, Sen ES, Bierzynska A, Colby E, Afzal M, Dorval G, Koziell AB, Williams M, Boyer O, Welsh GI, Saleem MA, UK RaDaR/NephroS Study (2020) Response to first course of intensified immunosuppression in genetically stratified steroid resistant nephrotic syndrome. Clin J Am Soc Nephrol 15:983–994. https://doi.org/10.2215/CJN.13371019 ArticleCASPubMedPubMed Central Google Scholar
Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alfoldi J, Wang Q, Collins RL, Laricchia KM, Ganna A, Birnbaum DP, Gauthier LD, Brand H, Solomonson M, Watts NA, Rhodes D, Singer-Berk M, England EM, Seaby EG, Kosmicki JA, Walters RK, Tashman K, Farjoun Y, Banks E, Poterba T, Wang A, Seed C, Whiffin N, Chong JX, Samocha KE, Pierce-Hoffman E, Zappala Z, O’Donnell-Luria AH, Minikel EV, Weisburd B, Lek M, Ware JS, Vittal C, Armean IM, Bergelson L, Cibulskis K, Connolly KM, Covarrubias M, Donnelly S, Ferriera S, Gabriel S, Gentry J, Gupta N, Jeandet T, Kaplan D, Llanwarne C, Munshi R, Novod S, Petrillo N, Roazen D, Ruano-Rubio V, Saltzman A, Schleicher M, Soto J, Tibbetts K, Tolonen C, Wade G, Talkowski ME, Genome Aggregation Database C, Neale BM, Daly MJ, MacArthur DG (2020) The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581:434–443. https://doi.org/10.1038/s41586-020-2308-7 ArticleCASPubMedPubMed Central Google Scholar
Gale DP, Mallett A, Patel C, Sneddon TP, Rehm HL, Sampson MG, Bockenhauer D (2020) Diagnoses of uncertain significance: kidney genetics in the 21st century. Nat Rev Nephrol. https://doi.org/10.1038/s41581-020-0277-6
Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, Voelkerding K, Rehm HL, ACMG Laboratory Quality Assurance Committee (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17:405–424. https://doi.org/10.1038/gim.2015.30
Ashraf S, Kudo H, Rao J, Kikuchi A, Widmeier E, Lawson JA, Tan W, Hermle T, Warejko JK, Shril S, Airik M, Jobst-Schwan T, Lovric S, Braun DA, Gee HY, Schapiro D, Majmundar AJ, Sadowski CE, Pabst WL, Daga A, van der Ven AT, Schmidt JM, Low BC, Gupta AB, Tripathi BK, Wong J, Campbell K, Metcalfe K, Schanze D, Niihori T, Kaito H, Nozu K, Tsukaguchi H, Tanaka R, Hamahira K, Kobayashi Y, Takizawa T, Funayama R, Nakayama K, Aoki Y, Kumagai N, Iijima K, Fehrenbach H, Kari JA, El Desoky S, Jalalah S, Bogdanovic R, Stajic N, Zappel H, Rakhmetova A, Wassmer SR, Jungraithmayr T, Strehlau J, Kumar AS, Bagga A, Soliman NA, Mane SM, Kaufman L, Lowy DR, Jairajpuri MA, Lifton RP, Pei Y, Zenker M, Kure S, Hildebrandt F (2018) Mutations in six nephrosis genes delineate a pathogenic pathway amenable to treatment. Nat Commun 9:1960. https://doi.org/10.1038/s41467-018-04193-w ArticleCASPubMedPubMed Central Google Scholar
Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, Manolio TA (2009) Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A 106:9362–9367 ArticleCASPubMedPubMed Central Google Scholar
Clark AGB, Vaughan RW, Stephens HA, Chantler C, Williams DG, Welsh KI (1990) Genes encoding the β-chains of HLA-DR7 and HLA-DQw2 define major susceptibility determinants for idiopathic nephrotic syndrome. Clin Sci 78:391–397 ArticleCAS Google Scholar
Lagueruela CC, Buettner TL, Cole BR, Kissane JM, Robson AM (1990) HLA extended haplotypes in steroid-sensitive nephrotic syndrome of childhood. Kidney Int 38:145–150 ArticleCASPubMed Google Scholar
Konrad M, Mytilineos J, Bouissou F, Scherer S, Gulli MP, Meissner I, Cambon-Thomsen A, Opelz G, Schärer K (1994) HLA class II associations with idiopathic nephrotic syndrome in children. Tissue Antigens 43:275–280 ArticleCASPubMed Google Scholar
Kobayashi T, Ogawa A, Takahashi K, Uchiyama M (1995) HLA-DQB1 allele associates with idiopathic nephrotic syndrome in Japanese children. Pediatr Int 37:293–296 ArticleCAS Google Scholar
Huang Y-Y, Lin F-J, Fu L-S, Lan J-L (2009) HLA-DR,-DQB typing of steroid-sensitive idiopathic nephrotic syndrome children in Taiwan. Nephron Clin Pract 112:c57–c64 ArticleCASPubMed Google Scholar
Ramanathan ASK, Senguttuvan P, Chinniah R, Vijayan M, Thirunavukkarasu M, Raju K, Mani D, Ravi PM, Rajendran P, Krishnan JI (2016) Association of HLA-DR/DQ alleles and haplotypes with nephrotic syndrome. Nephrology 21:745–752 ArticleCASPubMed Google Scholar
Adeyemo A, Esezobor C, Solarin A, Abeyagunawardena A, Kari JA, El Desoky S, Greenbaum LA, Kamel M, Kallash M, Silva C, Young A, Hunley TE, de Jesus-Gonzalez N, Srivastava T, Gbadegesin R (2018) HLA-DQA1 and APOL1 as risk loci for childhood-onset steroid-sensitive and steroid-resistant nephrotic syndrome. Am J Kidney Dis 71:399–406. https://doi.org/10.1053/j.ajkd.2017.10.013 ArticleCASPubMed Google Scholar
Gbadegesin RA, Adeyemo A, Webb NJ, Greenbaum LA, Abeyagunawardena A, Thalgahagoda S, Kale A, Gipson D, Srivastava T, Lin JJ, Chand D, Hunley TE, Brophy PD, Bagga A, Sinha A, Rheault MN, Ghali J, Nicholls K, Abraham E, Janjua HS, Omoloja A, Barletta GM, Cai Y, Milford DD, O’Brien C, Awan A, Belostotsky V, Smoyer WE, Homstad A, Hall G, Wu G, Nagaraj S, Wigfall D, Foreman J, Winn MP, Mid-West Pediatric Nephrology Consortium (2015) HLA-DQA1 and PLCG2 are candidate risk loci for childhood-onset steroid-sensitive nephrotic syndrome. J Am Soc Nephrol 26:1701–1710. https://doi.org/10.1681/ASN.2014030247
Gonzalez-Galarza FF, McCabe A, Santos E, Jones J, Takeshita L, Ortega-Rivera ND, Cid-Pavon GMD, Ramsbottom K, Ghattaoraya G, Alfirevic A, Middleton D, Jones AR (2020) Allele frequency net database (AFND) 2020 update: gold-standard data classification, open access genotype data and new query tools. Nucleic Acids Res 48:D783–D788. https://doi.org/10.1093/nar/gkz1029 ArticleCASPubMed Google Scholar
Sekula P, Li Y, Stanescu HC, Wuttke M, Ekici AB, Bockenhauer D, Walz G, Powis SH, Kielstein JT, Brenchley P, Investigators G, Eckardt KU, Kronenberg F, Kleta R, Kottgen A (2016) Genetic risk variants for membranous nephropathy: extension of and association with other chronic kidney disease aetiologies. Nephrol Dial Transplant. https://doi.org/10.1093/ndt/gfw001
Stanescu HC, Arcos-Burgos M, Medlar A, Bockenhauer D, Kottgen A, Dragomirescu L, Voinescu C, Patel N, Pearce K, Hubank M, Stephens HA, Laundy V, Padmanabhan S, Zawadzka A, Hofstra JM, Coenen MJ, den Heijer M, Kiemeney LA, Bacq-Daian D, Stengel B, Powis SH, Brenchley P, Feehally J, Rees AJ, Debiec H, Wetzels JF, Ronco P, Mathieson PW, Kleta R (2011) Risk HLA-DQA1 and PLA(2)R1 alleles in idiopathic membranous nephropathy. N Engl J Med 364:616–626. https://doi.org/10.1056/NEJMoa1009742 ArticleCASPubMed Google Scholar
Moon CM, Kim SW, Ahn JB, Ma HW, Che X, Kim TI, Kim WH, Cheon JH (2018) Deep resequencing of ulcerative colitis-associated genes identifies novel variants in candidate genes in the Korean population. Inflamm Bowel Dis 24:1706–1717. https://doi.org/10.1093/ibd/izy122 ArticlePubMed Google Scholar
Jin Y, Birlea SA, Fain PR, Gowan K, Riccardi SL, Holland PJ, Mailloux CM, Sufit AJ, Hutton SM, Amadi-Myers A, Bennett DC, Wallace MR, McCormack WT, Kemp EH, Gawkrodger DJ, Weetman AP, Picardo M, Leone G, Taieb A, Jouary T, Ezzedine K, van Geel N, Lambert J, Overbeck A, Spritz RA (2010) Variant of TYR and autoimmunity susceptibility loci in generalized vitiligo. N Engl J Med 362:1686–1697. https://doi.org/10.1056/NEJMoa0908547 ArticleCASPubMedPubMed Central Google Scholar
Nguyen T, Liu XK, Zhang Y, Dong C (2006) BTNL2, a butyrophilin-like molecule that functions to inhibit T cell activation. J Immunol 176:7354–7360 ArticleCASPubMed Google Scholar
Swanson RM, Gavin MA, Escobar SS, Rottman JB, Lipsky BP, Dube S, Li L, Bigler J, Wolfson M, Arnett HA, Viney JL (2013) Butyrophilin-like 2 modulates B7 costimulation to induce Foxp3 expression and regulatory T cell development in mature T cells. J Immunol 190:2027–2035. https://doi.org/10.4049/jimmunol.1201760 ArticleCASPubMed Google Scholar
Colucci M, Carsetti R, Cascioli S, Casiraghi F, Perna A, Ravà L, Ruggiero B, Emma F, Vivarelli M (2016) B cell reconstitution after rituximab treatment in idiopathic nephrotic syndrome. J Am Soc Nephrol 27:1811–1822. https://doi.org/10.1681/asn.2015050523 ArticleCASPubMed Google Scholar
Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson Å, Kampf C, Sjöstedt E, Asplund A, Olsson I, Edlund K, Lundberg E, Navani S, Szigyarto CA-K, Odeberg J, Djureinovic D, Takanen JO, Hober S, Alm T, Edqvist P-H, Berling H, Tegel H, Mulder J, Rockberg J, Nilsson P, Schwenk JM, Hamsten M, von Feilitzen K, Forsberg M, Persson L, Johansson F, Zwahlen M, von Heijne G, Nielsen J, Pontén F (2015) Tissue-based map of the human proteome. Science 347:1260419. https://doi.org/10.1126/science.1260419 ArticleCASPubMed Google Scholar
Javed A (2012) Gene expression pattern and functional analysis of CD8+ T cells from individuals with or without anti HIV/SIV noncytolytic activity. Doctoral Thesis. Niedersächsische Staats-und Universitätsbibliothek Göttingen
Taruno A, Vingtdeux V, Ohmoto M, Ma Z, Dvoryanchikov G, Li A, Adrien L, Zhao H, Leung S, Abernethy M, Koppel J, Davies P, Civan MM, Chaudhari N, Matsumoto I, Hellekant G, Tordoff MG, Marambaud P, Foskett JK (2013) CALHM1 ion channel mediates purinergic neurotransmission of sweet, bitter and umami tastes. Nature 495:223–226. https://doi.org/10.1038/nature11906 ArticleCASPubMedPubMed Central Google Scholar
Nagy PV, Fehér T, Morga S, Matkó J (2000) Apoptosis of murine thymocytes induced by extracellular ATP is dose-and cytosolic pH-dependent. Immunol Lett 72:23–30 ArticleCASPubMed Google Scholar
Shao XS, Yang XQ, Zhao XD, Li Q, Xie YY, Wang XG, Wang M, Zhang W (2009) The prevalence of Th17 cells and FOXP3 regulate T cells (Treg) in children with primary nephrotic syndrome. Pediatr Nephrol 24:1683–1690 ArticlePubMed Google Scholar
Fritsch-Stork R, Silva-Cardoso S, Groot MK, Broen J, Lafeber F, Bijlsma J (2016) Expression of ERAP2 and LST1 is increased before start of therapy in rheumatoid arthritis patients with good clinical response to glucocorticoids. Clin Exp Rheumatol 34:685–689 PubMed Google Scholar
Koshiishi I, Hasegawa T, Imanari T (2002) Quantitative and qualitative alterations of chondroitin/dermatan sulfates accompanied with development of tubulointerstitial nephritis. Arch Biochem Biophys 401:38–43 ArticleCASPubMed Google Scholar
Fladeby C, Gupta SN, Barois N, Lorenzo PI, Simpson JC, Saatcioglu F, Bakke O (2008) Human PARM-1 is a novel mucin-like, androgen-regulated gene exhibiting proliferative effects in prostate cancer cells. Int J Cancer 122:1229–1235. https://doi.org/10.1002/ijc.23185 ArticleCASPubMed Google Scholar
Hitomi Y, Kawashima M, Aiba Y, Nishida N, Matsuhashi M, Okazaki H, Nakamura M, Tokunaga K (2015) Human primary biliary cirrhosis-susceptible allele of rs4979462 enhances TNFSF15 expression by binding NF-1. Hum Genet 134:737–747. https://doi.org/10.1007/s00439-015-1556-3 ArticleCASPubMed Google Scholar