Nitric oxide and cell signaling; modulation of redox tone and protein modification (original) (raw)
Aleryani S, Milo E, Rose Y, Kostka P (1998) Superoxide-mediated decomposition of biological S-nitrosothiols. J Biol Chem 273(11): 6041–6045 ArticlePubMedCAS Google Scholar
Alvarez B, Ferrer-Sueta G, Freeman BA, Radi R (1999) Kinetics of peroxynitrite reaction with amino acids and human serum albumin. J Biol Chem 274(2): 842–848 ArticlePubMedCAS Google Scholar
Andrew PJ, Mayer B (1999) Enzymatic function of nitric oxide synthases. Cardiovasc Res 43(3): 521–531 ArticlePubMedCAS Google Scholar
Beinert H, Kennedy MC, Stout CD (1996) Aconitase as iron-sulfur protein, enzyme, and iron-regulatory protein. Chem Rev 96(7): 2335–2374 ArticlePubMedCAS Google Scholar
Blackmore RS, Greenwood C, Gibson QH (1991) Studies of the primary oxygen intermediate in the reaction of fully reduced cytochrome oxidase. J Biol Chem 266(29): 19245–19249 PubMedCAS Google Scholar
Bouton C, Hiding H, Drapier JC (1997) Redox modulation of iron regulatory proteins by peroxynitrite. J Biol Chem 272(32): 19969–19975 ArticlePubMedCAS Google Scholar
Brar SS, Kennedy TP, Whorton AR, Murphy TM, Chitano P, Hoidal JR (1999) Requirement for reactive oxygen species in serum-induced and platelet-derived growth factor-induced growth of airway smooth muscle. J Biol Chem 274(28): 20017–20026 ArticlePubMedCAS Google Scholar
Brookes P, Darley-Usmar VM (2002) Hypothesis: the mitochondrial NO(*) signaling pathway, and the transduction of nitrosative to oxidative cell signals: an alternative function for cytochrome C oxidase. Free Radic Biol Med 32(4): 370–374 ArticlePubMedCAS Google Scholar
Brown GC (1995) Reversible binding and inhibition of catalase by nitric oxide. Eur J Biochem 232(1): 188–191 ArticlePubMedCAS Google Scholar
Brunelli L, Yermilov V, Beckman JS (2001) Modulation of catalase peroxidatic and catalatic activity by nitric oxide. Free Radic Biol Med 30(7): 709–714 ArticlePubMedCAS Google Scholar
Buyukafsar K, Nelli S, Martin W (2001) Formation of nitric oxide from nitroxyl anion: role of quinones and ferricytochrome c. Br J Pharmacol 132(1): 165–172 ArticlePubMed CentralPubMedCAS Google Scholar
Buzard GS, Kasprzak KS (2000) Possible roles of nitric oxide and redox cell signaling in metal-induced toxicity and carcinogenesis: a review. J Environ Pathol Toxicol Oncol 19(3): 179–199 PubMedCAS Google Scholar
Cassina AM, Hodara R, Souza JM, Thomson L, Castro L, Ischiropoulos H, Freeman BA, Radi R (2000) Cytochrome c nitration by peroxynitrite. J Biol Chem 275(28): 21409–21415 ArticlePubMedCAS Google Scholar
Cassoly R, Gibson Q (1975) Conformation, co-operativity and ligand binding in human hemoglobin. J Mol Biol 91(3): 301–313 ArticlePubMedCAS Google Scholar
Castro L, Rodriguez M, Radi R (1994) Aconitase is readily inactivated by peroxynitrite, but not by its precursor, nitric oxide. J Biol Chem 269(47): 29409–29415 PubMedCAS Google Scholar
Colton CA, Gbadegesin M, Wink DA, Miranda KM, Espey MG, Vicini S (2001) Nitroxyl anion regulation of the NMDA receptor. J Neurochem 78(5): 1126–1134 ArticlePubMedCAS Google Scholar
Cooper CE (2002) Nitric oxide and cytochrome oxidase: substrate, inhibitor or effector? Trends Biochem Sci 27(1): 33–39 ArticlePubMedCAS Google Scholar
Das DK (2001) Redox regulation of cardiomyocyte survival and death. Antioxid Redox Signal 3(1): 23–37 ArticlePubMedCAS Google Scholar
Denninger JW, Marietta MA (1999) Guanylate cyclase and the.NO/cGMP signaling pathway. Biochim Biophys Acta 1411(2–3): 334–350 ArticlePubMedCAS Google Scholar
Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82(1): 47–95 PubMedCAS Google Scholar
Fukagawa NK, Timblin CR, Buder-Roffman S, Mossman BT (2000) Strategies for evaluation of signaling pathways and transcription factors altered in aging. Antioxid Redox Signal 2(3): 379–389 ArticlePubMedCAS Google Scholar
Fukuto JM, Wallace GC, Hszieh R, Chaudhuri G (1992) Chemical oxidation of N-hydroxyguanidine compounds. Release of nitric oxide, nitroxyl and possible relationship to the mechanism of biological nitric oxide generation. Biochem Pharmacol 43(3): 607–613 ArticlePubMedCAS Google Scholar
Gardner PR, Costantino G, Szabo C, Salzman AL (1997) Nitric oxide sensitivity of the aconitases. J Biol Chem 272(40): 25071–25076 ArticlePubMedCAS Google Scholar
Giuffre A, Barone MC, Mastronicola D, D’Itri E, Sarti P, Brunori M (2000) Reaction of nitric oxide with the turnover intermediates of cytochrome c oxidase: reaction pathway and functional effects. Biochemistry 39(50): 15446–15453 ArticlePubMedCAS Google Scholar
Goss SP, Singh RJ, Hogg N, Kalyanaraman B (1999) Reactions of *NO, *NO2 and peroxynitrite in membranes: physiological implications. Free Radic Res 31(6): 597–606 ArticlePubMedCAS Google Scholar
Griscavage JM, Hobbs AJ, Ignarro U (1995) Negative modulation of nitric oxide synthase by nitric oxide and nitroso compounds. Adv Pharmacol 34: 215–234 ArticlePubMedCAS Google Scholar
Hausladen A, Fridovich I (1994) Superoxide and peroxynitrite inactivate aconitases, but nitric oxide does not. J Biol Chem 269(47): 29405–29408 PubMedCAS Google Scholar
Hughes MN (1999) Relationships between nitric oxide, nitroxyl ion, nitrosonium cation and peroxynitrite. Biochim Biophys Acta 1411(2–3): 263–272 ArticlePubMedCAS Google Scholar
Ignarro U, Buga GM, Wood KS, Byrns RE, Chaudhuri G (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 84(24): 9265–9269 ArticlePubMed CentralPubMedCAS Google Scholar
Keshive M, Singh S, Wishnok JS, Tannenbaum SR, Deen WM (1996) Kinetics of S-nitrosation of thiols in nitric oxide solutions. Chem Res Toxicol 9(6): 988–993 ArticlePubMedCAS Google Scholar
Kurjak M, Koppitz P, Schusdziarra V, Allescher HD (1999) Evidence for a feedback inhibition of NO synthesis in enteric synaptosomes via a nitrosothiol intermediate. Am J Physiol 277(4 Pt 1): G875–884 PubMedCAS Google Scholar
Lander HM, Ogiste JS, Teng KK, Novogrodsky A (1995) p21ras as a common signaling target of reactive free radicals and cellular redox stress. J Biol Chem 270(36): 21195–21198 ArticlePubMedCAS Google Scholar
Lander HM, Hajjar DP, Hempstead BL, Mirza UA, Chait BT, Campbell S, Quilliam LA (1997) A molecular redox switch on p2l(ras). Structural basis for the nitric oxide-p21(ras) interaction. J Biol Chem 272(7): 4323–4326 ArticlePubMedCAS Google Scholar
Landino LM, Crews BC, Timmons MD, Morrow JD, Marnett U (1996) Peroxynitrite, the coupling product of nitric oxide and superoxide, activates prostaglandin biosynthesis. Proc Natl Acad Sci USA 93(26): 15069–15074 ArticlePubMed CentralPubMedCAS Google Scholar
Levonen AL, Patel RP, Brookes P, Go YM, Jo H, Parthasarathy S, Anderson PG, Darley-Usmar VM (2001) Mechanisms of cell signaling by nitric oxide and peroxynitrite: from mitochondria to MAP kinases. Antioxid Redox Signal 3(2): 215–229 ArticlePubMedCAS Google Scholar
Li J, Billiar TR, Talanian RV, Kim YM (1997) Nitric oxide reversibly inhibits seven members of the caspase family via S-nitrosylation. Biochem Biophys Res Commun 240(2): 419–424 ArticlePubMedCAS Google Scholar
Lincoln TM, Dey N, Sellak H (2001) Invited review: cGMP-dependent protein kinase signaling mechanisms in smooth muscle: from the regulation of tone to gene expression. J Appl Physiol 91(3): 1421–1430 PubMedCAS Google Scholar
Liu X, Miller MJ, Joshi MS, Thomas DD, Lancaster JR Jr (1998) Accelerated reaction of nitric oxide with O2 within the hydrophobic interior of biological membranes. Proc Natl Acad Sci USA 95(5): 2175–2179 ArticlePubMed CentralPubMedCAS Google Scholar
Miranda KM, Espey MG, Yamada K, Krishna M, Ludwick N, Kim S, Jourd’heuil D, Grisham MB, Feelisch M, Fukuto JM, Wink DA (2001) Unique oxidative mechanisms for the reactive nitrogen oxide species, nitroxyl anion. J Biol Chem 276(3): 1720–1727 ArticlePubMedCAS Google Scholar
Murphy ME, Sies H (1991) Reversible conversion of nitroxyl anion to nitric oxide by superoxide dismutase. Proc Natl Acad Sci USA 88(23): 10860–10864 ArticlePubMed CentralPubMedCAS Google Scholar
Nedospasov A, Rafikov R, Beda N, Nudler E (2000) An autocatalytic mechanism of protein nitrosylation. Proc Natl Acad Sci USA 97(25): 13543–13548 ArticlePubMed CentralPubMedCAS Google Scholar
O’Donnell VB, Eiserich JP, Bloodsworth A, Chumley PH, Kirk M, Barnes S, Darley-Usmar VM, Freeman BA (1999) Nitration of unsaturated fatty acids by nitric oxide-derived reactive species. Methods Enzymol 301: 454–470 ArticlePubMed Google Scholar
Paolocci N, Saavedra WF, Miranda KM, Martignani C, Isoda T, Hare JM, Espey MG, Fukuto JM, Feelisch M, Wink DA, Kass DA (2001) Nitroxyl anion exerts redox-sensitive positive cardiac inotropy in vivo by calcitonin gene-related peptide signaling. Proc Natl Acad Sci USA 98(18): 10463–10468 ArticlePubMed CentralPubMedCAS Google Scholar
Pasquet JP, Zou MH, Ullrich V (1996) Peroxynitrite inhibition of nitric oxide synthases. Biochimie 78(8–9): 785–791 ArticlePubMedCAS Google Scholar
Patel RP, Moellering D, Murphy-Ullrich J, Jo H, Beckman JS, Darley-Usmar VM (2000) Cell signaling by reactive nitrogen and oxygen species in atherosclerosis. Free Radic Biol Med 28(12): 1780–1794 ArticlePubMedCAS Google Scholar
Radi R, Cassina A, Hodara R (2002) Nitric oxide and peroxynitrite interactions with mitochondria. Biol Chem 383(3–4): 401–409 PubMedCAS Google Scholar
Rafikova O, Rafikov R, Nudler E (2002) Catalysis of S-nitrosothiols formation by serum albumin: the mechanism and implication in vascular control. Proc Natl Acad Sci USA 99(9): 5913–5918 ArticlePubMed CentralPubMedCAS Google Scholar
Rhee SG (1999) Redox signaling: hydrogen peroxide as intracellular messenger. Exp Mol Med 31(2): 53–59 ArticlePubMedCAS Google Scholar
Riedel W (2000) Role of nitric oxide in the control of the hypothalamicpituitary-adrenocortical axis. Z Rheumatol 59 [Suppl 2]: II/36–42 ArticleCAS Google Scholar
Robinson VK, Sato E, Nelson DK, Camhi SL, Robbins RA, Hoyt JC (2001) Peroxynitrite inhibits inducible (type 2) nitric oxide synthase in murine lung epithelial cells in vitro. Free Radic Biol Med 30(9): 986–991 ArticlePubMedCAS Google Scholar
Rossig L, Fichtlscherer B, Breitschopf K, Haendeler J, Zeiher AM, Mulsch A, Dimmeler S (1999) Nitric oxide inhibits caspase-3 by Snitrosation in vivo. J Biol Chem 274(11): 6823–6826 ArticlePubMedCAS Google Scholar
Schmidt HH, Hofmann H, Schindler U, Shutenko ZS, Cunningham DD, Feelisch M (1996) No.NO from NO synthase. Proc Natl Acad Sci USA 93(25): 14492–14497 ArticlePubMed CentralPubMedCAS Google Scholar
Sharma VS, Ranney HM (1978) The dissociation of NO from nitrosylhemoglobin. J Biol Chem 253(18): 6467–6472 PubMedCAS Google Scholar
Sharpe MA, Cooper CE (1998) Reactions of nitric oxide with mitochondrial cytochrome c: a novel mechanism for the formation of nitroxyl anion and peroxynitrite. Biochem J 332 (Pt 1): 9–19 PubMed CentralPubMedCAS Google Scholar
Shiva S, Brookes PS, Patel RP, Anderson PG, Darley-Usmar VM (2001) Nitric oxide partitioning into mitochondrial membranes and the control of respiration at cytochrome c oxidase. Proc Natl Acad Sci USA 98(13): 7212–7217 ArticlePubMed CentralPubMedCAS Google Scholar
Singh RJ, Hogg N, Joseph J, Kalyanaraman B (1996) Mechanism of nitric oxide release from S-nitrosothiols. J Biol Chem 271(31): 18596–18603 ArticlePubMedCAS Google Scholar
Terpstra V, Bird DA, Steinberg D (1998) Evidence that the lipid moiety of oxidized low density lipoprotein plays a role in its interaction with macrophage receptors. Proc Natl Acad Sci USA 95(4): 1806–1811 ArticlePubMed CentralPubMedCAS Google Scholar
Torres J, Sharpe MA, Rosquist A, Cooper CE, Wilson MT (2000) Cytochrome c oxidase rapidly metabolises nitric oxide to nitrite. FEBS Lett 475(3): 263–266 ArticlePubMedCAS Google Scholar
Trochu JN, Bouhour JB, Kaley G, Hintze TH (2000) Role of endotheliumderived nitric oxide in the regulation of cardiac oxygen metabolism: implications in health and disease. Circ Res 87(12): 1108–1117 ArticlePubMedCAS Google Scholar
Ushio-Fukai M, Alexander RW, Akers M, Yin Q, Fujio Y, Walsh K, Griendling KK (1999) Reactive oxygen species mediate the activation of Akt/protein kinase B by angiotensin II in vascular smooth muscle cells. J Biol Chem 274(32): 22699–22704 ArticlePubMedCAS Google Scholar
Viner RI, Ferrington DA, Huhmer AF, Bigelow DJ, Schoneich C (1996) Accumulation of nitrotyrosine on the SERCA2a isoform of SR Ca-ATPase of rat skeletal muscle during aging: a peroxynitritemediated process? FEBS Lett 379(3): 286–290 ArticlePubMedCAS Google Scholar
Viner RI, Ferrington DA, Williams TD, Bigelow DJ, Schoneich C (1999) Protein modification during biological aging: selective tyrosine nitration of the SERCA2a isoform of the sarcoplasmic reticulum Ca2 +ATPase in skeletal muscle. Biochem J 340 (Pt 3): 657–669 ArticlePubMed CentralPubMedCAS Google Scholar
Vojtek AB, Der CJ (1998) Increasing complexity of the Ras signaling pathway. J Biol Chem 273(32): 19925–19928 ArticlePubMedCAS Google Scholar
Warner TD, Mitchell JA, Sheng H, Murad F (1994) Effects of cyclic GMP on smooth muscle relaxation. Adv Pharmacol 26: 171–194 ArticlePubMedCAS Google Scholar
Zech B, Wilm M, van Eldik R, Brune B (1999) Mass spectrometric analysis of nitric oxide-modified caspase-3. J Biol Chem 274(30): 20931–20936 ArticlePubMedCAS Google Scholar
Zou MH, Ullrich V (1996) Peroxynitrite formed by simultaneous generation of nitric oxide and superoxide selectively inhibits bovine aortic prostacyclin synthase. FEBS Lett 382(1–2): 101–104 ArticlePubMedCAS Google Scholar
Zou M, Martin C, Ullrich V (1997) Tyrosine nitration as a mechanism of selective inactivation of prostacyclin synthase by peroxynitrite. Biol Chem 378(7): 707–713 ArticlePubMedCAS Google Scholar
Zou MH, Klein T, Pasquet JP, Ullrich V (1998) Interleukin 1 beta decreases prostacyclin synthase activity in rat mesangial cells via endogenous peroxynitrite formation. Biochem J 336 (Pt 2): 507–512 PubMed CentralPubMedCAS Google Scholar
Zou M, Yesilkaya A, Ullrich V (1999) Peroxynitrite inactivates prostacyclin synthase by heme-thiolate-catalyzed tyrosine nitration. Drug Metab Rev 31(2): 343–349 ArticlePubMedCAS Google Scholar
Zou MH, Daiber A, Peterson JA, Shoun H, Ullrich V (2000) Rapid reactions of peroxynitrite with heme-thiolate proteins as the basis for protection of prostacyclin synthase from inactivation by nitration. Arch Biochem Biophys 376/1: 149–155 Article Google Scholar