Glutamine, arginine, and leucine signaling in the intestine (original) (raw)
Alican I, Kubes P (1996) A critical role for nitric oxide in intestinal barrier function and dysfunction. Am J Physiol 270:G225–G237 PubMedCAS Google Scholar
Argenzio RA, Rhoads JM, Armstrong M, Gomez G (1994) Glutamine stimulates prostaglandin-sensitive Na(+)-H+ exchange in experimental porcine cryptosporidiosis. Gastroenterology 106:1418–1428 PubMedCAS Google Scholar
Avissar NE, Ziegler TR, Toia L et al (2004) ATB0/ASCT2 expression in residual rabbit bowel is decreased after massive enterectomy and is restored by growth hormone treatment. J Nutr 134:2173–2177 PubMedCAS Google Scholar
Ban H, Shigemitsu K, Yamatsuji T et al (2004) Arginine and Leucine regulate p70 s6kinase and 4E-BP1 in intestinal epithelial cells. Int J Mol Med 13:537–543 PubMedCAS Google Scholar
Barbul A (1986) Arginine: biochemistry, physiology, and therapeutic implications. J Parenter Enteral Nutr 10:227–238 ArticleCAS Google Scholar
Beale RJ, Sherry T, Lei K et al (2008) Early enteral supplementation with key pharmaconutrients improves sequential organ failure assessment score in critically ill patients with sepsis: outcome of a randomized, controlled, double-blind trial. Crit Care Med 36:131–144 ArticlePubMedCAS Google Scholar
Becker RM, Wu G, Galanko JA et al (2000) Reduced serum amino acid concentrations in infants with necrotizing enterocolitis. J Pediatr 137:785–793 ArticlePubMedCAS Google Scholar
Bilban M, Haschemi A, Wegiel B et al (2008) Heme oxygenase and carbon monoxide initiate homeostatic signaling. J Mol Med 86:267–279 ArticlePubMedCAS Google Scholar
Blachier F, Mariotti F, Huneau JF, Tomé D (2007) Effects of amino acid-derived luminal metabolites on the colonic epithelium and physiopathological consequences. Amino Acids 33:547–562 ArticlePubMedCAS Google Scholar
Blikslager AT, Rhoads JM, Bristol DG et al (1999) Glutamine and transforming growth factor-alpha stimulate extracellular regulated kinases and enhance recovery of villous surface area in porcine ischemic-injured intestine. Surgery 125:186–194 PubMedCAS Google Scholar
Blommaart EF, Luiken JJ, Blommaart PJ et al (1995) Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rat hepatocytes. J Biol Chem 270:2320–2326 ArticlePubMedCAS Google Scholar
Boelens PG, Nijveldt RJ, Houdijk AP et al (2001) Glutamine alimentation in catabolic state. J Nutr 131:2569S–2577S PubMedCAS Google Scholar
Buchman AL (2001) Glutamine: commercially essential or conditionally essential? A critical appraisal of the human data. Am J Clin Nutr 74:25–32 PubMedCAS Google Scholar
Chen LX, Yin YL, Jobgen WS et al (2007) In vitro oxidation of essential amino acids by jejunal mucosal cells of growing pigs. Livest Sci 109:19–23 Article Google Scholar
Chen G, Shi J, Qi M et al (2008) Glutamine decreases intestinal nuclear factor kappa B activity and pro-inflammatory cytokine expression after traumatic brain injury in rats. Inflamm Res 57:57–64 ArticlePubMedCAS Google Scholar
Coeffier M, Miralles-Barrachina O, Le PF et al (2001) Influence of glutamine on cytokine production by human gut in vitro. Cytokine 13:148–154 ArticlePubMedCAS Google Scholar
Coeffier M, Marion R, Ducrotte P, Dechelotte P (2003) Modulating effect of glutamine on IL-1beta-induced cytokine production by human gut. Clin Nutr 22:407–413 ArticlePubMedCAS Google Scholar
Corl BA, Odle J, Niu X et al (2008) Arginine activates intestinal p70(s6k) and protein synthesis in piglet rotavirus enteritis. J Nutr 138:24–29 PubMedCAS Google Scholar
Curis E, Crenn P, Cynober L (2007) Citrulline and the gut. Curr Opin Clin Nutr Metab Care 10:620–626 ArticlePubMedCAS Google Scholar
Dalmasso G, Charrier-Hisamuddin L, Thu Nguyen HT et al (2008) PepT1-mediated tripeptide KPV uptake reduces intestinal inflammation. Gastroenterology 134:166–178 ArticlePubMedCAS Google Scholar
Deniel N, Marion-Letellier R, Charlionet R et al (2007) Glutamine regulates the human epithelial intestinal HCT-8 cell proteome under apoptotic conditions. Mol Cell Proteomics 6:1671–1679 ArticlePubMedCAS Google Scholar
Derikx JP, Poeze M, van Bijnen AA et al (2007) Evidence for intestinal and liver epithelial cell injury in the early phase of sepsis. Shock 28:544–548 PubMedCAS Google Scholar
Di LM, Krantis A (2002) Nitric oxide synthase isoenzyme activities in a premature piglet model of necrotizing enterocolitis: effects of nitrergic manipulation. Pediatr Surg Int 18:624–629 Article Google Scholar
Evans ME, Jones DP, Ziegler TR (2003) Glutamine prevents cytokine-induced apoptosis in human colonic epithelial cells. J Nutr 133:3065–3071 PubMedCAS Google Scholar
Fischer CP, Bode BP, Abcouwer SF et al (1995) Hepatic uptake of glutamine and other amino acids during infection and inflammation. Shock 3:315–322 ArticlePubMedCAS Google Scholar
Flynn NE, Bird JG, Guthrie AS (2008) Glucocorticoid regulation of amino acid and polyamine metabolism in the small intestine. Amino Acids. doi:10.1007/s00726-008-0206-7
Fu WJ, Haynes TE, Kohli R (2005) Dietary l-arginine supplementation reduces fat mass in Zucker diabetic fatty rats. J Nutr 135:714–721 PubMedCAS Google Scholar
Fuchs BC, Perez JC, Suetterlin JE et al (2004) Inducible antisense RNA targeting amino acid transporter ATB0/ASCT2 elicits apoptosis in human hepatoma cells. Am J Physiol Gastrointest Liver Physiol 286:G467–G478 ArticlePubMedCAS Google Scholar
Giris M, Erbil Y, Oztezcan S et al (2006) The effect of heme oxygenase-1 induction by glutamine on radiation-induced intestinal damage: the effect of heme oxygenase-1 on radiation enteritis. Am J Surg 191:503–509 ArticlePubMedCAS Google Scholar
Gookin JL, Foster DM, Coccaro MR, Stauffer SH (2008) Oral delivery of l-arginine stimulates prostaglandin-dependent secretory diarrhea in _Cryptosporidium parvum_-infected neonatal piglets. J Pediatr Gastroenterol Nutr 46:139–146 ArticlePubMedCAS Google Scholar
Hayashi M, Sakai T, Hasegawa Y et al (1999) Physiological mechanism for enhancement of paracellular drug transport. J Control Release 62:141–148 ArticlePubMedCAS Google Scholar
He QH, Kong XF, Wu G et al. (2008) Metabolomic analysis of the response of growing pigs to dietary l-arginine supplementation. Amino Acids. doi:10.1007/s00726-008-0192-9
Houdijk AP, Rijnsburger ER, Jansen J et al (1998) Randomised trial of glutamine-enriched enteral nutrition on infectious morbidity in patients with multiple trauma. Lancet 352:772–776 ArticlePubMedCAS Google Scholar
Ito Y, Doelle SM, Clark JA et al (2007) Intestinal microcirculatory dysfunction during the development of experimental necrotizing enterocolitis. Pediatr Res 61:180–184 ArticlePubMed Google Scholar
Jiang ZM, Wang LJ, Qi Y et al (1993) Comparison of parenteral nutrition supplemented with l-glutamine or glutamine dipeptides. J Parenter Enteral Nutr 17:134–141 ArticleCAS Google Scholar
Jobgen WS, Fried SK, Fu WJ et al (2006) Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates. J Nutr Biochem 17:571–588 ArticlePubMedCAS Google Scholar
Jobgen WJ, Meininger CJ, Jobgen SC et al. (2008) Dietary l-arginine supplementation reduces white-fat gain and enhances skeletal muscle and brown fat masses in diet-induced obese rats. J Nutr. doi:10.3945/jn.108.096362
Kadowaki M, Kanazawa T (2003) Amino acids as regulators of proteolysis. J Nutr 133:2052S–2056S PubMedCAS Google Scholar
Kim SW, Wu G (2008) Regulatory role for amino acids in mammary gland growth and milk synthesis. Amino Acids. doi:10.1007/s00726-008-0151-5
Kimball SR, Jefferson LS (2006) New functions for amino acids: effects on gene transcription and translation. Am J Clin Nutr 83:500S–507S PubMedCAS Google Scholar
Ko TC, Beauchamp RD, Townsend CM Jr, Thompson JC (1993) Glutamine is essential for epidermal growth factor-stimulated intestinal cell proliferation. Surgery 114:147–153 PubMedCAS Google Scholar
Ko YG, Kim EY, Kim T et al (2001) Glutamine-dependent antiapoptotic interaction of human glutaminyl-tRNA synthetase with apoptosis signal-regulating kinase 1. J Biol Chem 276:6030–6036 ArticlePubMedCAS Google Scholar
Kozar RA, Verner-Cole E, Schultz SG et al (2004) The immune-enhancing enteral agents arginine and glutamine differentially modulate gut barrier function following mesenteric ischemia/reperfusion. J Trauma 57:1150–1156 ArticlePubMedCAS Google Scholar
Krane SM (2008) The importance of proline residues in the structure, stability and susceptibility to proteolytic degradation of collagens. Amino Acids 35:703–710 ArticlePubMedCAS Google Scholar
Kwon H, Spencer TE, Bazer FW, Wu G (2003) Developmental changes of amino acids in ovine fetal fluids. Biol Reprod 68:1813–1820 ArticlePubMedCAS Google Scholar
Larson SD, Li J, Chung DH, Evers BM (2007) Molecular mechanisms contributing to glutamine-mediated intestinal cell survival. Am J Physiol Gastrointest Liver Physiol 293:G1262–G1271 ArticlePubMedCAS Google Scholar
Lenaerts K, Renes J, Bouwman FG et al (2007) Arginine deficiency in preconfluent intestinal Caco-2 cells modulates expression of proteins involved in proliferation, apoptosis, and heat shock response. Proteomics 7:565–577 ArticlePubMedCAS Google Scholar
Li N, Lewis P, Samuelson D et al (2004) Glutamine regulates Caco-2 cell tight junction proteins. Am J Physiol Gastrointest Liver Physiol 287:G726–G733 ArticlePubMedCAS Google Scholar
Liao XH, Majithia A, Huang X, Kimmel AR (2008) Growth control via TOR kinase signaling, an intracellular sensor of amino acid and energy availability, with crosstalk potential to proline metabolism. Amino Acids 35:761–770 ArticlePubMedCAS Google Scholar
Liu L, Chen L, Chung J, Huang S (2008) Rapamycin inhibits F-actin reorganization and phosphorylation of focal adhesion proteins. Oncogene 27:4998–5010 ArticlePubMedCAS Google Scholar
Luo CC, Chen HM, Chiu CH et al (2001) Effect of N(G)-nitro-l-arginine methyl ester on intestinal permeability following intestinal ischemia-reperfusion injury in a rat model. Biol Neonate 80:60–63 ArticlePubMedCAS Google Scholar
Martín-Rufián M, Segura JA, Lobo C et al (2006) Identification of genes downregulated in tumor cells expressing antisense glutaminase mRNA by differential display. Cancer Biol Ther 5:54–58 ArticlePubMed Google Scholar
McCormack SA, Johnson LR (1991) Role of polyamines in gastrointestinal mucosal growth. Am J Physiol 260:G795–G806 PubMedCAS Google Scholar
Nakajo T, Yamatsuji T, Ban H et al (2005) Glutamine is a key regulator for amino acid-controlled cell growth through the mTOR signaling pathway in rat intestinal epithelial cells. Biochem Biophys Res Commun 326:174–180 ArticlePubMedCAS Google Scholar
Naomoto Y, Yamatsuji T, Shigemitsu K et al (2005) Rational role of amino acids in intestinal epithelial cells. Int J Mol Med 16:201–204 PubMedCAS Google Scholar
Noiri E, Peresleni T, Srivastava N et al (1996) Nitric oxide is necessary for a switch from stationary to locomoting phenotype in epithelial cells. Am J Physiol 270:C794–C802 PubMedCAS Google Scholar
Noiri E, Lee E, Testa J et al (1998) Podokinesis in endothelial cell migration: role of nitric oxide. Am J Physiol 274:C236–C244 PubMedCAS Google Scholar
Novak F, Heyland DK, Avenell A et al (2002) Glutamine supplementation in serious illness: a systematic review of the evidence. Crit Care Med 30:2022–2029 ArticlePubMedCAS Google Scholar
O’Dwyer ST, Smith RJ, Hwang TL, Wilmore DW (1989) Maintenance of small bowel mucosa with glutamine-enriched parenteral nutrition. J Parenter Enteral Nutr 13:579–585 Article Google Scholar
Palii SS, Kays CE, Deval C et al. (2008) Specificity of amino acid regulated gene expression: analysis of genes subjected to either complete or single amino acid deprivation. Amino Acids. doi: 10.1007/s00726-008-0199-2
Papaconstantinou HT, Chung DH, Zhang W et al (2000) Prevention of mucosal atrophy: role of glutamine and caspases in apoptosis in intestinal epithelial cells. J Gastrointest Surg 4:416–423 ArticlePubMedCAS Google Scholar
Peng ZY, Serkova NJ, Kominsky DJ et al (2006) Glutamine-mediated attenuation of cellular metabolic dysfunction and cell death after injury is dependent on heat shock factor-1 expression. J Parenter Enteral Nutr 30:373–378 ArticleCAS Google Scholar
Phanvijhitsiri K, Musch MW, Ropeleski MJ, Chang EB (2006) Heat induction of heat shock protein 25 requires cellular glutamine in intestinal epithelial cells. Am J Physiol Cell Physiol 291:C290–C299 ArticlePubMedCAS Google Scholar
Poindexter BB, Ehrenkranz RA, Stoll BJ et al (2003) Effect of parenteral glutamine supplementation on plasma amino acid concentrations in extremely low-birth-weight infants. Am J Clin Nutr 77:737–743 PubMedCAS Google Scholar
Potsic B, Holliday N, Lewis P et al (2002) Glutamine supplementation and deprivation: effect on artificially reared rat small intestinal morphology. Pediatr Res 52:430–436 PubMedCAS Google Scholar
Rhoads JM, Keku EO, Quinn J et al (1991) l-Glutamine stimulates jejunal sodium and chloride absorption in pig rotavirus enteritis. Gastroenterology 100:683–691 PubMedCAS Google Scholar
Rhoads JM, Argenzio RA, Chen W et al (1997) l-Glutamine stimulates intestinal cell proliferation and activates mitogen-activated protein kinases. Am J Physiol 272:G943–G953 PubMedCAS Google Scholar
Rhoads JM, Argenzio RA, Chen W et al (2000) Glutamine metabolism stimulates intestinal cell MAPKs by a cAMP-inhibitable, Raf-independent mechanism. Gastroenterology 118:90–100 ArticlePubMedCAS Google Scholar
Rhoads JM, Chen W, Gookin J et al (2004) Arginine stimulates intestinal cell migration through a focal adhesion kinase dependent mechanism. Gut 53:514–522 ArticlePubMedCAS Google Scholar
Rhoads JM, Niu X, Odle J, Graves LM (2006) Role of mTOR signaling in intestinal cell migration. Am J Physiol Gastrointest Liver Physiol 291:G510–G517 ArticlePubMedCAS Google Scholar
Rhoads JM, Corl BA, Harrell R et al (2007) Intestinal ribosomal p70(s6k) signaling is increased in piglet rotavirus enteritis. Am J Physiol Gastrointest Liver Physiol 292:G913–G922 ArticlePubMedCAS Google Scholar
Rhoads JM, Liu Y, Niu X et al (2008) Arginine stimulates cdx2-transformed intestinal epithelial cell migration via a mechanism requiring both nitric oxide and phosphorylation of p70 s6kinase. J Nutr 138:1652–1657 PubMedCAS Google Scholar
Ropeleski MJ, Riehm J, Baer KA et al (2005) Anti-apoptotic effects of l-glutamine-mediated transcriptional modulation of the heat shock protein 72 during heat shock. Gastroenterology 129:170–184 ArticlePubMedCAS Google Scholar
Sato N, Moore FA, Kone BC et al (2006) Differential induction of PPAR-gamma by luminal glutamine and iNOS by luminal arginine in the rodent postischemic small bowel. Am J Physiol Gastrointest Liver Physiol 290:G616–G623 ArticlePubMedCAS Google Scholar
Seth A, Basuroy S, Sheth P, Rao RK (2004) l-Glutamine ameliorates acetaldehyde-induced increase in paracellular permeability in Caco-2 cell monolayer. Am J Physiol Gastrointest Liver Physiol 287:G510–G517 ArticlePubMedCAS Google Scholar
Siu F, Bain PJ, LeBlanc-Chaffin R et al (2002) ATF4 is a mediator of the nutrient-sensing response pathway that activates the human asparagine synthetase gene. J Biol Chem 277:24120–24127 ArticlePubMedCAS Google Scholar
Stebbing JF, Brading AF, Mortensen NJ (1996) Nitrergic innervation and relaxant response of rectal circular smooth muscle. Dis Colon Rectum 39:294–299 ArticlePubMedCAS Google Scholar
Stoll B, Burrin DG (2006) Measuring splanchnic amino acid metabolism in vivo using stable isotopic tracers. J Anim Sci 84(Suppl):E60–E72 PubMed Google Scholar
Suryawan A, O’Connor PMJ, Bush JA et al. (2008) Differential regulation of protein synthesis by amino acids and insulin in peripheral and visceral tissues of neonatal pigs. Amino Acids. doi:10.1007/s00726-008-0149-z
Tan BE, Yin YL, Liu ZQ et al. (2008) Dietary L-arginine supplementation increases muscle gain and reduces body fat mass in growing-finishing pigs. Amino Acids. doi:10.1007/s00726-008-0148-0
Uehara K, Takahashi T, Fujii H et al (2005) The lower intestinal tract-specific induction of heme oxygenase-1 by glutamine protects against endotoxemic intestinal injury. Crit Care Med 33:381–390 ArticlePubMedCAS Google Scholar
Wang WW, Qiao SY, Li DF (2008a) Amino acids and gut function. Amino Acids. doi:10.1007/s00726-008-0152-4
Wang JJ, Chen LX, Li P et al (2008b) Gene expression is altered in piglet small intestine by weaning and dietary glutamine supplementation. J Nutr 138:1025–1032 PubMedCAS Google Scholar
Wang JJ, Wu G, Zhou HJ, Wang FL (2008c) Emerging technologies for amino acid nutrition research in the post-genome era. Amino Acids. doi:10.1007/s00726-008-0193-8
Windmueller HG, Spaeth AE (1978) Identification of ketone bodies and glutamine as the major respiratory fuels in vivo for postabsorptive rat small intestine. J Biol Chem 253:69–76 PubMedCAS Google Scholar
Windmueller HG, Spaeth AE (1980) Respiratory fuels and nitrogen metabolism in vivo in small intestine of fed rats. Quantitative importance of glutamine, glutamate, and aspartate. J Biol Chem 255:107–112 PubMedCAS Google Scholar
Wischmeyer PE, Musch MW, Madonna MB et al (1997) Glutamine protects intestinal epithelial cells: role of inducible HSP70. Am J Physiol 272:G879–G884 PubMedCAS Google Scholar
Wischmeyer PE, Kahana M, Wolfson R et al (2001) Glutamine induces heat shock protein and protects against endotoxin shock in the rat. J Appl Physiol 90:2403–2410 PubMedCAS Google Scholar
Wu G (1998) Intestinal mucosal amino acid catabolism. J Nutr 128:1249–1252 PubMedCAS Google Scholar
Wu G, Knabe DA (1994) Free and protein-bound amino acids in sow’s colostrum and milk. J Nutr 124:415–424 PubMedCAS Google Scholar
Wu G, Knabe DA (1995) Arginine synthesis in enterocytes of neonatal pigs. Am J Physiol Regul Integr Comp Physiol 269:R621–R629 CAS Google Scholar
Wu G, Meininger CJ (2000) Arginine nutrition and cardiovascular function. J Nutr 130:2626–2629 PubMedCAS Google Scholar
Wu G, Morris SM Jr (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336:1–17 PubMedCAS Google Scholar
Wu G, Knabe DA, Yan W, Flynn NE (1995) Glutamine and glucose metabolism in enterocytes of neonatal pigs. Am J Physiol Regul Integr Comp Physiol 268:R334–R342 CAS Google Scholar
Wu G, Bazer FW, Tuo W, Flynn SP (1996a) Unusual abundance of arginine and ornithine in porcine allantoic fluid. Biol Reprod 54:1261–1265 ArticlePubMedCAS Google Scholar
Wu G, Meier SA, Knabe DA (1996b) Dietary glutamine supplementation prevents jejunal atrophy in weaned pigs. J Nutr 126:2578–2584 PubMedCAS Google Scholar
Wu G, Haynes TE, Li H et al (2001) Glutamine metabolism to glucosamine is necessary for glutamine inhibition of endothelial nitric oxide synthesis. Biochem J 353:245–252 ArticlePubMedCAS Google Scholar
Wu G, Bazer FW, Davis TA et al (2007a) Important roles for the arginine family of amino acids in swine nutrition and production. Livest Sci 112:8–22 Article Google Scholar
Wu G, Bazer FW, Cudd TA et al (2007b) Pharmacokinetics and safety of arginine supplementation in animals. J Nutr 137:1673S–1680S PubMedCAS Google Scholar
Wu G, Bazer FW, Datta S et al (2008a) Proline metabolism in the conceptus: implications for fetal growth and development. Amino Acids 35:691–702 ArticlePubMedCAS Google Scholar
Wu G, Bazer FW, Davis TA et al. (2008b) Arginine metabolism and nutrition in growth, health and disease. Amino Acids. doi: 10.1007/s00726-008-0210-y
Yang F, Wang JJ, Li XJ et al (2007) Two-dimensional gel electrophoresis and mass spectrometry analysis of interactions between Lactobacillus Fermentum I5007 and intestinal epithelial cells. Electrophoresis 28:4330–4339 ArticlePubMedCAS Google Scholar
Zamora SA, Amin HJ, McMillan DD et al (1997) Plasma l-arginine concentrations in premature infants with necrotizing enterocolitis. J Pediatr 131:226–232 ArticlePubMedCAS Google Scholar
Zamora R, Bryan NS, Boyle P et al (2005) Nitrosative stress in an animal model of necrotizing enterocolitis. Free Radic Biol Med 39:1428–1437 ArticlePubMedCAS Google Scholar
Ziegler TR, Mantell MP, Chow JC et al (1996) Gut adaptation and the insulin-like growth factor system: regulation by glutamine and IGF-I administration. Am J Physiol 271:G866–G875 PubMedCAS Google Scholar