- Virmani R et al (2005) Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol 25(10):2054–2061
Article CAS PubMed Google Scholar
- Khurana R et al (2005) Role of angiogenesis in cardiovascular disease: a critical appraisal. Circulation 112(12):1813–1824
Article PubMed Google Scholar
- Moore KJ, Tabas I (2011) Macrophages in the pathogenesis of atherosclerosis. Cell 145(3):341–355
Article CAS PubMed Central PubMed Google Scholar
- Sluimer JC et al (2008) Hypoxia, hypoxia-inducible transcription factor, and macrophages in human atherosclerotic plaques are correlated with intraplaque angiogenesis. J Am Coll Cardiol 51(13):1258–1265
Article CAS PubMed Google Scholar
- Xue L, Greisler HP (2002) Angiogenic effect of fibroblast growth factor-1 and vascular endothelial growth factor and their synergism in a novel in vitro quantitative fibrin-based 3-dimensional angiogenesis system. Surgery 132(2):259–267
Article PubMed Google Scholar
- Xiong M et al (1998) Production of vascular endothelial growth factor by murine macrophages: regulation by hypoxia, lactate, and the inducible nitric oxide synthase pathway. Am J Pathol 153(2):587–598
Article CAS PubMed Google Scholar
- Schulze-Osthoff K et al (1990) In situ detection of basic fibroblast growth factor by highly specific antibodies. Am J Pathol 137(1):85–92
CAS PubMed Google Scholar
- Pakala R, Watanabe T, Benedict CR (2002) Induction of endothelial cell proliferation by angiogenic factors released by activated monocytes. Cardiovasc Radiat Med 3(2):95–101
Article PubMed Google Scholar
- Polverini PJ et al (1977) Activated macrophages induce vascular proliferation. Nature 269(5631):804–806
Article CAS PubMed Google Scholar
- Sunderkotter C et al (1991) Macrophage-derived angiogenesis factors. Pharmacol Ther 51(2):195–216
Article CAS PubMed Google Scholar
- Gratchev A et al (2006) Mphi1 and Mphi2 can be re-polarized by Th2 or Th1 cytokines, respectively, and respond to exogenous danger signals. Immunobiology 211(6–8):473–486
Article CAS PubMed Google Scholar
- Stout RD et al (2005) Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. J Immunol 175(1):342–349
CAS PubMed Google Scholar
- Wolfs IM, Donners MM, de Winther MP (2011) Differentiation factors and cytokines in the atherosclerotic plaque micro-environment as a trigger for macrophage polarisation. Thromb Haemost 106(5):763–771
Article CAS PubMed Google Scholar
- Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3(1):23–35
Article CAS PubMed Google Scholar
- Mantovani A et al (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25(12):677–686
Article CAS PubMed Google Scholar
- Mantovani A et al (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23(11):549–555
Article CAS PubMed Google Scholar
- Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8(12):958–969
Article CAS PubMed Central PubMed Google Scholar
- Kodelja V et al (1997) Differences in angiogenic potential of classically vs alternatively activated macrophages. Immunobiology 197(5):478–493
Article CAS PubMed Google Scholar
- Lin EY et al (2006) Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res 66(23):11238–11246
Article CAS PubMed Google Scholar
- Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4(1):71–78
Article CAS PubMed Google Scholar
- Murdoch C et al (2008) The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer 8(8):618–631
Article CAS PubMed Google Scholar
- Sica A et al (2008) Macrophage polarization in tumour progression. Semin Cancer Biol 18(5):349–355
Article CAS PubMed Google Scholar
- De Palma M et al (2003) Targeting exogenous genes to tumor angiogenesis by transplantation of genetically modified hematopoietic stem cells. Nat Med 9(6):789–795
Article PubMed Google Scholar
- Kanters E et al (2004) Hematopoietic NF-kappaB1 deficiency results in small atherosclerotic lesions with an inflammatory phenotype. Blood 103(3):934–940
Article CAS PubMed Google Scholar
- Dirkx AE et al (2006) Monocyte/macrophage infiltration in tumors: modulators of angiogenesis. J Leukoc Biol 80(6):1183–1196
Article CAS PubMed Google Scholar
- Zhang X et al (2006) Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family. J Biol Chem 281(23):15694–15700
Article CAS PubMed Central PubMed Google Scholar
- He H et al (2012) Endothelial cells provide an instructive niche for the differentiation and functional polarization of M2-like macrophages. Blood 120(15):3152–3162
Article CAS PubMed Google Scholar
- Murakami M et al (2011) FGF-dependent regulation of VEGF receptor 2 expression in mice. J Clin Invest 121(7):2668–2678
Article CAS PubMed Central PubMed Google Scholar
- Jih YJ et al (2001) Distinct regulation of genes by bFGF and VEGF-A in endothelial cells. Angiogenesis 4(4):313–321
Article CAS PubMed Google Scholar
- Taraboletti G et al (2002) Shedding of the matrix metalloproteinases MMP-2, MMP-9, and MT1-MMP as membrane vesicle-associated components by endothelial cells. Am J Pathol 160(2):673–680
Article CAS PubMed Google Scholar
- Presta M et al (2005) Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev 16(2):159–178
Article CAS PubMed Google Scholar
- Anghelina M et al (2004) Monocytes and macrophages form branched cell columns in matrigel: implications for a role in neovascularization. Stem Cells Dev 13(6):665–676
Article CAS PubMed Google Scholar
- Fantin A et al (2010) Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood 116(5):829–840
Article CAS PubMed Google Scholar
- Lamagna C, Aurrand-Lions M, Imhof BA (2006) Dual role of macrophages in tumor growth and angiogenesis. J Leukoc Biol 80(4):705–713
Article CAS PubMed Google Scholar
- Rolny C et al (2011) HRG inhibits tumor growth and metastasis by inducing macrophage polarization and vessel normalization through downregulation of PlGF. Cancer Cell 19(1):31–44
Article CAS PubMed Google Scholar
- Lewis C, Murdoch C (2005) Macrophage responses to hypoxia: implications for tumor progression and anti-cancer therapies. Am J Pathol 167(3):627–635
Article CAS PubMed Google Scholar
- Leek RD et al (1996) Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Res 56(20):4625–4629
CAS PubMed Google Scholar
- Coffelt SB et al (2010) Angiopoietin-2 regulates gene expression in TIE2-expressing monocytes and augments their inherent proangiogenic functions. Cancer Res 70(13):5270–5280
Article CAS PubMed Google Scholar
- Porta C et al (2009) Cellular and molecular pathways linking inflammation and cancer. Immunobiology 214(9–10):761–777
Article CAS PubMed Google Scholar
- De Palma M et al (2005) Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8(3):211–226
Article PubMed Google Scholar
- Ribatti D, Levi-Schaffer F, Kovanen PT (2008) Inflammatory angiogenesis in atherogenesis–a double-edged sword. Ann Med 40(8):606–621
Article CAS PubMed Google Scholar
- Khallou-Laschet J et al (2010) Macrophage plasticity in experimental atherosclerosis. PLoS ONE 5(1):e8852
Article PubMed Central PubMed Google Scholar
- Stout RD, Suttles J (2004) Functional plasticity of macrophages: reversible adaptation to changing microenvironments. J Leukoc Biol 76(3):509–513
Article CAS PubMed Central PubMed Google Scholar