Increased Caspase-2, Calpain Activations and Decreased Mitochondrial Complex II Activity in Cells Expressing Exogenous Huntingtin Exon 1 Containing CAG Repeat in the Pathogenic Range (original) (raw)
References
Benchoua A, Trioulier Y, Zala D, Gaillard MC, Lefort N, Dufour N, Saudou F, Elalouf JM, Hirsch E, Hantraye P, Deglon N, Brouillet E (2006) Involvement of mitochondrial complex II defects in neuronal death produced by N-terminus fragment of mutated huntingtin. Mol Biol Cell 17:1652–1663 ArticlePubMedCAS Google Scholar
Bizat N, Hermel JM, Humbert S, Jacquard C, Creminon C, Escartin C, Saudou F, Krajewski S, Hantraye P, Brouillet E (2003) In vivo calpain/caspase cross-talk during 3-nitropropionic acid-induced striatal degeneration: implication of a calpain-mediated cleavage of active caspase-3. J Biol Chem 278:43245–43253 ArticlePubMedCAS Google Scholar
Brennan WA Jr, Bird ED, Aprille JR (1985) Regional mitochondrial respiratory activity in Huntington’s disease brain. J Neurochem 44:1948–1950 ArticlePubMedCAS Google Scholar
Browne SE, Bowling AC, MacGarvey U, Baik MJ, Berger SC, Muqit MM, Bird ED, Beal MF (1997) Oxidative damage and metabolic dysfunction in Huntington’s disease: selective vulnerability of the basal ganglia. Ann Neurol 41:646–653 ArticlePubMedCAS Google Scholar
Canals JM, Pineda JR, Torres-Peraza JF, Bosch M, Martin-Ibanez R, Munoz MT, Mengod G, Ernfors P, Alberch J (2004) Brain-derived neurotrophic factor regulates the onset and severity of motor dysfunction associated with enkephalinergic neuronal degeneration in Huntington’s disease. J Neurosci 24:7727–7739 ArticlePubMedCAS Google Scholar
Chen M, Ona VO, Li M, Ferrante RJ, Fink KB, Zhu S, Bian J, Guo L, Farrell LA, Hersch SM, Hobbs W, Vonsattel JP, Cha J, Friedlander RM (2000) Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nat Med 6:797–801 ArticlePubMedCAS Google Scholar
Conrad CA, Tiina MK, Andreu VV, Raymond AS (2006) Minocycline inhibits poly(ADP-ribose) polymerase-1 at nanomolar concentration. Proc Natl Acad Sci USA 103:9685–9690 ArticleCAS Google Scholar
Cowan CM, Raymond LA (2006) Selective neuronal degeneration in Huntington’s disease. Curr Top Dev Biol 75:25–71 ArticlePubMedCAS Google Scholar
Dragunow M, Faull RL, Lawlor P, Beilharz EJ, Singleton K, Walker EB, Mee E (1995) In situ evidence for DNA fragmentation in Huntington’s disease striatum and Alzheimer’s disease temporal lobes. Neuroreport 6:1053–1057 ArticlePubMedCAS Google Scholar
Feng L, Lin T, Uranishi H, Gu W, Xu Y (2005) Functional analysis of the roles of posttranslational modifications at the p53 C terminus in regulating p53 stability and activity. Mol Cell Biol 25:5389–5395 ArticlePubMedCAS Google Scholar
Gafni J, Ellerby LM (2002) Calpain activation in Huntington’s disease. J Neurosci 22:4842–4849 PubMedCAS Google Scholar
Gervais FG, Singaraja R, Xanthoudakis S, Gutekunst CA, Leavitt BR, Metzler M, Hackam AS, Tam J, Vaillancourt JP, Houtzager V, Rasper DM, Roy S, Hayden MR, Nicholson DW (2002) Recruitment and activation of caspase-8 bythe Huntingtin-interacting protein Hip-1 and a novel partner Hippi. Nat Cell Biol 4:95–105 ArticlePubMedCAS Google Scholar
Goffredo D, Rigamonti D, Tartari M, De-Micheli A, Verderio C, Matteoli M, Zuccato C, Cattaneo E (2002) Calcium-dependent cleavage of endogenous wild-type huntingtin in primary cortical neurons. J Biol Chem 277:39594–39598 ArticlePubMedCAS Google Scholar
Gomez GT, Hu H, McCaw EA, Denovan-Wright EM (2006) Brain-specific factors in combination with mutant huntingtin induce gene-specific transcriptional dysregulation. Mol Cell Neurosci 31:661–675 ArticlePubMedCAS Google Scholar
Gu M, Gash MT, Mann VM, Javoy-Agid F, Cooper JM, Schapira AH (1996) Mitochondrial defect in Huntington’s disease caudate nucleus. Ann Neurol 39:385–389 ArticlePubMedCAS Google Scholar
Guegan C, Vila M, Teismann P, Chen C, Onteniente B, Li M, Friedlander RM, Przedborski S (2002) Instrumental activation of bid by caspase-1 in a transgenic mouse model of ALS. Mol Cell Neurosci 20:553–562 ArticlePubMedCAS Google Scholar
Gupta S, Radha V, Furukawa Y, Swarup G (2001) Direct transcriptional activation of human caspase1 by tumor suppressor p53, J. Biol Chem 276:10585–105858 ArticleCAS Google Scholar
Hackam AS, Yassa AS, Singaraja R, Metzler M, Gutekunst C-A, Gan L, Warby S, Wellington CL, Vaillancourt J, Chen N, Gervais FG, Raymond L, Nicholson DW, Hayden MR (2000) Huntingtin interacting protein 1 induces apoptosis via a novel caspase-dependent death effector domain. J Biol Chem 275:41299–41308 ArticlePubMedCAS Google Scholar
Hermel E, Gafni J, Propp SS, Leavitt BR, Wellington CL, Young JE, Hackam AS, Logvinova AV, Peel AL, Chen SF, Hook V, Singaraja R, Krajewski S, Goldsmith PC, Ellerby HM, Hayden MR, Bredesen DE, Ellerby LM (2004) Specific caspase interactions and amplification are involved in selective neuronal vulnerability in Huntington’s disease. Cell Death Differ 11:424–438 ArticlePubMedCAS Google Scholar
Ho LW, Brown R, Maxwell M, Wyttenbach A, Rubinsztein DC (2001) Wild type Huntingtin reduces the cellular toxicity of mutant Huntingtin in mammalian cell models of Huntington’s disease. J Med Genet 38:450–452 ArticlePubMedCAS Google Scholar
Hodgson JG, Agopyan N, Gutekunst CA, Leavitt BR, LePiane F, Singaraja R, Smith DJ, Bissada N, McCutcheon K, Nasir J, Jamot L, Li XJ, Stevens ME, Rosemond E, Roder JC, Phillips AG, Rubin EM, Hersch SM, Hayden MR (1999) A YAC mouse model for Huntington’s disease with full-length mutant huntingtin, cytoplasmic toxicity, and selective striatal neuro degeneration. Neuron 23:181–192 ArticlePubMedCAS Google Scholar
Kim M, Lee HS, LaForet G, McIntyre C, Martin EJ, Chang P, Kim. TW, Williams M, Reddy PH, Tagle D, Boyce FM, Won L, Heller A, Aronin N, DiFiglia M (1999) Mutant huntingtin expression in clonal striatal cells: dissociation of inclusion formation and neuronal survival by caspase inhibition. J Neurosci 19:964–973 PubMedCAS Google Scholar
Li SH, Lam S, Cheng AL, Li XJ (2000) Intranuclear huntingtin increases the expression of caspase-1 and induces apoptosis. Hum Mol Genet 9:2859–2867 ArticlePubMedCAS Google Scholar
Lu CX, Fan TJ, Hu GB, Cong RS (2003) Apoptosis-inducing factor and apoptosis. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 35:881–885 CAS Google Scholar
Majumder P, Chattopadhyay B, Mazumder A, Das P, Bhattacharyya NP (2006) Induction of apoptosis in cells expressing exogenous Hippi, a molecular partner of huntingtin-interacting protein HIP1. Neurobiol Dis 22:242–256 ArticlePubMedCAS Google Scholar
Mann VM, Cooper JM, Javoy-Agid F, Agid Y, Jenner P, Schapira AH (1990) Mitochondrial function and parental sex effect in Huntington’s disease. Lancet 336:749 ArticlePubMedCAS Google Scholar
Narain Y, Wyttenbach A, Rankin J, Furlong RA, Rubinsztein DC (1999) A molecular investigation of true dominance in Huntington’s disease. J Med Genet 36:739–746 PubMedCAS Google Scholar
Nenguke T, Aladjem MI, Gusella JF, Wexler NS, The Venezuela HD Project, Arnheim N (2003) Candidate DNA replication initiation regions at human trinucleotide repeat disease loci. Hum Mol Genet 12:1021–1028 Google Scholar
Omi K, Hachiya NS, Tokunaga K, Kaneko K (2005) siRNA-mediated inhibition of endogenous Huntington disease gene expression induces an aberrant configuration of the ER network in vitro. Biochem Biophys Res Commun 338:1229–1235 ArticlePubMedCAS Google Scholar
Ona VO, Li M, Vonsattel JP, Andrews LJ, Khan SQ, Chung WM, Frey AS, Menon AS, Li XJ, Stieg PE, Yuan J, Penney JB, Young AB, Cha JH, Friedlander RM (1999) Inhibition of caspase1 slows disease progression in a mouse model of Huntington’s disease. Nature 399:263–267 ArticlePubMedCAS Google Scholar
Puranam KL, Wu G, Strittmatter WJ, Burke JR (2006) Polyglutamine expansion inhibits respiration by increasing reactive oxygen species in isolated mitochondria. Biochem Biophys Res Commun 341:607–613 ArticlePubMedCAS Google Scholar
Read SH, Baliga BC, Ekert PG, Vaux DL, Kumar S (2002) A novel Apaf-1-independent putative caspase-2 activation complex. J Cell Biol 159:739–745 ArticlePubMedCAS Google Scholar
Rigamonti D, Sipione S, Goffredo D, Zuccato C, Fossale E, Cattaneo E (2001) Huntingtin’s neuroprotective activity occurs via inhibition of procaspase-9 processing. J Biol Chem 276:14545–14548 ArticlePubMedCAS Google Scholar
Ruan Q, Lesort M, MacDonald ME, Johnson GV (2004) Striatal cells from mutant huntingtin knock-in mice are selectively vulnerable to mitochondrial complex II inhibitor-induced cell death through a non-apoptotic pathway. Hum Mol Genet 13:669–681 ArticlePubMedCAS Google Scholar
Sanchez I, Xu CJ, Juo P, Kakizaka A, Biens J, Yuan J (1999) Caspase 8 is required for cell death induced by expanded polyglutamine repeats. Neuron 22:623–633 ArticlePubMedCAS Google Scholar
Tabrizi SJ, Cleeter M, Xuereb J, Taanman JW, Cooper JM, Schapira AH (1999) Biochemical abnormalities and excitotoxicity in Huntington’s disease brain. Neurol 45:25–32 CAS Google Scholar
Tewari M, Quan LT, O’Rourke K, Desnoyers S, Zeng Z, Beidler DR, Poirier GG, Salvesen GS, Dixit VM (1995) Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell 81:801–809 ArticlePubMedCAS Google Scholar
The Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983 Article Google Scholar
Thomas LB, Gates DJ, Richfield EK, O’Brien TF, Schweitzer JB, Steindler DA (1995) DNA end labeling (TUNEL) in Huntington’s disease and other neuropathological conditions. Exp Neurol 133:265–272 ArticlePubMedCAS Google Scholar
Vaisid T, Kosower NS, Barnoy S (2005) Caspase-1 activity is required for neuronal differentiation of PC12 cells: cross-talk between the caspase and calpain systems. Biochim Biophys Acta 1743:223–230 ArticlePubMedCAS Google Scholar
Vis JC, Schipper E, de Boer-van HRT, Verbeek MM, de Waal RM, Wesseling P, ten Donkelaar HJ, Kremer B (2005) Expression pattern of apoptosis-related markers in Huntington’s disease. Acta Neuropathol (Berl) 109:321–328 ArticleCAS Google Scholar
Wang GH, Mitsui K, Kotliarova S, Yamashita A, Nagao Y, Tokuhiro S, Iwatsubo T, Kanazawa I, Nukina N (1999) Caspase activation during apoptotic cell death induced by expanded polyglutamine in N2a cells. Neuroreport 10:2435–2438 ArticlePubMedCAS Google Scholar
Wang X, Zhu S, Drozda M, Zhang W, Stavrovskaya IG, Cattaneo E, Ferrante RJ, Kristal BS, Friedlander RM (2003) Minocycline inhibits caspase-independent and -dependent mitochondrial cell death pathways in models of Huntington’s disease. Proc Nat Acad Sci USA 100:10483–10487 ArticlePubMedCAS Google Scholar
Wang X, Wang H, Figueroa BE, Zhang WH, Huo C, Guan Y, Zhang Y, Bruey JM, Reed JC, Friedlander RM (2005) Dysregulation of receptor interacting protein-2 and caspase recruitment domain only protein mediates aberrant caspase-1 activation in Huntington’s disease. J Neurosci 25:11645–11654 ArticlePubMedCAS Google Scholar
Yang L, Sugama S, Mischak RP, Kiaei M, Bizat N, Brouillet E, Joh TH, Beal MF (2004) A novel systemically active caspase inhibitor attenuates the toxicities of MPTP, malonate, and 3NP in vivo. Neurobiol Dis 17:250–259 ArticlePubMedCAS Google Scholar
Zemskov EA, Nukina N (2003) Impaired degradation of PKCalpha by proteasome in a cellular model of Huntington’s disease. Neuroreport 14:1435–1438 ArticlePubMedCAS Google Scholar
Zhang Y, Ona VO, Li M, Drozda M, Dubois-Dauphin M, Przedborski S, Ferrante RJ, Friedlander RM (2003) Sequential activation of individual caspases, and of alterations in Bcl-2 proapoptotic signals in a mouse model of Huntington’s disease. J Neurochem 87:1184–1192 ArticlePubMedCAS Google Scholar