CD44 is a biomarker associated with human prostate cancer radiation sensitivity (original) (raw)
References
Sandler HM, Mirhadi AJ (2009) Radical radiotherapy for prostate cancer is the ‘only way to go’. Oncology (Williston Park) 23:840–843 Google Scholar
Goldner G, Dimopoulos J, Kirisits C, Pötter R (2009) Moderate dose escalation in three-dimensional conformal localized prostate cancer radiotherapy: single-institutional experience in 398 patients comparing 66 Gy versus 70 Gy versus 74 Gy. Strahlenther Onkol 185:438–445 ArticlePubMed Google Scholar
Kuban DA, Levy LB, Cheung MR, Lee AK, Choi S, Frank S, Pollack A (2011) Long-term failure patterns and survival in a randomized dose-escalation trial for prostate cancer. Who dies of disease? Int J Radiat Oncol Biol Phys 79:1310–1317 ArticlePubMed Google Scholar
Zapatero A, García-Vicente F, Martín de Vidales C, Cruz Conde A, Ibáñez Y, Fernández I, Rabadán M (2010) Long-term results after high-dose radiotherapy and adjuvant hormones in prostate cancer: how curable is high-risk disease?. Int J Radiat Oncol Biol Phys 2010. doi:10.1016/j.ijrobp.2010.07.1975
Eade TN, Hanlon AL, Horwitz EM, Buyyounouski MK, Hanks GE, Pollack A (2007) What dose of external-beam radiation is high enough for prostate cancer? Int J Radiat Oncol Biol Phys 68:682–689 ArticlePubMed Google Scholar
Coen JJ, Bae K, Zietman AL, Patel B, Shipley WU, Slater JD, Rossi CJ (2010) Acute and late toxicity after dose escalation to 82 GyE using conformal proton radiation for localized prostate cancer: initial report of American College of Radiology Phase II Study 03–12. Int J Radiat Oncol Biol Phys. doi:10.1016/j.ijrobp.2010.06.047
Ponta H, Sherman L, Herrlich PA (2003) CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol 4:33–45 ArticlePubMedCAS Google Scholar
Naor D, Wallach-Dayan SB, Zahalka MA, Sionov RV (2008) Involvement of CD44, a molecule with a thousand faces, in cancer dissemination. Semi Cancer Biol 18:260–267 ArticleCAS Google Scholar
Bourguignon LY, Peyrollier K, Xia W, Gilad E (2008) Hyaluronan-CD44 interaction activates stem cell marker Nanog, Stat-3-mediated MDR1 gene expression, and ankyrin-regulated multidrug efflux in breast and ovarian tumor cells. J Biol Chem 283:17635–17651 ArticlePubMedCAS Google Scholar
Hao JL, Cozzi PJ, Khatri A, Power CA, Li Y (2010) EMMPRIN/CD147 and CD44 are potential therapeutic targets for metastatic prostate cancer. Curr Cancer Drug Targ 20:287–306 Article Google Scholar
Hao JL, Chen H, Madigan MC, Cozzi PJ, Beretov J, Xiao W, Delprado WJ, Russell PJ, Li Y (2010) Co-expression of CD147 (EMMPRIN), CD44v3–10, MDR1 and monocarboxylate transporters is associated with prostate cancer drug resistance and progression. Br J Cancer 103:1008–1018 ArticlePubMedCAS Google Scholar
de Jong MC, Pramana J, van der Wal JE, Lacko M, Peutz-Kootstra CJ, de Jong JM, Takes RP, Kaanders JH, van der Laan BF, Wachters J, Jansen JC, Rasch CR, van Velthuysen ML, Grénman R, Hoebers FJ, Schuuring E, van den Brekel MW, Begg AC (2010) CD44 expression predicts local recurrence after radiotherapy in larynx cancer. Clin Cancer Res 16:5329–5338 ArticlePubMed Google Scholar
Omara-Opyene AL, Qiu J, Shah GV, Iczkowski KA (2004) Prostate cancer invasion is influenced more by expression of a CD44 isoform including variant 9 than by Muc18. Lab Invest 84:894–907 ArticlePubMedCAS Google Scholar
Gao AC, Lou W, Sleeman JP, Isaacs JT (1998) Metastasis suppression by the standard CD44 isoform does not require the binding of prostate cancer cells to hyaluronate. Cancer Res 58:2350–2352 PubMedCAS Google Scholar
Yang K, Tang Y, Habermehl GK, Iczkowski KA (2010) Stable alterations of CD44 isoform expression in prostate cancer cells decrease invasion and growth and alter ligand binding and chemosensitivity. BMC Cancer 10:16 ArticlePubMed Google Scholar
Chen H, Hao J, Wang L, Li Y (2009) Coexpression of invasive markers (uPA, CD44) and multiple drug resistance proteins (MDR1, MRP2) is correlated with epithelial ovarian cancer progression. Br J Cancer 101:432–440 ArticlePubMedCAS Google Scholar
Fertil B, Dertinger H, Courdi A, Malaise EP (1984) Mean inactivation dose: a useful concept for intercomparison of human cell survival curves. Radiat Res 99:73–84 ArticlePubMedCAS Google Scholar
Zhang X, Yang H, Gu K, Chen J, Rui M, Jiang GL (2011) In vitro and in vivo study of a nanoliposomal cisplatin as a radiosensitizer. Int J Nanomedicine 6:437–444 ArticlePubMed Google Scholar
Kim IA, Kim JH, Shin JH, Kim IH, Kim JS, Wu HG, Chie EK, Kim YH, Kim BK, Hong S, Park SW, Ha SW, Park CI (2005) A histone deacetylase inhibitor, trichostatin A, enhances radiosensitivity by abrogating G2/M arrest in human carcinoma cells. Cancer Res Treat 37:122–128 ArticlePubMed Google Scholar
Supiot S, Hill RP, Bristow RG (2008) Nutlin-3 radiosensitizes hypoxic prostate cancer cells independent of p53. Mol Cancer Ther 7:993–999 ArticlePubMedCAS Google Scholar
Schmidberger H, Rave-Fränk M, Lehmann J, Schweinfurth S, Pradier O, Hess CF (1999) Radiosensitizing effect of natural and recombinant beta-interferons in a human lung carcinoma in vitro. J Cancer Res Clin Oncol 125:350–356 ArticlePubMedCAS Google Scholar
Hofstetter B, Niemierko A, Forrer C, Benhattar J, Albertini V, Pruschy M, Bosman FT, Catapano CV, Ciernik IF (2010) Impact of genomic methylation on radiation sensitivity of colorectal carcinoma. Int J Radiat Oncol Biol Phys 76:1512–1519 ArticlePubMedCAS Google Scholar
Kaufmann WK, Paules RS (1996) DNA damage and cell cycle checkpoints. FASEB J 10:238–247 PubMedCAS Google Scholar
Fingert HJ, Chang JD, Pardee AB (1986) Cytotoxic, cell cycle, and chromosomal effects of methylxanthines in human tumor cells treated with alkylating agents. Cancer Res 46:2463–2467 PubMedCAS Google Scholar
Harper LJ, Costea DE, Gammon L, Fazil B, Biddle A, Mackenzie IC (2010) Normal and malignant epithelial cells with stem-like properties have an extended G2 cell cycle phase that is associated with apoptotic resistance. BMC Cancer 10:166 ArticlePubMed Google Scholar
Sak A, Stuschke M (2010) Use of γH2AX and other biomarkers of double-strand breaks during radiotherapy. Semin Radiat Oncol 20:223–231 ArticlePubMed Google Scholar
Zhou BB, Zhang H, Damelin M, Geles KG, Grindley JC, Dirks PB (2009) Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nat Rev Drug Discov 8:806–823 ArticlePubMedCAS Google Scholar
Patrawala L, Calhoun T, Schneider-Broussard R, Li H, Bhatia B, Tang S, Reilly JG, Chandra D, Zhou J, Claypool K, Coghlan L, Tang DG (2006) Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene 25:1696–1708 ArticlePubMedCAS Google Scholar
Hurt EM, Kawasaki BT, Klarmann GJ, Thomas SB, Farrar WL (2008) CD44+ CD24(−) prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis. Br J Cancer 98:756–765 ArticlePubMedCAS Google Scholar
Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760 ArticlePubMedCAS Google Scholar
Phillips TM, McBride WH, Pajonk F (2006) The response of CD24(−/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst 98:1777–1785 ArticlePubMed Google Scholar
Woodward WA, Chen MS, Behbod F, Alfaro MP, Buchholz TA, Rosen JM (2007) WNT/beta-catenin mediatesradiation resistance of mouse mammary progenitor cells. Proc Natl Acad Sci USA 104:618–623 ArticlePubMedCAS Google Scholar
Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, Qian D, Lam JS, Ailles LE, Wong M, Joshua B, Kaplan MJ, Wapnir I, Dirbas FM, Somlo G, Garberoglio C, Paz B, Shen J, Lau SK, Quake SR, Brown JM, Weissman IL, Clarke MF (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458:780–783 ArticlePubMedCAS Google Scholar
Lagadec C, Vlashi E, Della Donna L, Meng Y, Dekmezian C, Kim K, Pajonk F (2010) Survival and self-renewing capacity of breast cancer initiating cells during fractionated radiation treatment. Breast Cancer Res 12:R13 ArticlePubMed Google Scholar
Zöller M (2011) CD44: can a cancer-initiating cell profit from an abundantly expressed molecule? Nat Rev Cancer 11:254–267 ArticlePubMed Google Scholar
Maula SM, Luukkaa M, Grénman R, Jackson D, Jalkanen S, Ristamäki R (2003) Intratumoral lymphatics are essential for the metastatic spread and prognosis in squamous cell carcinomas of the head and neck region. Cancer Res 63:1920–1926 PubMedCAS Google Scholar
Lin JT, Chang TH, Chang CS, Wang WH, Su BW, Lee KD, Chang PJ (2010) Prognostic value of pretreatment CD44 mRNA in peripheral blood of patients with locally advanced head and neck cancer. Oral Oncol 46:e29–e33 ArticlePubMedCAS Google Scholar