CD44: From adhesion molecules to signalling regulators (original) (raw)
Juliano, R. L. Signal transduction by cell adhesion receptors and the cytoskeleton: functions of integrins, cadherins, selectins, and immunoglobulin-superfamily members. Annu. Rev. Pharmacol. Toxicol.42, 283–323 (2002). CASPubMed Google Scholar
Naor, D., Sionov, R. V. & Ish-Shalom, D. in Advances in Cancer Research Vol. 70 (eds Vande Woude, G. F. & Klein, G.) 243–318 (Academic, San Diego, 1997). Google Scholar
Screaton, G. R. et al. Genomic structure of DNA encoding the lymphocyte homing receptor CD44 reveals at least 12 alternatively spliced exons. Proc. Natl. Acad. Sci. USA89, 12160–12164 (1992). CASPubMedPubMed Central Google Scholar
Stamenkovic, I., Aruffo, A., Amiot, M. & Seed, B. The hematopoietic and epithelial forms of CD44 are distinct polypeptides with different adhesion potentials for hyaluronate-bearing cells. EMBO J.10, 343–348 (1991). CASPubMedPubMed Central Google Scholar
Günthert, U. et al. A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell65, 13–24 (1991). This paper shows a causal involvement of a CD44 variant in metastasis formation. PubMed Google Scholar
Sherman, L., Sleeman, J., Herrlich, P. & Ponta, H. Hyaluronate receptors: key players in growth, differentiation, migration and tumor progression. Curr. Opin. Cell Biol.6, 726–733 (1994). CASPubMed Google Scholar
Sleeman, J., Kondo, K., Moll, J., Ponta, H. & Herrlich, P. Variant exons v6 and v7 together expand the repertoire of glycosaminoglycans bound by CD44. J. Biol. Chem.272, 31837–31844 (1997). CASPubMed Google Scholar
Skelton, T. P., Zeng, C., Nocks, A. & Stamenkovic, I. Glycosylation provides both stimulatory and inhibitory effects on cell surface and soluble CD44 binding to hyaluronan. J. Cell Biol.140, 431–446 (1998). This study provides a detailed analysis of the effect of glycosylation on CD44 binding to hyaluronan. CASPubMedPubMed Central Google Scholar
Lesley, J., Kincade, P. W. & Hyman, R. Antibody-induced activation of the hyaluronan receptor function of CD44 requires multivalent binding by antibody. Eur. J. Immunol.23, 1902–1909 (1993). CASPubMed Google Scholar
Lesley, J., English, N., Charles, C. & Hyman, R. The role of the CD44 cytoplasmic and transmembrane domains in constitutive and inducible hyaluronan binding. Eur. J. Immunol.30, 245–253 (2000). CASPubMed Google Scholar
Okamoto, I. et al. CD44 cleavage induced by a membrane-associated metalloprotease plays a critical role in tumor cell migration. Oncogene18, 1435–1446 (1999). CASPubMed Google Scholar
König, H., Ponta, H. & Herrlich, P. Coupling of signal transduction to alternative pre-mRNA splicing by a composite splice regulator. EMBO J.17, 2904–2913 (1998). This paper presents the first evidence for Ras-dependent splice regulation and thecis-elements responsible. PubMedPubMed Central Google Scholar
Weg-Remers, S., Ponta, H., Herrlich, P. & Konig, H. Regulation of alternative pre-mRNA splicing by the ERK MAP-kinase pathway. EMBO J.20, 4194–4203 (2001). CASPubMedPubMed Central Google Scholar
Bennett, K. L. et al. CD44 isoforms containing exon v3 are responsible for the presentation of heparin-binding growth factor. J. Cell Biol.128, 687–698 (1995). Reference 15 shows that heparan-sulphate modification on the CD44 exon v3 allows binding of heparin-binding growth factors. CASPubMed Google Scholar
Sherman, L., Wainwright, D., Ponta, H. & Herrlich, P. A splice variant of CD44 expressed in the apical ectodermal ridge presents fibroblast growth factors to limb mesenchyme and is required for limb outgrowth. Genes Dev.12, 1058–1071 (1998). This report shows that presentation of fibroblast growth factors by a heparan-sulphate-modified CD44 variant is required for limb development. CASPubMedPubMed Central Google Scholar
Yu, W. H., Woessner, J. F. Jr, McNeish, J. D. & Stamenkovic, I. CD44 anchors the assembly of matrilysin/MMP-7 with heparin-binding epidermal growth factor precursor and ErbB4 and regulates female reproductive organ remodeling. Genes Dev.16, 307–323 (2002). CASPubMedPubMed Central Google Scholar
Liu, D. & Sy, M. S. Phorbol myristate acetate stimulates the dimerization of CD44 involving a cysteine in the transmembrane domain. J. Immunol.159, 2702–2711 (1997). CASPubMed Google Scholar
Neame, S. J., Uff, C. R., Sheikh, H., Wheatley, S. C. & Isacke, C. M. CD44 exhibits a cell type dependent interaction with triton X-100 insoluble, lipid rich, plasma membrane domains. J. Cell Sci.108, 3127–3135 (1995). CASPubMed Google Scholar
Perschl, A., Lesley, J., English, N., Hyman, R. & Trowbridge, I. S. Transmembrane domain of CD44 is required for its detergent insolubility in fibroblasts. J. Cell Sci.108, 1033–1041 (1995). CASPubMed Google Scholar
Tsukita, S., Oishi, K., Sato, N., Sagara, J. & Kawai, A. ERM family members as molecular linkers between the cell surface glycoprotein CD44 and actin-based cytoskeletons. J. Cell Biol.126, 391–401 (1994). This paper shows that ERM proteins link the cytoskeleton to the plasma membrane by binding to CD44. CASPubMed Google Scholar
Legg, J. W. & Isacke, C. M. Identification and functional analysis of the ezrin-binding site in the hyaluronan receptor, CD44. Curr. Biol.8, 705–708 (1998). CASPubMed Google Scholar
Yonemura, S. et al. Ezrin/radixin/moesin (ERM) proteins bind to a positively charged amino acid cluster in the juxta-membrane cytoplasmic domain of CD44, CD43, and ICAM-2. J. Cell. Biol.140, 885–895 (1998). CASPubMedPubMed Central Google Scholar
Nunomura, W. et al. Regulation of CD44-protein 4.1 interaction by Ca2+ and calmodulin. Implications for modulation of CD44–ankyrin interaction. J. Biol. Chem.272, 30322–30328 (1997). CASPubMed Google Scholar
Legg, J. W., Lewis, C. A., Parsons, M., Ng, T. & Isacke, C. M. A novel PKC-regulated mechanism controls CD44 ezrin association and directional cell motility. Nature Cell Biol.4, 399–407 (2002). This study shows that site-specific serine phosphorylation of CD44 determines ezrin binding. CASPubMed Google Scholar
Neame, S. J. & Isacke, C. M. Phosphorylation of CD44 in vivo requires both Ser323 and Ser325, but does not regulate membrane localization or cytoskeletal interaction in epithelial cells. EMBO J.11, 4733–4738 (1992). CASPubMedPubMed Central Google Scholar
Bourguignon, L. Y., Zhu, H., Shao, L., Zhu, D. & Chen, Y. W. Rho-kinase (ROK) promotes CD44v(3,8-10)–ankyrin interaction and tumor cell migration in metastatic breast cancer cells. Cell. Motil. Cytoskeleton43, 269–287 (1999). CASPubMed Google Scholar
Crepaldi, T., Gautreau, A., Comoglio, P. M., Louvard, D. & Arpin, M. Ezrin is an effector of hepatocyte growth factor-mediated migration and morphogenesis in epithelial cells. J. Cell Biol.138, 423–434 (1997). CASPubMedPubMed Central Google Scholar
Ng, T. et al. Ezrin is a downstream effector of trafficking PKC–integrin complexes involved in the control of cell motility. EMBO J.20, 2723–2741 (2001). CASPubMedPubMed Central Google Scholar
Morrison, H. et al. The NF2 tumor suppressor gene product, merlin, mediates contact inhibition of growth through interactions with CD44. Genes Dev.15, 968–980 (2001). This paper shows that CD44 mediates contact inhibition by binding to merlin. CASPubMedPubMed Central Google Scholar
Kissil, J. L., Johnson, K. C., Eckman, M. S. & Jacks, T. Merlin phosphorylation by p21-activated kinase 2 and effects of phosphorylation on merlin localization. J. Biol. Chem.277, 10394–10399 (2002). CASPubMed Google Scholar
Xiao, G. H., Beeser, A., Chernoff, J. & Testa, J. R. p21-activated kinase links Rac/Cdc42 signaling to merlin. J. Biol. Chem.277, 883–886 (2002). CASPubMed Google Scholar
Shaw, R. J., McClatchey, A. I. & Jacks, T. Regulation of the neurofibromatosis type 2 tumor suppressor protein, merlin, by adhesion and growth arrest stimuli. J. Biol. Chem.273, 7757–7764 (1998). Reference 33 shows that the dephosphorylated form of merlin inhibits growth. CASPubMed Google Scholar
Sherman, L. et al. The CD44 proteins in embryonic development and in cancer. Curr. Top. Microbiol. Immunol.213, 249–269 (1996). CASPubMed Google Scholar
Pure, E. & Cuff, C. A. A crucial role for CD44 in inflammation. Trends Mol. Med.7, 213–221 (2001). CASPubMed Google Scholar
Schmits, R. et al. CD44 regulates hematopoietic progenitor distribution, granuloma formation, and tumorigenicity. Blood90, 2217–2233 (1997). This paper reports the disruption of theCD44gene in the mouse. CASPubMed Google Scholar
Protin, U., Schweighoffer, T., Jochum, W. & Hilberg, F. CD44-deficient mice develop normally with changes in subpopulations and recirculation of lymphocyte subsets. J. Immunol.163, 4917–4923 (1999). CASPubMed Google Scholar
Camenisch, T. D. et al. Disruption of hyaluronan synthase-2 abrogates normal cardiac morphogenesis and hyaluronan-mediated transformation of epithelium to mesenchyme. J. Clin. Invest.106, 349–360 (2000). CASPubMedPubMed Central Google Scholar
Wittig, B. M., Johansson, B., Zoller, M., Schwarzler, C. & Gunthert, U. Abrogation of experimental colitis correlates with increased apoptosis in mice deficient for CD44 variant exon 7 (CD44v7). J. Exp. Med.191, 2053–2064 (2000). CASPubMedPubMed Central Google Scholar
Kaya, G., Rodriguez, I., Jorcano, J. L., Vassalli, P. & Stamenkovic, I. Selective suppression of CD44 in keratinocytes of mice bearing an antisense CD44 transgene driven by a tissue-specific promoter disrupts hyaluronate metabolism in the skin and impairs keratinocyte proliferation. Genes Dev.11, 996–1007 (1997). So far, this is the only work to show the 'conditional' inactivation of CD44 (by CD44 antisense sequence expression in skin). CASPubMed Google Scholar
Kaya, G., Rodriguez, I., Jorcano, J. L., Vassalli, P. & Stamenkovic, I. Cutaneous delayed-type hypersensitivity response is inhibited in transgenic mice with keratinocyte-specific CD44 expression defect. J. Invest. Dermatol.113, 137–138 (1999). CASPubMed Google Scholar
Chen, D. et al. CD44-deficient mice exhibit enhanced hepatitis after concanavalin A injection: evidence for involvement of CD44 in activation-induced cell death. J. Immunol.166, 5889–5897 (2001). CASPubMed Google Scholar
Fujii, K., Fujii, Y., Hubscher, S. & Tanaka, Y. CD44 is the physiological trigger of Fas up-regulation on rheumatoid synovial cells. J. Immunol.167, 1198–1203 (2001). CASPubMed Google Scholar
Fuse, Y., Nishimura, H., Maeda, K. & Yoshikai, Y. CD95 (Fas) may control the expansion of activated T cells after elimination of bacteria in murine listeriosis. Infect. Immun.65, 1883–1891 (1997). CASPubMedPubMed Central Google Scholar
Teder, P. et al. Resolution of lung inflammation by CD44. Science296, 155–158 (2002). CASPubMed Google Scholar
Rafi-Janajreh, A. Q. et al. Evidence for the involvement of CD44 in endothelial cell injury and induction of vascular leak syndrome by IL-2. J. Immunol.163, 1619–1627 (1999). CASPubMed Google Scholar
Cuff, C. A. et al. The adhesion receptor CD44 promotes atherosclerosis by mediating inflammatory cell recruitment and vascular cell activation. J. Clin. Invest.108, 1031–1040 (2001). CASPubMedPubMed Central Google Scholar
Weber, G. F. et al. Absence of the CD44 gene prevents sarcoma metastasis. Cancer Res.62, 2281–2286 (2002). CASPubMed Google Scholar
Wainwright, D. M. Growth factor presentation by CD44 variant proteins. Thesis, Imperial College of Science, Technology and Medicine, London (1998). Google Scholar
Zohar, R. et al. Intracellular osteopontin is an integral component of the CD44–ERM complex involved in cell migration. J. Cell. Physiol.184, 118–130 (2000). CASPubMed Google Scholar
Okamoto, I. et al. Proteolytic cleavage of the CD44 adhesion molecule in multiple human tumors. Am. J. Pathol.160, 441–447 (2002). CASPubMedPubMed Central Google Scholar
Okamoto, I. et al. Regulated CD44 cleavage under the control of protein kinase C, calcium influx, and the Rho family of small G proteins. J. Biol. Chem.274, 25525–25534 (1999). CASPubMed Google Scholar
Kawano, Y. et al. Ras oncoprotein induces CD44 cleavage through phosphoinositide 3-OH kinase and the rho family of small G proteins. J. Biol. Chem.275, 29628–29635 (2000). CASPubMed Google Scholar
Culty, M., Nguyen, H. A. & Underhill, C. B. The hyaluronan receptor (CD44) participates in the uptake and degradation of hyaluronan. J. Cell Biol.116, 1055–1062 (1992). CASPubMed Google Scholar
Yu, Q. & Stamenkovic, I. Localization of matrix metalloproteinase 9 to the cell surface provides a mechanism for CD44-mediated tumor invasion. Genes Dev.13, 35–48 (1999). This paper shows that MMP9 requires binding to CD44 at the membrane to promote cell invasion. CASPubMedPubMed Central Google Scholar
Yu, Q. & Stamenkovic, I. Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-β and promotes tumor invasion and angiogenesis. Genes Dev.14, 163–176 (2000). Reference 56 shows that activation of MMP9 by binding to membrane-localized CD44 is required for proteolytic cleavage of the TGF-β precursor. PubMedPubMed Central Google Scholar
Yu, Q., Toole, B. P. & Stamenkovic, I. Induction of apoptosis of metastatic mammary carcinoma cells in vivo by disruption of tumor cell surface CD44 function. J. Exp. Med.186, 1985–1996 (1997). CASPubMedPubMed Central Google Scholar
Opanashuk, L. A. et al. Heparin-binding epidermal growth factor-like growth factor in hippocampus: modulation of expression by seizures and anti-excitotoxic action. J. Neurosci.19, 133–146 (1999). CASPubMedPubMed Central Google Scholar
van der Voort, R. et al. Heparansulfate-modified CD44 promotes hepatocyte growth factor/scatter factor-induced signal transduction through the receptor tyrosine kinase c-Met. J. Biol. Chem.274, 6499–6506 (1999). CASPubMed Google Scholar
Katagiri, Y. U. et al. CD44 variants but not CD44s cooperate with β1-containing integrins to permit cells to bind to osteopontin independently of arginine-glycine-aspartic acid, thereby stimulating cell motility and chemotaxis. Cancer Res.59, 219–226 (1999). CASPubMed Google Scholar
Denhardt, D. T., Noda, M., O'Regan, A. W., Pavlin, D. & Berman, J. S. Osteopontin as a means to cope with environmental insults: regulation of inflammation, tissue remodeling, and cell survival. J. Clin. Invest.107, 1055–1061 (2001). CASPubMedPubMed Central Google Scholar
Lin, Y. H. et al. Coupling of osteopontin and its cell surface receptor CD44 to the cell survival response elicited by interleukin-3 or granulocyte-macrophage colony-stimulating factor. Mol. Cell. Biol.20, 2734–2742 (2000). CASPubMedPubMed Central Google Scholar
Pohl, M., Sakurai, H., Stuart, R. O. & Nigam, S. K. Role of hyaluronan and CD44 in in vitro branching morphogenesis of ureteric bud cells. Dev. Biol.224, 312–325 (2000). CASPubMed Google Scholar
Schwarzler, C., Oliferenko, S. & Gunthert, U. Variant isoforms of CD44 are required in early thymocyte development. Eur. J. Immunol.31, 2997–3005 (2001). CASPubMed Google Scholar
Cavallaro, U., Niedermeyer, J., Fuxa, M. & Christofori, G. N-CAM modulates tumour-cell adhesion to matrix by inducing FGF-receptor signalling. Nature Cell Biol.3, 650–657 (2001). CASPubMed Google Scholar
Nestl, A. et al. Gene expression patterns associated with the metastatic phenotype in rodent and human tumors. Cancer Res.61, 1569–1577 (2001). CASPubMed Google Scholar
Orian-Rousseau, V., Chen, L., Sleeman, J. P., Herrlich, P. & Ponta, H. CD44 is required for two consecutive steps in HGF/c–Met signaling. Genes Dev.16, 3074–3086 (2002). Reference 67 reports on a two-step mechanism for Met activation that involves v6 of CD44 and cytoplasmic-tail sequences. CASPubMedPubMed Central Google Scholar
Hartmann, G. et al. Engineered mutants of HGF/SF with reduced binding to heparan sulphate proteoglycans, decreased clearance and enhanced activity in vivo. Curr. Biol.8, 125–134 (1998); erratum in 8, R739 (1998). CASPubMed Google Scholar
Bourguignon, L. Y. et al. Interaction between the adhesion receptor, CD44, and the oncogene product, p185HER2, promotes human ovarian tumor cell activation. J. Biol. Chem.272, 27913–27918 (1997). CASPubMed Google Scholar
Sherman, L. S., Rizvi, T. A., Karyala, S. & Ratner, N. CD44 enhances neuregulin signaling by Schwann cells. J. Cell Biol.150, 1071–1084 (2000). CASPubMedPubMed Central Google Scholar
Meyer, D. & Birchmeier, C. Multiple essential functions of neuregulin in development. Nature378, 386–390 (1995). CASPubMed Google Scholar
Riethmacher, D. et al. Severe neuropathies in mice with targeted mutations in the ErbB3 receptor. Nature389, 725–730 (1997). CASPubMed Google Scholar
Takahashi, K. et al. Direct interaction of the Rho GDP dissociation inhibitor with ezrin/radixin/moesin initiates the activation of the Rho small G protein. J. Biol. Chem.272, 23371–23375 (1997). CASPubMed Google Scholar
Takahashi, K. et al. Interaction of radixin with Rho small G protein GDP/GTP exchange protein Dbl. Oncogene16, 3279–3284 (1998). PubMed Google Scholar
Bourguignon, L. Y., Zhu, H., Shao, L. & Chen, Y. W. CD44 interaction with tiam1 promotes Rac1 signaling and hyaluronic acid-mediated breast tumor cell migration. J. Biol. Chem.275, 1829–1838 (2000). CASPubMed Google Scholar
Oliferenko, S., Kaverina, I., Small, J. V. & Huber, L. A. Hyaluronic acid (HA) binding to CD44 activates Rac1 and induces lamellipodia. J. Cell Biol.148, 1159–1164 (2000); erratum in 149, 241 (2000). CASPubMedPubMed Central Google Scholar
Bourguignon, L. Y., Zhu, H., Shao, L. & Chen, Y. W. CD44 interaction with c-Src kinase promotes cortactin-mediated cytoskeleton function and hyaluronic acid-dependent ovarian tumor cell migration. J. Biol. Chem.276, 7327–7336 (2001). CASPubMed Google Scholar
Bourguignon, L. Y. et al. Hyaluronan promotes CD44v3-Vav2 interaction with Grb2-p185(HER2) and induces Rac1 and Ras signaling during ovarian tumor cell migration and growth. J. Biol. Chem.276, 48679–48692 (2001). CASPubMed Google Scholar
Takahashi, K., Eto, H. & Tanabe, K. K. Involvement of CD44 in matrix metalloproteinase-2 regulation in human melanoma cells. Int. J. Cancer80, 387–395 (1999). CASPubMed Google Scholar
Charrad, R. S. et al. Ligation of the CD44 adhesion molecule reverses blockage of differentiation in human acute myeloid leukemia. Nature Med.5, 669–676 (1999). CASPubMed Google Scholar
Yasuda, M., Tanaka, Y., Fujii, K. & Yasumoto, K. CD44 stimulation down-regulates Fas expression and Fas-mediated apoptosis of lung cancer cells. Int. Immunol.13, 1309–1319 (2001). CASPubMed Google Scholar
Khaldoyanidi, S., Karakhanova, S., Sleeman, J., Herrlich, P. & Ponta, H. CD44 variant-specific antibodies trigger hemopoiesis by selective release of cytokines from bone marrow macrophages. Blood99, 3955–3961 (2002). CASPubMed Google Scholar
Taher, T. E. et al. Signaling through CD44 is mediated by tyrosine kinases. Association with p56lck in T lymphocytes. J. Biol. Chem.271, 2863–2867 (1996). This article shows the association of the signalling component LCK with CD44 in activated T cells. CASPubMed Google Scholar
Ilangumaran, S., Briol, A. & Hoessli, D. C. CD44 selectively associates with active Src family protein tyrosine kinases Lck and Fyn in glycosphingolipid-rich plasma membrane domains of human peripheral blood lymphocytes. Blood91, 3901–3908 (1998). CASPubMed Google Scholar
Foger, N., Marhaba, R. & Zoller, M. Involvement of CD44 in cytoskeleton rearrangement and raft reorganization in T cells. J. Cell Sci.114, 1169–1178 (2001). CASPubMed Google Scholar
Okamoto, I. et al. Proteolytic release of CD44 intracellular domain and its role in the CD44 signaling pathway. J. Cell Biol.155, 755–762 (2001). CASPubMedPubMed Central Google Scholar
Weiss, J. M. et al. An essential role for CD44 variant isoforms in epidermal Langerhans cell and blood dendritic cell function. J. Cell Biol.137, 1137–1147 (1997). CASPubMedPubMed Central Google Scholar
Kurz, S. M. et al. The impact of c-met/scatter factor receptor in dendritic cell migration. Eur. J. Immunol.32, 1832–1838 (2002). CASPubMed Google Scholar
Sotiropoulos, A., Gineitis, D., Copeland, J. & Treisman, R. Signal-regulated activation of serum response factor is mediated by changes in actin dynamics. Cell98, 159–169 (1999). This paper shows that there is a link between the actin cytoskeleton and signal transduction. CASPubMed Google Scholar
Lallemand, D. et al. Stress-activated protein kinases are negatively regulated by cell density. EMBO J.17, 5615–5626 (1998). CASPubMedPubMed Central Google Scholar
Gineitis, D. & Treisman, R. Differential usage of signal transduction pathways defines two types of serum response factor target gene. J. Biol. Chem.276, 24531–24539 (2001). CASPubMed Google Scholar
Bardwell, A. J., Flatauer, L. J., Matsukuma, K., Thorner, J. & Bardwell, L. A conserved docking site in MEKs mediates high-affinity binding to MAP kinases and cooperates with a scaffold protein to enhance signal transmission. J. Biol. Chem.276, 10374–10386 (2001). CASPubMed Google Scholar
Trusolino, L., Bertotti, A. & Comoglio, P. M. A signaling adapter function for α6β4 integrin in the control of HGF-dependent invasive growth. Cell107, 643–654 (2001). CASPubMed Google Scholar
Verfaillie, C. M., Benis, A., Iida, J., McGlave, P. B. & McCarthy, J. B. Adhesion of committed human hematopoietic progenitors to synthetic peptides from the C-terminal heparin-binding domain of fibronectin: cooperation between the integrin α4β1 and the CD44 adhesion receptor. Blood84, 1802–1811 (1994). CASPubMed Google Scholar
Hofmann, M. et al. A link between ras and metastatic behavior of tumor cells: ras induces CD44 promoter activity and leads to low-level expression of metastasis-specific variants of CD44 in CREF cells. Cancer Res.53, 1516–1521 (1993). CASPubMed Google Scholar
Hudson, D. L., Sleeman, J. & Watt, F. M. CD44 is the major peanut lectin-binding glycoprotein of human epidermal keratinocytes and plays a role in intercellular adhesion. J. Cell Sci.108, 1959–1970 (1995). CASPubMed Google Scholar
Arch, R. et al. Participation in normal immune responses of a splice variant of CD44 that encodes a metastasis-inducing domain. Science257, 682–685 (1992). This paper shows that CD44 variants have decisive functions in eliciting an immune response. CASPubMed Google Scholar
Koopman, G. et al. Activated human lymphocytes and aggressive non-Hodgkin lymphomas express a homologue of the rat metastasis-associated variant of CD44. J. Exp. Med.177, 897–904 (1993). CASPubMed Google Scholar
Matter, N. et al. Heterogeneous ribonucleoprotein A1 is part of an exon-specific splice-silencing complex controlled by oncogenic signaling pathways. J. Biol. Chem.275, 35353–35360 (2000). CASPubMed Google Scholar
Matter, N., Herrlich, P. & König, H. Signal-dependent regulation of splicing via phosphorylation of Sam68. Nature420, 691–695 (2002). CASPubMed Google Scholar
Bretscher, A., Edwards, K. & Fehon, R. G. ERM proteins and merlin: integrators at the cell cortex. Nature Rev. Mol. Cell Biol.3, 586–599 (2002). CAS Google Scholar
Gautreau, A., Louvard, D. & Arpin, M. ERM proteins and NF2 tumor suppressor: the Yin and Yang of cortical actin organization and cell growth signaling. Curr. Opin. Cell Biol.14, 104–109 (2002). CASPubMed Google Scholar
Denker, S. P., Huang, D. C., Orlowski, J., Furthmayr, H. & Barber, D. L. Direct binding of the Na–H exchanger NHE1 to ERM proteins regulates the cortical cytoskeleton and cell shape independently of H(+) translocation. Mol. Cell6, 1425–1436 (2000). CASPubMed Google Scholar
Bono, P., Rubin, K., Higgins, J. M. & Hynes, R. O. Layilin, a novel integral membrane protein, is a hyaluronan receptor. Mol. Biol. Cell12, 891–900 (2001). CASPubMedPubMed Central Google Scholar
Tsukita, S. & Yonemura, S. Cortical actin organization: lessons from ERM (ezrin/radixin/moesin) proteins. J. Biol. Chem.274, 34507–34510 (1999). CASPubMed Google Scholar
Trofatter, J. A. et al. A novel moesin-, ezrin-, radixin-like gene is a candidate for the neurofibromatosis 2 tumor suppressor. Cell72, 791–800 (1993). CASPubMed Google Scholar
Rouleau, G. A. et al. Alteration in a new gene encoding a putative membrane-organizing protein causes neuro-fibromatosis type 2. Nature363, 515–521 (1993). References 106 and 107 report the cloning of merlin, the mutation of which — in one allele — is the cause of NF2. CASPubMed Google Scholar
Tran, Y. K. et al. A novel member of the NF2/ERM/4.1 superfamily with growth suppressing properties in lung cancer. Cancer Res.59, 35–43 (1999). CASPubMed Google Scholar
Gusella, J. F., Ramesh, V., MacCollin, M. & Jacoby, L. B. Merlin: the neurofibromatosis 2 tumor suppressor. Biochim. Biophys. Acta1423, M29–M36 (1999). CASPubMed Google Scholar
McClatchey, A. I. et al. Mice heterozygous for a mutation at the Nf2 tumor suppressor locus develop a range of highly metastatic tumors. Genes Dev.12, 1121–1133 (1998). The first indication of a role for merlin in the suppression of metastatic growth. CASPubMedPubMed Central Google Scholar
Giovannini, M. et al. Schwann cell hyperplasia and tumors in transgenic mice expressing a naturally occurring mutant NF2 protein. Genes Dev.13, 978–986 (1999). CASPubMedPubMed Central Google Scholar
Cywes, C., Stamenkovic, I. & Wessels, M. R. CD44 as a receptor for colonization of the pharynx by group A Streptococcus. J. Clin. Invest.106, 995–1002 (2000). CASPubMed Google Scholar
Skoudy, A. et al. CD44 binds to the Shigella IpaB protein and participates in bacterial invasion of epithelial cells. Cell. Microbiol.2, 19–33 (2000). CASPubMed Google Scholar
Shen, Y., Naujokas, M., Park, M. & Ireton, K. InIB-dependent internalization of Listeria is mediated by the Met receptor tyrosine kinase. Cell103, 501–510 (2000). CASPubMed Google Scholar
Dramsi, S. & Cossart, P. Intracellular pathogens and the actin cytoskeleton. Annu. Rev. Cell Dev. Biol.14, 137–166 (1998). CASPubMed Google Scholar
Sechi, A. S., Wehland, J. & Small, J. V. The isolated comet tail pseudopodium of Listeria monocytogenes: a tail of two actin filament populations, long and axial and short and random. J. Cell Biol.137, 155–167 (1997). CASPubMedPubMed Central Google Scholar
Wielenga, V. J. et al. Expression of CD44 variant proteins in human colorectal cancer is related to tumor progression. Cancer Res.53, 4754–4756 (1993). CASPubMed Google Scholar
Kim, H., Yang, X. L., Rosada, C., Hamilton, S. R. & August, J. T. CD44 expression in colorectal adenomas is an early event occurring prior to K-ras and p53 gene mutation. Arch. Biochem. Biophys.310, 504–507 (1994). CASPubMed Google Scholar
Wielenga, V. J. et al. Expression of CD44 in Apc and Tcf mutant mice implies regulation by the WNT pathway. Am. J. Pathol.154, 515–523 (1999). CASPubMedPubMed Central Google Scholar
Shtivelman, E. & Bishop, J. M. Expression of CD44 is repressed in neuroblastoma cells. Mol. Cell. Biol.11, 5446–5453 (1991). CASPubMedPubMed Central Google Scholar
De Marzo, A. M., Bradshaw, C., Sauvageot, J., Epstein, J. I. & Miller, G. J. CD44 and CD44v6 downregulation in clinical prostatic carcinoma: relation to Gleason grade and cytoarchitecture. Prostate34, 162–168 (1998). CASPubMed Google Scholar
Gao, A. C., Lou, W., Dong, J. T. & Isaacs, J. T. CD44 is a metastasis suppressor gene for prostatic cancer located on human chromosome 11p13. Cancer Res.57, 846–849 (1997). CASPubMed Google Scholar
Strobeck, M. W. et al. The BRG-1 subunit of the SWI/SNF complex regulates CD44 expression. J. Biol. Chem.276, 9273–9278 (2001). CASPubMed Google Scholar
Reisman, D. N. et al. Concomitant down-regulation of BRM and BRG1 in human tumor cell lines: differential effects on RB-mediated growth arrest vs CD44 expression. Oncogene21, 1196–1207 (2002). CASPubMed Google Scholar
Fraser, J. R., Laurent, T. C. & Laurent, U. B. Hyaluronan: its nature, distribution, functions and turnover. J. Intern. Med.242, 27–33 (1997). CASPubMed Google Scholar
Zhou, B., Weigel, J. A., Fauss, L. & Weigel, P. H. Identification of the hyaluronan receptor for endocytosis (HARE). J. Biol. Chem.275, 37733–37741 (2000). CASPubMed Google Scholar
Banerji, S. et al. LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J. Cell Biol.144, 789–801 (1999). CASPubMedPubMed Central Google Scholar
Prevo, R., Banerji, S., Ferguson, D. J., Clasper, S. & Jackson, D. G. Mouse LYVE-1 is an endocytic receptor for hyaluronan in lymphatic endothelium. J. Biol. Chem.276, 19420–19430 (2001). CASPubMed Google Scholar
Termeer, C. et al. Oligosaccharides of hyaluronan activate dendritic cells via toll-like receptor 4. J. Exp. Med.195, 99–111 (2002). CASPubMedPubMed Central Google Scholar
Hardwick, C. et al. Molecular cloning of a novel hyaluronan receptor that mediates tumor cell motility. J. Cell Biol.117, 1343–1350 (1992). CASPubMed Google Scholar
Hofmann, M. et al. Problems with RHAMM: a new link between surface adhesion and oncogenesis? Cell95, 591–592 (1998); discussion in 95, 592–593 (1998). CASPubMed Google Scholar
Huang, L., Grammatikakis, N., Yoneda, M., Banerjee, S. D. & Toole, B. P. Molecular characterization of a novel intracellular hyaluronan-binding protein. J. Biol. Chem.275, 29829–29839 (2000). CASPubMed Google Scholar
Peterson, R. M., Yu, Q., Stamenkovic, I. & Toole, B. P. Perturbation of hyaluronan interactions by soluble CD44 inhibits growth of murine mammary carcinoma cells in ascites. Am. J. Pathol.156, 2159–2167 (2000). CASPubMedPubMed Central Google Scholar
West, D. C., Hampson, I. N., Arnold, F. & Kumar, S. Angiogenesis induced by degradation products of hyaluronic acid. Science228, 1324–1326 (1985). This report shows that low-molecular-weight hyaluronan fragments induce angiogenesis. CASPubMed Google Scholar
Lees, V. C., Fan, T. P. & West, D. C. Angiogenesis in a delayed revascularization model is accelerated by angiogenic oligosa-ccharides of hyaluronan. Lab. Invest.73, 259–266 (1995). CASPubMed Google Scholar
McKee, C. M. et al. Hyaluronan (HA) fragments induce chemokine gene expression in alveolar macrophages. The role of HA size and CD44. J. Clin. Invest.98, 2403–2413 (1996). CASPubMedPubMed Central Google Scholar
Hodge-Dufour, J. et al. Induction of IL-12 and chemokines by hyaluronan requires adhesion-dependent priming of resident but not elicited macrophages. J. Immunol.159, 2492–2500 (1997). CASPubMed Google Scholar
Horton, M. R., Burdick, M. D., Strieter, R. M., Bao, C. & Noble, P. W. Regulation of hyaluronan-induced chemokine gene expression by IL-10 and IFN-γ in mouse macrophages. J. Immunol.160, 3023–3030 (1998). CASPubMed Google Scholar
Rockey, D. C., Chung, J. J., McKee, C. M. & Noble, P. W. Stimulation of inducible nitric oxide synthase in rat liver by hyaluronan fragments. Hepatology27, 86–92 (1998). CASPubMed Google Scholar
Ohkawara, Y. et al. Activation and transforming growth factor-β production in eosinophils by hyaluronan. Am. J. Respir. Cell Mol. Biol.23, 444–451 (2000). CASPubMed Google Scholar
Day, A. J. & Sheehan, J. K. Hyaluronan: polysaccharide chaos to protein organisation. Curr. Opin. Struct. Biol.11, 617–622 (2001). CASPubMed Google Scholar
Banerji, S., Day, A. J., Kahmann, J. D. & Jackson, D. G. Characterization of a functional hyaluronan-binding domain from the human CD44 molecule expressed in Escherichia coli. Protein Expr. Purif.14, 371–381 (1998). CASPubMed Google Scholar
Bajorath, J., Greenfield, B., Munro, S. B., Day, A. J. & Aruffo, A. Identification of CD44 residues important for hyaluronan binding and delineation of the binding site. J. Biol. Chem.273, 338–343 (1998). The identification of the amino acids in CD44 that are responsible for hyaluronan binding. CASPubMed Google Scholar
Lokeshwar, V. B. & Bourguignon, L. Y. The lymphoma transmembrane glycoprotein GP85 (CD44) is a novel guanine nucleotide-binding protein which regulates GP85 (CD44)–ankyrin interaction. J. Biol. Chem.267, 22073–22078 (1992). CASPubMed Google Scholar
Neame, S. J. & Isacke, C. M. The cytoplasmic tail of CD44 is required for basolateral localization in epithelial MDCK cells but does not mediate association with the detergent-insoluble cytoskeleton of fibroblasts. J. Cell Biol.121, 1299–1310 (1993). CASPubMed Google Scholar