Ascites-induced shift along epithelial-mesenchymal spectrum in ovarian cancer cells: enhancement of their invasive behavior partly dependant on αv integrins (original) (raw)
Kipps E, Tan DSP, Kaye SB (2013) Meeting the challenge of ascites in ovarian cancer: new avenues for therapy and research. Nat Rev Cancer 13:273–282 ArticleCASPubMed Google Scholar
Heyman L, Kellouche S, Fernandes J et al (2008) Vitronectin and its receptors partly mediate adhesion of ovarian cancer cells to peritoneal mesothelium in vitro. Tumour Biol 29:231–244 ArticleCASPubMed Google Scholar
Burleson KM, Boente MP, Pambuccian SE et al (2006) Disaggregation and invasion of ovarian carcinoma ascites spheroids. J Transl Med 4:6 ArticlePubMed CentralPubMed Google Scholar
Shield K, Ackland ML, Ahmed N et al (2009) Multicellular spheroids in ovarian cancer metastases: biology and pathology. Gynecol Oncol 113:143–148 ArticlePubMed Google Scholar
Kenny HA, Kaur S, Coussens LM et al (2008) The initial steps of ovarian cancer cell metastasis are mediated by MMP-2 cleavage of vitronectin and fibronectin. J Clin Invest 118:1367–1379 ArticleCASPubMed CentralPubMed Google Scholar
Ahmed N, Stenvers KL (2013) Getting to know ovarian cancer ascites: opportunities for targeted therapy-based translational research. Front Oncol 3:256 ArticlePubMed CentralPubMed Google Scholar
Ayhan A, Gultekin M, Taskiran C et al (2007) Ascites and epithelial ovarian cancers: a reappraisal with respect to different aspects. Int J Gynecol Cancer 17:68–75 ArticleCASPubMed Google Scholar
Tan DSP, Agarwal R, Kaye SB (2006) Mechanisms of transcoelomic metastasis in ovarian cancer. Lancet Oncol 7:925–934 ArticlePubMed Google Scholar
Puiffe M-L, Le Page C, Filali-Mouhim A et al (2007) Characterization of ovarian cancer ascites on cell invasion, proliferation, spheroid formation, and gene expression in an in vitro model of epithelial ovarian cancer. Neoplasia 9:820–829 ArticleCASPubMed CentralPubMed Google Scholar
Lane D, Goncharenko-Khaider N, Rancourt C et al (2010) Ovarian cancer ascites protects from TRAIL-induced cell death through alphavbeta5 integrin-mediated focal adhesion kinase and Akt activation. Oncogene 29:3519–3531 ArticleCASPubMed Google Scholar
Carduner L, Agniel R, Kellouche S et al (2013) Ovarian cancer ascites-derived vitronectin and fibronectin: combined purification, molecular features and effects on cell response. Biochim Biophys Acta BBA 1830(10):4885–4897 ArticleCAS Google Scholar
Cruet-Hennequart S, Maubant S, Luis J et al (2003) alpha(v) integrins regulate cell proliferation through integrin-linked kinase (ILK) in ovarian cancer cells. Oncogene 22:1688–1702 ArticleCASPubMed Google Scholar
Reuning U (2011) Integrin αvβ3 promotes vitronectin gene expression in human ovarian cancer cells by implicating rel transcription factors. J Cell Biochem 112:1909–1919 ArticleCASPubMed Google Scholar
Leroy-Dudal J, Demeilliers C, Gallet O et al (2005) Transmigration of human ovarian adenocarcinoma cells through endothelial extracellular matrix involves alphav integrins and the participation of MMP2. Int J Cancer 114:531–543 CASPubMed Google Scholar
Carreiras F, Rigot V, Cruet S et al (1999) Migration properties of the human ovarian adenocarcinoma cell line IGROV1: importance of alpha(v)beta3 integrins and vitronectin. Int J Cancer 80:285–294 CASPubMed Google Scholar
Landen CN, Kim T-J, Lin YG et al (2008) Tumor-selective response to antibody-mediated targeting of alphavbeta3 integrin in ovarian cancer. Neoplasia 10:1259–1267 CASPubMed CentralPubMed Google Scholar
Davidson B, Goldberg I, Gotlieb WH et al (2003) Coordinated expression of integrin subunits, matrix metalloproteinases (MMP), angiogenic genes and Ets transcription factors in advanced-stage ovarian carcinoma: a possible activation pathway? Cancer Metastasis Rev 22:103–115 ArticleCASPubMed Google Scholar
Ahmed N, Thompson EW, Quinn MA (2007) Epithelial-mesenchymal interconversions in normal ovarian surface epithelium and ovarian carcinomas: an exception to the norm. J Cell Physiol 213:581–588 ArticleCASPubMed Google Scholar
Ahmed N, Abubaker K, Findlay J et al (2010) Epithelial mesenchymal transition and cancer stem cell-like phenotypes facilitate chemoresistance in recurrent ovarian cancer. Curr Cancer Drug Targets 10:268–278 ArticleCASPubMed Google Scholar
Thiery JP, Acloque H, Huang RYJ et al (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139:871–890 ArticleCASPubMed Google Scholar
Huang RY-J, Wong MK, Tan TZ et al (2013) An EMT spectrum defines an anoikis-resistant and spheroidogenic intermediate mesenchymal state that is sensitive to e-cadherin restoration by a src-kinase inhibitor, saracatinib (AZD0530). Cell Death Dis 4:e915 ArticleCASPubMed CentralPubMed Google Scholar
López-Novoa JM, Nieto MA (2009) Inflammation and EMT: an alliance towards organ fibrosis and cancer progression. EMBO Mol Med 1:303–314 ArticlePubMed CentralPubMed Google Scholar
Mamuya FA, Duncan MK (2012) aV integrins and TGF-β-induced EMT: a circle of regulation. J Cell Mol Med 16:445–455 CASPubMed CentralPubMed Google Scholar
Moreno-Bueno G, Peinado H, Molina P et al (2009) The morphological and molecular features of the epithelial-to-mesenchymal transition. Nat Protoc 4:1591–1613 ArticleCASPubMed Google Scholar
Shaw TJ, Senterman MK, Dawson K et al (2004) Characterization of intraperitoneal, orthotopic, and metastatic xenograft models of human ovarian cancer. Mol Ther 10:1032–1042 ArticleCASPubMed Google Scholar
Bénard J, Da Silva J, De Blois MC et al (1985) Characterization of a human ovarian adenocarcinoma line, IGROV1, in tissue culture and in nude mice. Cancer Res 45:4970–4979 PubMed Google Scholar
Hamilton TC, Young RC, McKoy WM et al (1983) Characterization of a human ovarian carcinoma cell line (NIH:OVCAR-3) with androgen and estrogen receptors. Cancer Res 43:5379–5389 CASPubMed Google Scholar
Ward BG, Wallace K, Shepherd JH et al (1987) Intraperitoneal xenografts of human epithelial ovarian cancer in nude mice. Cancer Res 47:2662–2667 CASPubMed Google Scholar
Staack A, Badendieck S, Schnorr D et al (2006) Combined determination of plasma MMP2, MMP9, and TIMP1 improves the non-invasive detection of transitional cell carcinoma of the bladder. BMC Urol 6:19 ArticlePubMed CentralPubMed Google Scholar
Roskelley CD, Bissell MJ (2002) The dominance of the microenvironment in breast and ovarian cancer. Semin Cancer Biol 12:97–104 ArticlePubMed CentralPubMed Google Scholar
Villedieu M, Briand M, Duval M et al (2007) Anticancer and chemosensitizing effects of 2,3-DCPE in ovarian carcinoma cell lines: link with ERK activation and modulation of p21WAF1/CIP1, Bcl-2 and Bcl-xL expression. Gynecol Oncol 105:373–384 ArticleCASPubMed Google Scholar
Ahmed N, Riley C, Oliva K et al (2005) Ascites induces modulation of alpha6beta1 integrin and urokinase plasminogen activator receptor expression and associated functions in ovarian carcinoma. Br J Cancer 92:1475–1485 ArticleCASPubMed CentralPubMed Google Scholar
Lee S, Yang Y, Fishman D et al (2013) Epithelial-mesenchymal transition enhances nanoscale actin filament dynamics of ovarian cancer cells. J Phys Chem B 117:9233–9240 CASPubMed CentralPubMed Google Scholar
Auersperg N, Wong AS, Choi KC et al (2001) Ovarian surface epithelium: biology, endocrinology, and pathology. Endocr Rev 22:255–288 CASPubMed Google Scholar
Hudson LG, Zeineldin R, Stack MS (2008) Phenotypic plasticity of neoplastic ovarian epithelium: unique cadherin profiles in tumor progression. Clin Exp Metastasis 25:643–655 ArticleCASPubMed CentralPubMed Google Scholar
Quattrocchi L, Green AR, Martin S et al (2011) The cadherin switch in ovarian high-grade serous carcinoma is associated with disease progression. Virchows Arch 459:21–29 ArticleCASPubMed Google Scholar
Sivertsen S, Berner A, Michael CW et al (2006) Cadherin expression in ovarian carcinoma and malignant mesothelioma cell effusions. Acta Cytol 50:603–607 ArticlePubMed Google Scholar
Comamala M, Pinard M, Thériault C et al (2011) Downregulation of cell surface CA125/MUC16 induces epithelial-to-mesenchymal transition and restores EGFR signalling in NIH:OVCAR3 ovarian carcinoma cells. Br J Cancer 104:989–999 ArticleCASPubMed CentralPubMed Google Scholar
Ponnusamy MP, Lakshmanan I, Jain M et al (2010) MUC4 mucin-induced epithelial to mesenchymal transition: a novel mechanism for metastasis of human ovarian cancer cells. Oncogene 29:5741–5754 ArticleCASPubMed CentralPubMed Google Scholar
Latifi A, Luwor RB, Bilandzic M et al (2012) Isolation and characterization of tumor cells from the ascites of ovarian cancer patients: molecular phenotype of chemoresistant ovarian tumors. PLoS ONE 7:e46858 ArticleCASPubMed CentralPubMed Google Scholar
Wintzell M, Hjerpe E, Åvall Lundqvist E, Shoshan M (2012) Protein markers of cancer-associated fibroblasts and tumor-initiating cells reveal subpopulations in freshly isolated ovarian cancer ascites. BMC Cancer 12:359 ArticleCASPubMed CentralPubMed Google Scholar
Thibault B, Castells M, Delord JP, Couderc B (2013) Ovarian cancer microenvironment: implications for cancer dissemination and chemoresistance acquisition. Cancer Metastasis Rev. doi:10.1007/s10555-013-9456-2 PubMed Google Scholar
Hanahan D, Coussens LM (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21(3):09–322 Article Google Scholar
Carduner L, Picot CR, Leroy-Dudal J et al (2013) Cell cycle arrest or survival signaling through αv integrins and activation of PKC and ERK1/2 lead to anoikis resistance of ovarian cancer spheroids. Exp Cell Res 320(2):329–342 ArticlePubMed Google Scholar
Pease JC, Brewer M, Tirnauer JS (2012) Spontaneous spheroid budding from monolayers: a potential contribution to ovarian cancer dissemination. Biol Open 1:622–628 ArticleCASPubMed CentralPubMed Google Scholar
Makhija S, Sabbatini P, Barakat RR (1999) Intraperitoneal chemotherapy strategies in the treatment of epithelial ovarian carcinoma. Curr Opin Obstet Gynecol 11:23–27 ArticleCASPubMed Google Scholar
Veatch AL, Carson LF, Ramakrishnan S (1994) Differential expression of the cell–cell adhesion molecule E-cadherin in ascites and solid human ovarian tumor cells. Int J Cancer 58:393–399 CASPubMed Google Scholar
Rosanò L, Spinella F, Di Castro V et al (2005) Endothelin-1 promotes epithelial-to-mesenchymal transition in human ovarian cancer cells. Cancer Res 65:11649–11657 ArticlePubMed Google Scholar
Kellouche S, Fernandes J, Leroy-Dudal J et al (2010) Initial formation of IGROV1 ovarian cancer multicellular aggregates involves vitronectin. Tumour Biol 31:129–139 ArticleCASPubMed Google Scholar
Uhm JH, Dooley NP, Kyritsis AP et al (1999) Vitronectin, a glioma-derived extracellular matrix protein, protects tumor cells from apoptotic death. Clin Cancer Res 5:1587–1594 CASPubMed Google Scholar
Xing H, Weng D, Chen G et al (2008) Activation of fibronectin/PI-3 K/Akt2 leads to chemoresistance to docetaxel by regulating survivin protein expression in ovarian and breast cancer cells. Cancer Lett 261:108–119 ArticleCASPubMed Google Scholar
Matte I, Lane D, Laplante C et al (2012) Profiling of cytokines in human epithelial ovarian cancer ascites. Am J Cancer Res 2:566–580 CASPubMed CentralPubMed Google Scholar
Valdembri D, Serini G (2012) Regulation of adhesion site dynamics by integrin traffic. Curr Opin Cell Biol 24:582–591 ArticleCASPubMed Google Scholar