- Jakes R, Spillantini MG, Goedert M (1994) Identification of two distinct synucleins from human brain. FEBS Lett 345:27–32. doi:10.1016/0014-5793(94)00395-5
PubMed CAS Google Scholar
- Lavedan C (1998) The synuclein family. Genome Res 8:871–880
PubMed CAS Google Scholar
- Iwai A, Masliah E, Yoshimoto M et al (1995) The precursor protein of non-A beta component of Alzheimer’s disease amyloid is a presynaptic protein of the central nervous system. Neuron 14:467–475. doi:10.1016/0896-6273(95)90302-X
PubMed CAS Google Scholar
- Shibayama-Imazu T, Okahashi I, Omata K et al (1993) Cell and tissue distribution and developmental change of neuron specific 14 kDa protein (phosphoneuroprotein 14). Brain Res 622:17–25. doi:10.1016/0006-8993(93)90796-P
PubMed CAS Google Scholar
- Ueda K, Fukushima H, Masliah E et al (1993) Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proc Natl Acad Sci USA 90:11282–11286. doi:10.1073/pnas.90.23.11282
PubMed CAS Google Scholar
- Lucking CB, Brice A (2000) Alpha-synuclein and Parkinson’s disease. Cell Mol Life Sci 57:1894–1908. doi:10.1007/PL00000671
PubMed CAS Google Scholar
- Nakamura T, Yamashita H, Takahashi T et al (2001) Activated Fyn phosphorylates α-synuclein at tyrosine residue 125. Biochem Biophys Res Commun 280:1085–1092. doi:10.1006/bbrc.2000.4253
PubMed CAS Google Scholar
- Ellis CE, Schwartzberg PL, Grider TL et al (2001) Alpha-synuclein is phosphorylated by members of the Src family of protein-tyrosine kinases. J Biol Chem 276:3879–3884. doi:10.1074/jbc.M010316200
PubMed CAS Google Scholar
- Takahashi T, Yamashita H, Nagano Y et al (2003) Identification and characterization of a novel Pyk2/related adhesion focal tyrosine kinase-associated protein that inhibits alpha-synuclein phosphorylation. J Biol Chem 278:42225–42233. doi:10.1074/jbc.M213217200
PubMed CAS Google Scholar
- Pronin AN, Morris AJ, Surguchov A et al (2000) Synucleins are a novel class of substrates for G protein-coupled receptor kinases. J Biol Chem 275:26515–26522. doi:10.1074/jbc.M003542200
PubMed CAS Google Scholar
- Negro A, Brunati AM, Donella-Deana A et al (1997) Multiple phosphorylation of alpha-synuclein by protein tyrosine kinase Syk prevents eosin-induced aggregation. FASEB J 16:210–212
Google Scholar
- Okochi M, Walter J, Koyama A et al (2000) Constitutive phosphorylation of the Parkinson’s disease associated alpha-synuclein. J Biol Chem 275:390–397. doi:10.1074/jbc.275.1.390
PubMed CAS Google Scholar
- Yamada M, Iwatsubo T, Mizuno Y et al (2004) Overexpression of α-synuclein in rat substantia nigra results in loss of dopaminergic neurons, phosphorylation of α-synuclein and activation of caspase-9: resemblance to pathogenetic changes in Parkinson’s disease. J Neurochem 91:451–461. doi:10.1111/j.1471-4159.2004.02728.x
PubMed CAS Google Scholar
- Davidson WS, Jonas A, Clayton DF et al (1998) Stabilization of α-synuclein secondary structure upon binding to synthetic membranes. J Biol Chem 273:9443–9449. doi:10.1074/jbc.273.16.9443
PubMed CAS Google Scholar
- Zhu M, Fink AL (2003) Lipid binding inhibits α-synuclein fibril formation. J Biol Chem 278:16873–16877. doi:10.1074/jbc.M210136200
PubMed CAS Google Scholar
- Ulmer TS, Bax A, Cole NB et al (2005) Structure and dynamics of micelle-bound human α-synuclein. J Biol Chem 280:9595–9603. doi:10.1074/jbc.M411805200
PubMed CAS Google Scholar
- Narayanan V, Scarlata S (2001) Membrane binding and self-association of α-synucleins. Biochemistry 40:9927–9934. doi:10.1021/bi002952n
PubMed CAS Google Scholar
- Jensen PH, Nielsen MS, Jakes R et al (1998) Binding of alpha-synuclein to brain vesicles is abolished by familial Parkinson’s disease mutation. J Biol Chem 273:26292–26294. doi:10.1074/jbc.273.41.26292
PubMed CAS Google Scholar
- Murphy DD, Rueter SM, Trojanowski JQ et al (2000) Synucleins are developmentally expressed, and alpha-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons. J Neurosci 20:3214–3220
PubMed CAS Google Scholar
- Cabin DE, Shimazu K, Murphy D et al (2002) Synaptic vesicle depletion correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking α-synuclein. J Neurosci 22:8797–8807
PubMed CAS Google Scholar
- Maroteaux L, Campanelli JT, Scheller RH (1988) Synuclein: a neuron-specific protein localized in the nucleus and presynaptic nerve terminal. J Neurosci 8:2804–2815
PubMed CAS Google Scholar
- Jo E, McLaurin J, Yip CM et al (2000) α-Synuclein membrane interactions and lipid specificity. J Biol Chem 275:34328–34334. doi:10.1074/jbc.M004345200
PubMed CAS Google Scholar
- McLean PJ, Ribich S, Hyman BT (2000) Subcellular localization of alpha-synuclein in primary neuronal cultures: effect of missense mutations. J Neural Transm Suppl (58):53–63
- Mori F, Tanji K, Yoshimoto M et al (2002) Demonstration of α-synuclein immunoreactivity in neuronal and glial cytoplasm in normal human brain tissue using proteinkinase K and formic acid pretreatment. Exp Neurol 176:98–104. doi:10.1006/exnr.2002.7929
PubMed CAS Google Scholar
- Ziolkowska B, Gieryk A, Bilecki W et al (2005) Regulation of α-synuclein expression in limbic and motor brain regions of morphine-treated mice. J Neurosci 25:4996–5003. doi:10.1523/JNEUROSCI.4376-04.2005
PubMed CAS Google Scholar
- Cheng SY, Trombetta LD (2004) The induction of amyloid precursor protein and α-synuclein in rat hippocampal astrocytes by diethyldithiocarbamate and copper with or without glutathione. Toxicol Lett 146:139–149. doi:10.1016/j.toxlet.2003.09.009
PubMed CAS Google Scholar
- Castagnet PI, Golovko MY, Barceló-Coblijn G et al (2005) Fatty acid incorporation is decreased in astrocytes cultured from α-synuclein gene-ablated mice. J Neurochem 94:839–849. doi:10.1111/j.1471-4159.2005.03247.x
PubMed CAS Google Scholar
- Papadopoulos D, Ewans L, Pham-Dinh D et al (2006) Upregulation of α-synuclein in neurons and glia in inflammatory demyelinating disease. Mol Cell Neurosci 31:597–612. doi:10.1016/j.mcn.2006.01.007
PubMed CAS Google Scholar
- Austin SA, Floden AM, Murphy EJ et al (2006) α-Synuclein expression modulates microglial activation phenotype. J Neurosci 26:10558–10563. doi:10.1523/JNEUROSCI.1799-06.2006
PubMed CAS Google Scholar
- Richter-Landsberg C, Gorath M, Trojanowski JQ et al (2000) Alpha-synuclein is developmentally expressed in cultured rat brain oligodendrocytes. J Neurosci Res 62:9–14. doi:10.1002/1097-4547(20001001)62:1<9::AID-JNR2>3.0.CO;2-U
PubMed CAS Google Scholar
- Sharon R, Goldberg MS, Bar-Josef I et al (2001) α-Synuclein occurs in lipid-rich high molecular weight complexes, binds fatty acids, and shows homology to the fatty acid-binding proteins. Proc Natl Acad Sci USA 98:9110–9115. doi:10.1073/pnas.171300598
PubMed CAS Google Scholar
- Golovko MY, Rosenberger TA, Færgeman NJ et al (2006) Acyl-CoA synthetase activity links wild-type but not mutant α-synuclein to brain arachidonate metabolism. Biochemistry 45:6956–6966. doi:10.1021/bi0600289
PubMed CAS Google Scholar
- George JM, Jin H, Woods WS (1995) Characterization of a novel protein regulated during the critical period for song learning in the Zebra Finch. Neuron 15:361–372. doi:10.1016/0896-6273(95)90040-3
PubMed CAS Google Scholar
- Kahle PJ, Neumann M, Ozman L et al (2000) Subcellular localization of wild-type and Parkinson’s disease-associated mutant α-synuclein in human and transgenic mouse brain. J Neurosci 20:6365–6373
PubMed CAS Google Scholar
- Dalfó E, Gómez-Isla T, Rosa JL et al (2004) Abnormal α-synuclein interactions with Rab proteins in α-synuclein A30P transgenic mice. J Neuropathol Exp Neurol 63:302–313
PubMed Google Scholar
- Ostrerova N, Petrucelli L, Farrer M et al (1999) α-Synuclein shares physical and functional homology with 14-3-3 proteins. J Neurosci 19:5782–5791
PubMed CAS Google Scholar
- Souza JM, Giasson BI, Lee VMY et al (2000) Chaperone-like activity of synuclein. FEBS Lett 474:116–119. doi:10.1016/S0014-5793(00)01563-5
PubMed CAS Google Scholar
- Lee FJS, Lui F, Pristupa ZB et al (2001) Direct binding and functional coupling of α-synuclein to the dopamine transporters accelerate dopamine-induced apoptosis. FASEB J 15:916–926. doi:10.1096/fj.00-0334com
PubMed CAS Google Scholar
- Wersinger C, Sidhu A (2003) Attenuation of dopamine transporter activity by α-synuclein. Neurosci Lett 340:189–192. doi:10.1016/S0304-3940(03)00097-1
PubMed CAS Google Scholar
- Sidhu A, Wersinger C, Vernier P (2004) α-Synuclein regulation of the dopaminergic transporter: a possible role in the pathogenesis of Parkinson’s disease. FEBS Lett 565:1–5. doi:10.1016/j.febslet.2004.03.063
PubMed CAS Google Scholar
- Perez RG, Waymire JC, Lin E et al (2002) A role for α-synuclein in the regulation of dopamine biosynthesis. J Neurosci 22:3090–3099
PubMed CAS Google Scholar
- Golovko MY, Murphy EJ (2008) Brain prostaglandin formation is increased by α-synuclein gene-ablation during global ischemia. Neurosci Lett 432:243–247. doi:10.1016/j.neulet.2007.12.031
PubMed CAS Google Scholar
- Golovko MY, Færgeman NJ, Cole NB et al (2005) α-Synuclein gene-deletion decreases brain palmitate uptake and alters the palmitate metabolism in the absence of α-synuclein palmitate binding. Biochemistry 44:8251–8259. doi:10.1021/bi0502137
PubMed CAS Google Scholar
- Golovko MY, Rosenberger TA, Feddersen S et al (2007) α-Synuclein gene ablation increases docosahexaenoic acid incorporation and turnover in brain phospholipids. J Neurochem 101:201–211. doi:10.1111/j.1471-4159.2006.04357.x
PubMed CAS Google Scholar
- Barceló-Coblijn G, Golovko MY, Weinhofer I et al (2007) Brain neutral lipids mass is increased in α-synuclein gene-ablated mice. J Neurochem 101:132–141. doi:10.1111/j.1471-4159.2006.04348.x
PubMed Google Scholar
- Sharon R, Bar-Joseph I, Mirick GE et al (2003) Altered fatty acid composition of dopaminergic neurons expressing α-synuclein and human brains with α-synucleinopathies. J Biol Chem 278:49874–49881. doi:10.1074/jbc.M309127200
PubMed CAS Google Scholar
- Payton JE, Perrin RJ, Woods WS et al (2004) Structural determinants of PLD2 inhibition by alpha-synuclein. J Mol Biol 337:1001–1009. doi:10.1016/j.jmb.2004.02.014
PubMed CAS Google Scholar
- Jenco JM, Rawlingson A, Daniels B et al (1998) Regulation of phospholipase D2: selective inhibition of mammalian phospholipase D isoenzymes by alpha- and beta-synucleins. Biochemistry 37:4901–4909. doi:10.1021/bi972776r
PubMed CAS Google Scholar
- Narayanan V, Guo Y, Scarlata S (2005) Fluorescence studies suggest a role for α-synuclein in the phosphatidylinositol lipid signaling pathway. Biochemistry 44:462–470. doi:10.1021/bi0487140
PubMed CAS Google Scholar
- Cooper AA, Gitler AD, Cashikar A et al (2006) α-Synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science 313:324–328. doi:10.1126/science.1129462
PubMed CAS Google Scholar
- Chandra S, Gallardo G, Fernández-Chacón R et al (2005) α-Synuclein cooperates with CSPα in preventing neurodegeneration. Cell 123:383–396. doi:10.1016/j.cell.2005.09.028
PubMed CAS Google Scholar
- Lücke C, Gantz DL, Klimtchuk E et al (2006) Interactions between fatty acids and α-synuclein. J Lipid Res 47:1714–1724. doi:10.1194/jlr.M600003-JLR200
PubMed Google Scholar
- Richieri GV, Ogata RT, Kleinfeld AM (1994) Equilibrium constants for the binding of fatty acids with fatty acid-binding proteins from adipocyte, intestine, heart, and liver measured with the fluorescent probe ADIFAB. J Biol Chem 269:23918–23930
PubMed CAS Google Scholar
- Richieri GV, Ogata RT, Zimmerman AW et al (2000) Fatty acid binding proteins from different tissues show distinct patterns of fatty acid interactions. Biochemistry 39:7197–7204. doi:10.1021/bi000314z
PubMed CAS Google Scholar
- Murphy EJ, Owada Y, Kitanaka N et al (2005) Brain arachidonic acid incorporation is decreased in heart-fatty acid binding protein gene-ablated mice. Biochemistry 44:6350–6360. doi:10.1021/bi047292r
PubMed CAS Google Scholar
- Murphy EJ, Prows D, Jefferson JR et al (1996) Liver fatty acid binding protein expression in transfected fibroblasts stimulates fatty acid uptake and metabolism. Biochim Biophys Acta 1301:191–196
PubMed Google Scholar
- Murphy EJ (1998) Fatty acid binding protein expression increases NBD-stearate uptake and cytoplasmic diffusion in L cells. Am J Physiol 275:244–249
Google Scholar
- Murphy EJ, Prows D, Stiles T et al (2000) Phospholipid and phospholipid fatty acid composition of L-cell fibroblast: effect of intestinal and liver fatty acid binding proteins. Lipids 35:729–738. doi:10.1007/s11745-000-0579-x
PubMed CAS Google Scholar
- Murphy EJ, Barceló-Coblijn G, Binas B et al (2004) Heart fatty acid uptake is decreased in heart fatty acid binding protein gene-ablated mice. J Biol Chem 279:34481–34488. doi:10.1074/jbc.M314263200
PubMed CAS Google Scholar
- Prows DR, Murphy EJ, Schroeder F (1995) Intestinal and liver fatty acid binding proteins differentially affect fatty acid uptake and esterification in L-cell fibroblasts. Lipids 30:907–910. doi:10.1007/BF02537481
PubMed CAS Google Scholar
- Binas B, Danneberg H, McWhir J et al (1999) Requirement for the heart-type fatty acid binding protein in cardiac fatty acid utilization. FASEB J 13:805–812
PubMed CAS Google Scholar
- Schaap FG, Binas B, Danneberg H et al (1999) Impaired long-chain fatty acid utilization by cardiac myocytes isolated from mice lacking the heart-type fatty acid binding protein gene. Circ Res 85:329–337
PubMed CAS Google Scholar
- Prows DR, Murphy EJ, Moncecchi D et al (1996) Intestinal fatty acid-binding protein expression stimulates fibroblast fatty acid esterification. Chem Phys Lipids 84:47–56. doi:10.1016/S0009-3084(96)02619-9
PubMed CAS Google Scholar
- Ellis CE, Murphy EJ, Mitchell DC et al (2005) Mitochondrial lipid abnormality and electron transport chain impairment in mice lacking α-synuclein. Mol Cell Biol 25:10190–10201. doi:10.1128/MCB.25.22.10190-10201.2005
PubMed CAS Google Scholar
- Robinson PJ, Noronha J, DeGeorge JJ et al (1992) A quantitative method for measuring regional in vivo fatty acid incorporation into and turnover within brain phospholipids: review and critical analysis. Brain Res Brain Res Rev 17:187–214. doi:10.1016/0165-0173(92)90016-F
PubMed CAS Google Scholar
- Ahn BH, Rhim H, Kim SY et al (2002) α-Synuclein interacts with phospholipase D isozymes and inhibits pervanadate-induced phospholipase D activation in human embryonic kidney-293 cells. J Biol Chem 277:12334–12342. doi:10.1074/jbc.M110414200
PubMed CAS Google Scholar
- Outeiro TF, Lindquist S (2003) Yeast cells provide insight into α-synuclein biology and pathobiology. Science 302:1772–1775. doi:10.1126/science.1090439
PubMed CAS Google Scholar
- Scherzer CR, Jensen RV, Gullans SR et al (2003) Gene expression changes presage neurodegeneration in a Drosophila model of Parkinson’s disease. Hum Mol Genet 12:2457–2466. doi:10.1093/hmg/ddg265
PubMed CAS Google Scholar
- Rosenberger TA, Villacreses NE, Contreras MA et al (2003) Brain lipid metabolism in the cPLA2 knockout mouse. J Lipid Res 44:109–117. doi:10.1194/jlr.M200298-JLR200
PubMed CAS Google Scholar
- Lesa GM, Palfreyman M, Hall DH et al (2003) Long chain polyunsaturated fatty acids are required for efficient neurotransmission in C. elegans. J Cell Sci 116:4965–4975. doi:10.1242/jcs.00918
PubMed CAS Google Scholar
- Bazan NG (2003) Synaptic lipid signaling: significance of polyunsaturated fatty acid and platelet-activating factor. J Lipid Res 44:2221–2233. doi:10.1194/jlr.R300013-JLR200
PubMed CAS Google Scholar
- Williams JH, Errington ML, Lynch MA et al (1989) Arachidonic acid induces a long-term activity-dependent enhancement of synaptic transmission in the hippocampus. Nature 341:739–742. doi:10.1038/341739a0
PubMed CAS Google Scholar
- Wolf MJ, Izumi Y, Zorumski CF et al (1995) Long-term potentiation requires activation of calcium-independent phospholipase A2. FEBS Lett 377:358–362. doi:10.1016/0014-5793(95)01371-7
PubMed CAS Google Scholar
- Massicotte G, Vanderklish P, Lynch G et al (1991) Modulation of a dl-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/quisqualate receptors by phospholipase A2: a necessary step in long-term potentiation. Proc Natl Acad Sci USA 88:1893–1897. doi:10.1073/pnas.88.5.1893
PubMed CAS Google Scholar
- Lee H, Villacreses NE, Rapoport SI et al (2004) In vivo imaging detects a transient increase in brain arachidonic acid metabolism: a potential marker of neuroinflammation. J Neurochem 91:936–945. doi:10.1111/j.1471-4159.2004.02786.x
PubMed CAS Google Scholar
- Bazan NG (1971) Changes in free fatty acids of brain by drug-induced convulsions, electroshock and anesthesia. J Neurochem 18:1379–1385. doi:10.1111/j.1471-4159.1971.tb00002.x
PubMed CAS Google Scholar
- Rosenberger TA, Villacreses NE, Hovda JT et al (2004) Rat brain arachidonic acid metabolism is increased by a 6-day intracerebral ventricular infusion of bacterial lipopolysaccharide. J Neurochem 88:1168–1178. doi:10.1046/j.1471-4159.2003.02246.x
PubMed CAS Google Scholar
- Arai K, Ikegaya Y, Nakatani Y et al (2001) Phospholipase A2 mediates ischemic injury in the hippocampus: a regional difference of neuronal vulnerability. Eur J Neurosci 13:2319–2323. doi:10.1046/j.0953-816x.2001.01623.x
PubMed CAS Google Scholar
- Fujino T, Yamamoto T (1992) Cloning and functional expression of a novel long-chain acyl-CoA synthetase expression in brain. J Biochem 111:197–203
PubMed CAS Google Scholar
- Fujino T, Kang M-J, Suzuki H et al (1996) Molecular characterization and expression of rat acyl-CoA synthetase 3. J Biol Chem 271:16748–16752. doi:10.1074/jbc.271.28.16748
PubMed CAS Google Scholar
- Suzuki H, Kawarabayasi Y, Kondo J et al (1990) Structure and regulation of rat long-chain acyl-CoA synthetase. J Biol Chem 265:8681–8685
PubMed CAS Google Scholar
- Kang M-J, Fujino T, Sasano H et al (1997) A novel arachidonate-preferring acyl-CoA synthetase is present in steroidogenic cells of the rat adrenal, ovary, and testis. Proc Natl Acad Sci USA 94:2880–2884. doi:10.1073/pnas.94.7.2880
PubMed CAS Google Scholar
- Cao Y, Murphy KJ, McIntyre TM et al (2000) Expression of fatty acid-CoA ligase 4 during development and in brain. FEBS Lett 467:263–267. doi:10.1016/S0014-5793(00)01159-5
PubMed CAS Google Scholar
- Van Horn CG, Caviglia JM, Li LO et al (2005) Characterization of recombinant long-chain rat acyl-CoA synthetase isoforms 3 and 6: identification of a novel variant of isoform 6. Biochemistry 44:1635–1642. doi:10.1021/bi047721l
PubMed Google Scholar
- Herrmann T, Buchkremer F, Gosch I et al (2001) Mouse fatty acid transport protein 4 (FATP4): characterization of the gene and functional assessment as a very long chain acyl-CoA synthetase. Gene 270:31–40. doi:10.1016/S0378-1119(01)00489-9
PubMed CAS Google Scholar
- Hall AM, Wiczer BM, Herrmann T et al (2005) Enzymatic properties of purified murine fatty acid transport protein 4 and analysis of acyl-CoA synthetase activities in tissues from FATP4 null mice. J Biol Chem 280:11948–11954. doi:10.1074/jbc.M412629200
PubMed CAS Google Scholar
- Marszalek JR, Kitidis C, DiRusso CC et al (2005) Long-chain acyl-CoA synthetase 6 preferentially promotes DHA metabolism. J Biol Chem 280:10817–10826. doi:10.1074/jbc.M411750200
PubMed CAS Google Scholar
- Igal RA, Wang P, Coleman RA (1997) Triacsin C blocks de novo synthesis of glycerolipids and cholesterol esters but not recycling of fatty acid into phospholipid: evidence for functionally separate pools of acyl-CoA. Biochem J 324:529–534
PubMed CAS Google Scholar
- Muoio DM, Lewin TM, Wiedmer P et al (2000) Acyl-CoAs are functionally channeled in liver: potential role of acyl-CoA synthetase. Am J Physiol Endocrinol Metab 279:E1366–E1373
PubMed CAS Google Scholar
- Marszalek JR, Kitidis C, Dararutana A et al (2004) Acyl-CoA synthetase 2 overexpression enhances fatty acid internalization and neurite outgrowth. J Biol Chem 279:23882–23891. doi:10.1074/jbc.M313460200
PubMed CAS Google Scholar
- Poirier J, Baccichet A, Dea D et al (1993) Cholesterol synthesis and lipoprotein reuptake during synaptic remodelling in hippocampus in adult rats. Neuroscience 55:81–90. doi:10.1016/0306-4522(93)90456-P
PubMed CAS Google Scholar
- Dietschy JM, Turley SD (2004) Cholesterol metabolism in the central nervous system during early development and in the mature animal. J Lipid Res 45:1375–1397. doi:10.1194/jlr.R400004-JLR200
PubMed CAS Google Scholar
- Murphy EJ, Schroeder F (1997) Sterol carrier protein-2 mediated cholesterol esterification in transfected L-cell fibroblasts. Biochim Biophys Acta 1345:283–292
PubMed CAS Google Scholar
- Mauch DH, Nägler K, Schumacher S et al (2001) CNS synaptogenesis promoted by glia-derived cholesterol. Science 294:1354–1357. doi:10.1126/science.294.5545.1354
PubMed CAS Google Scholar
- Saher G, Brugger B, Lappe-Seifke C et al (2005) High cholesterol level is essential for myelin membrane growth. Nat Neurosci 8:468–475
PubMed CAS Google Scholar
- Sun GY, Horrocks LA (1973) Metabolism of palmitic acid in the subcellular fractions of mouse brain. J Lipid Res 14:206–214
PubMed CAS Google Scholar
- Shobab LA, Hsiung G-YR, Feldman HH (2005) Cholesterol in Alzheimer’s disease. Lancet Neurol 4:841–852. doi:10.1016/S1474-4422(05)70248-9
PubMed CAS Google Scholar
- Karten B, Vance DE, Campenot RB (2002) Cholesterol accumulates in cell bodies, but is decreased in distal axons, of Niemann-Pick C1-deficient neurons. J Neurochem 83:1154–1163. doi:10.1046/j.1471-4159.2002.01220.x
PubMed CAS Google Scholar
- Sipione S, Rigamonti D, Valenza M et al (2002) Early transcriptional profiles in huntingtin-inducible striatal cells by microarray analyses. Hum Mol Genet 11:1953–1965. doi:10.1093/hmg/11.17.1953
PubMed CAS Google Scholar
- Johnson CC, Gorell JM, Rybicki BA et al (1999) Adult nutrient intake as a risk factor for Parkinson’s disease. Int J Epidemiol 28:1102–1109. doi:10.1093/ije/28.6.1102
PubMed CAS Google Scholar
- Bar-On P, Rockenstein E, Adame A et al (2006) Effects of the cholesterol-lowering compound methyl-β-cyclodextrin in models of α-synucleinopathy. J Neurochem 98:1032–1045. doi:10.1111/j.1471-4159.2006.04017.x
PubMed CAS Google Scholar
- Mori F, Hayashi S, Yamagishi SI et al (2002) Pick’s disease: α- and β-synuclein-immunoreactive Pick bodies in the dentate gyrus. Acta Neuropathol 104:455–461
PubMed CAS Google Scholar
- Saito Y, Suzuki K, Hulette CM et al (2004) Aberrant phosphorylation of α-synuclein in human Niemann-Pick type C1 disease. J Neuropathol Exp Neurol 63:323–328
PubMed CAS Google Scholar
- Tamo W, Imaizumi T, Tanji K et al (2002) Expression of α-synuclein, the precursor of non-amyloid β component of Alzheimer’s disease amyloid, in human cerebral blood vessels. Neurosci Lett 326:5–8. doi:10.1016/S0304-3940(02)00297-5
PubMed CAS Google Scholar
- Edmond J, Korsak RA, Morrow JW et al (1991) Dietary cholesterol and the origin of cholesterol in the brain of developing rats. J Nutr 121:1323–1330
PubMed CAS Google Scholar
- Jurevics H, Morell P (1995) Cholesterol for synthesis of myelin is made locally, not imported into brain. J Neurochem 64:895–901
PubMed CAS Google Scholar
- Pfrieger FW (2003) Role of cholesterol in synapse formation and function. Biochim Biophys Acta 1610:271–280. doi:10.1016/S0005-2736(03)00024-5
PubMed CAS Google Scholar
- Nagler K, Mauch DH, Pfrieger FW (2001) Glia-derived signals induce synapse formation in neurons of the rat central nervous system. J Physiol 533:665–679. doi:10.1111/j.1469-7793.2001.00665.x
PubMed CAS Google Scholar
- Stefkova J, Poledne R, Hubacek JA (2004) ATP-binding cassette (ABC) transporters in human metabolism and diseases. Physiol Res 53:235–243
PubMed CAS Google Scholar
- Andersson S, Gustafsson N, Warner M (2005) Inactivation of liver X receptor beta leads to adult-onset motor neuron degeneration in male mice. Proc Natl Acad Sci USA 102:3857–3862. doi:10.1073/pnas.0500634102
PubMed CAS Google Scholar
- Hayashi H, Campenot RB, Vance DE et al (2004) Glial lipoproteins stimulate axon growth of central nervous system neurons in compartmented cultures. J Biol Chem 279:14009–14015. doi:10.1074/jbc.M313828200
PubMed CAS Google Scholar
- Karten B, Campenot RB, Vance DE et al (2006) Expression of ABCG1, but not ABCA1, correlates with cholesterol release by cerebellar astroglia. J Biol Chem 281:4049–4057. doi:10.1074/jbc.M508915200
PubMed CAS Google Scholar
- Vance JE, Hayashi H, Karten B (2005) Cholesterol homeostasis in neurons and glial cells. Semin Cell Dev Biol 16:193–212. doi:10.1016/j.semcdb.2005.01.005
PubMed CAS Google Scholar
- Gong J-S, Kobayashi M, Hayashi H et al (2002) Apolipoprotein E (ApoE) isoform-dependent lipid release from astrocytes prepared from human ApoE3 and ApoE4 knock-in mice. J Biol Chem 277:29919–29926. doi:10.1074/jbc.M203934200
PubMed CAS Google Scholar
- Wahrle SE, Jiang H, Parsadanian M et al (2004) ABCA1 is required for normal central nervous system ApoE levels and for lipidation of astrocyte-secreted apoE. J Biol Chem 279:40987–40993. doi:10.1074/jbc.M407963200
PubMed CAS Google Scholar
- Koch S, Donarski N, Goetze K et al (2001) Characterization of four lipoprotein classes in human cerebrospinal fluid. J Lipid Res 42:1143–1151
PubMed CAS Google Scholar
- LaDu MJ, Reardon C, Van Eldik L et al (2000) Lipoproteins in the central nervous system. Ann N Y Acad Sci 903:167–175. doi:10.1111/j.1749-6632.2000.tb06365.x
PubMed CAS Google Scholar
- Ito J-I, Zhang L-Y, Asai M (1999) Differential generation of high-density lipoprotein by endogenous and exogenous apolipoproteins in cultured fetal rat astrocytes. J Neurochem 72:2362–2369. doi:10.1046/j.1471-4159.1999.0722362.x
PubMed CAS Google Scholar
- Abildayeva K, Jansen PJ, Hirsch-Reinshagen V et al (2006) 24(S)-Hydroxycholesterol participates in a liver X receptor-controlled pathway in astrocytes that regulates apolipoprotein E-mediated cholesterol efflux. J Biol Chem 281:12799–12808. doi:10.1074/jbc.M601019200
PubMed CAS Google Scholar
- Lund EG, Xie C, Kotti T et al (2003) Knockout of the cholesterol 24-hydroxylase gene in mice reveals a brain-specific mechanism of cholesterol turnover. J Biol Chem 278:22980–22988. doi:10.1074/jbc.M303415200
PubMed CAS Google Scholar
- Meaney S, Heverin M, Panzenboeck U et al (2007) Novel route for elimination of brain oxysterols across the blood-brain barrier: conversion into 7α-hydroxy-3-oxo-4-cholestenoic acid. J Lipid Res 48:944–951. doi:10.1194/jlr.M600529-JLR200
PubMed CAS Google Scholar
- Nagatsu T, Sawada M (2005) Inflammatory process in Parkinson’s disease: role for cytokines. Curr Pharm Des 11:999–1016. doi:10.2174/1381612053381620
PubMed CAS Google Scholar
- McGeer PL, McGeer EG (2004) Inflammation and neurodegeneration in Parkinson’s disease. Parkinsonism Relat Disord 10:S3–S7. doi:10.1016/j.parkreldis.2004.01.005
PubMed Google Scholar
- Teismann P, Schulz JB (2004) Cellular pathology of Parkinson’s disease: astrocytes, microglia and inflammation. Cell Tissue Res 318:149–161. doi:10.1007/s00441-004-0944-0
PubMed Google Scholar
- Croisier E, Moran LB, Dexter DT et al (2005) Microglial inflammation in the parkinsonian substantia nigra: relationship to alpha-synuclein deposition. J Neuroinflamm 2:14. doi:10.1186/1742-2094-2-14
Google Scholar
- Imamura K, Hishikawa N, Sawada M et al (2005) Distribution of major histocompatibility complex class II-positive microglia and cytokine profile of Parkinson’s disease brains. Acta Neuropathol 106:518–526. doi:10.1007/s00401-003-0766-2
Google Scholar
- Ouchi Y, Yoshikawa E, Sekine Y et al (2005) Microglial activation and dopamine terminal loss in early Parkinson’s disease. Ann Neurol 57:168–175. doi:10.1002/ana.20338
PubMed CAS Google Scholar
- McGeer PL, Schwab C, Parent A et al (2003) Presence of reactive microglia in monkey substantia nigra years after 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine administration. Ann Neurol 54:599–604. doi:10.1002/ana.10728
PubMed CAS Google Scholar
- Barcia C, Sanchez Bahillo A, Fernandez-Villalba E et al (2004) Evidence of active microglia in substantia nigra pars compacta of parkinsonian monkeys 1 year after MPTP exposure. Glia 46:402–409. doi:10.1002/glia.20015
PubMed Google Scholar
- Zhang W, Wang T, Pei Z et al (2005) Aggregated alpha-synuclein activates microglia: a process leading to disease progressing in Parkinson’s disease. FASEB J 19:533–542. doi:10.1096/fj.04-2751com
PubMed CAS Google Scholar
- Takeuchi H, Mizuno T, Zhang G et al (2005) Neuritic beading induced by activated microglia is an early feature of neuronal dysfunction toward neuronal death by inhibition of mitochondrial respiration and axonal transport. J Biol Chem 280:10444–10454. doi:10.1074/jbc.M413863200
PubMed CAS Google Scholar
- Pekny M, Nilsson M (2005) Astrocyte activation and reactive gliosis. Glia 50:427–434. doi:10.1002/glia.20207
PubMed Google Scholar
- Mirza B, Hadberg H, Thomsen P et al (2000) The absence of reactive astrocytosis is indicative of a unique inflammatory process in Parkinson’s disease. Neuroscience 95:425–432. doi:10.1016/S0306-4522(99)00455-8
PubMed CAS Google Scholar
- Forno LS, DeLanney LE, Irwin I et al (1992) Astrocytes and Parkinson’s disease. Prog Brain Res 94:429–436. doi:10.1016/S0079-6123(08)61770-7
PubMed CAS Google Scholar
- Damier P, Hirsch EC, Zhang P et al (1993) Glutathione peroxidase, glial cells and Parkinson’s disease. Neuroscience 52:1–6. doi:10.1016/0306-4522(93)90175-F
PubMed CAS Google Scholar
- Czlonkowska A, Kohutnicka M, Kurkowska-Jastrzebsak I et al (1996) Microglial reaction in MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) induced Parkinson’s disease mice model. Neurodegeneration 5:137–143. doi:10.1006/neur.1996.0020
PubMed CAS Google Scholar
- Kohutnicka M, Lewandowska E, Kurkowska-Jastrzebsak I et al (1998) Microglial and astrocytic involvement in a murine model of Parkinson’s disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Immunopharmacology 39:167–180. doi:10.1016/S0162-3109(98)00022-8
PubMed CAS Google Scholar
- Liberatore GT, Jackson-Lewis V, Vukosavic S et al (1999) Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat Med 5:1403–1409. doi:10.1038/70978
PubMed CAS Google Scholar
- Sheng JG, Shirabe S, Nishiyama N et al (1993) Alterations in striatal glial fibrillary acidic protein expression in response to 6-hydroxydopamine-induced denervation. Exp Brain Res 95:450–456. doi:10.1007/BF00227138
PubMed CAS Google Scholar
- Saura J, Parés M, Bové J et al (2003) Intranigral infusion of interleukin-1β activates astrocytes and protects from subsequent 6-hydroxydopamine neurotoxicity. J Neurochem 83:651–661
Article CAS Google Scholar
- Narcisse L, Scemes E, Zhao Y et al (2005) The cytokine IL-1β transiently enhances P2X7 receptor expression and function in human astrocytes. Glia 49:245–258. doi:10.1002/glia.20110
PubMed Google Scholar
- Walter L, Dinh T, Stella N (2004) ATP induces a rapid and pronounced increase in 2-arachidonoylglycerol production by astrocytes, a response limited by monoacylglycerol lipase. J Neurosci 24:8068–8074. doi:10.1523/JNEUROSCI.2419-04.2004
PubMed CAS Google Scholar
- Ballerini P, Ciccarelli R, Caciagli F et al (2005) P2X7 receptor activation in rat brain cultured astrocytes increases the biosynthetic release of cysteinyl leukotrienes. Int J Immunopathol Pharmacol 18:417–430
PubMed CAS Google Scholar
- Iyer SS, Barton JA, Bourgoin S et al (2004) Phospholipases D1 and D2 coordinately regulate macrophage phagocytosis. J Immunol 173:2615–2623
PubMed CAS Google Scholar
- Serrander L, Fallman M, Stendahl O (1996) Activation of phospholipase D is an early event in integrin-mediated signalling leading to phagocytosis in human neutrophils. Inflammation 20:439–450. doi:10.1007/BF01486745
PubMed CAS Google Scholar
- Powner DJ, Payne RM, Pettitt TR et al (2005) Phospholipase D2 stimulates integrin-mediated adhesion via phosphatidylinositol 4-phosphate 5-kinase l Γ b. J Cell Sci 118:2975–2986. doi:10.1242/jcs.02432
PubMed CAS Google Scholar
- Balsinde J, Balboa MA, Insel PA et al (1997) Differential regulation of phospholipase D and phospholipase A2 by protein kinase C in P388D1 macrophages. Biochem J 321:805–809
PubMed CAS Google Scholar
- De Valck D, Beyaert R, Van Roy F et al (1993) Tumor necrosis factor cytotoxicity is associated with phospholipase D activation. Eur J Biochem 212:491–497. doi:10.1111/j.1432-1033.1993.tb17686.x
PubMed Google Scholar
- Meats JE, Steele L, Bowen JG (1993) Identification of phospholipase D (PLD) activity in mouse peritoneal macrophages. Agents Actions 39:C14–C16. doi:10.1007/BF01972706
PubMed CAS Google Scholar
- Sapirstein A, Saito H, Texel SJ et al (2005) Cytosolic phospholipase A2 alpha regulates induction of brain cyclooxygenase-2 in a mouse model of inflammation. Am J Physiol 288:R1774–R1782
CAS Google Scholar
- Aloisi F, De Simone R, Columba-Cabezas S et al (1999) Opposite effects of interferon-gamma and prostaglandin E2 on tumor necrosis factor and interleukin-10 production in microglia: a regulatory loop controlling microglia pro- and anti-inflammatory activities. J Neurosci Res 56:571–580. doi:10.1002/(SICI)1097-4547(19990615)56:6<571::AID-JNR3>3.0.CO;2-P
PubMed CAS Google Scholar
- Bernardo A, Levi G, Minghetti L (2000) Role of the peroxisome proliferator-activated receptor-gamma (PPAR-gamma) and its natural ligand 15-deoxy-Delta12, 14-prostaglandin J2 in the regulation of microglial functions. Eur J Neurosci 12:2215–2223. doi:10.1046/j.1460-9568.2000.00110.x
PubMed CAS Google Scholar
- Ikeda-Matsuo Y, Ikegaya Y, Matsuki N et al (2005) Microglia-specific expression of microsomal prostaglandin E2 synthase-1 contributes to lipopolysaccharide-induced prostaglandin E2 production. J Neurochem 94:1546–1558. doi:10.1111/j.1471-4159.2005.03302.x
PubMed CAS Google Scholar