Curcumin attenuates inflammation through inhibition of TLR-4 receptor in experimental colitis (original) (raw)
References
Schmidt C, Stallmach A (2005) Etiology and pathogenesis of inflammatory bowel disease. Minerva Gastroenterol Dietol 51(2):127–145 PubMedCAS Google Scholar
Fiocchi C (1998) Inflammatory bowel disease: etiology and pathogenesis. Gastroenterology 115:182–205 ArticlePubMedCAS Google Scholar
Kozuch PL, Hanauer SB (2008) Treatment of inflammatory bowel disease: a review of medical therapy. World J Gastroenterol 14(3):354–377. doi:10.3748/wjg.14.354 (Review) ArticlePubMedCAS Google Scholar
Billerey-Larmonier C, Uno JK, Larmonier N, Midura AJ, Timmermann B, Ghishan FK, Kiela PR (2008) Protective effects of dietary curcumin in mouse model of chemically induced colitis are strain dependent. Inflamm Bowel Dis 14(6):780–793. doi:10.1002/ibd.20348 ArticlePubMed Google Scholar
Boone DL, Ma A (2003) Connecting the dots from toll-like receptors to innate immune cells and inflammatory bowel disease. J Clin Invest 111(9):1284–1286 PubMedCAS Google Scholar
Bou-Fersen AM, Anim JT, Khan I (2008) Experimental colitis is associated with ultrastructural changes in inflamed and uninflamed regions of the gastrointestinal tract. Med Princ Pract 17(3):190–196. doi:10.1159/000117791 ArticlePubMed Google Scholar
Al-Jarallah A, Khan I, Oriowo MA (2008) Role of Ca2+-sensitization in attenuated carbachol-induced contraction of the colon in a rat model of colitis. Eur J Pharmacol 579(1–3):365–373. doi:10.1016/j.ejphar.2007.10.069 ArticlePubMedCAS Google Scholar
Morris GP, Beck PL, Herridge MS, Depew WT, Szewczuk MR, Wallace JL (1989) Hapten-induced model of chronic inflammation and ulceration in the rat colon. Gastroenterology 96(3):795–803 PubMedCAS Google Scholar
Khan I, Oriowo MA, Anim JT (2005) Amelioration of experimental colitis by Na–H exchanger-1 inhibitor amiloride is associated with reversal of IL-1ss and ERK mitogen-activated protein kinase. Scand J Gastroenterol 40(5):578–585. doi:10.1080/00365520510012352 ArticlePubMedCAS Google Scholar
Khan I (2002) Antisense inhibition of cyclooxygenase-2 causes a selective suppression of the Na+–H+ exchanger isoform 3 in rat kidney in experimental colitis. Nephron 91(1):120–128. doi:10.1159/000057613 ArticlePubMedCAS Google Scholar
Bradley PP, Priebat DA, Christensen RD, Rothstein G (1982) Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. J Invest Dermatol 78(3):206–209. doi:10.1111/1523-1747.ep12506462 ArticlePubMedCAS Google Scholar
Khan I, Al-Awadi FM, Thomas N (2001) In vivo inhibition of cyclooxygenase-2 by a selective phosphorothioated oligonucleotide. Antisense Nucleic Acid Drug Dev 11(4):199–207. doi:10.1089/108729001317022205 ArticlePubMedCAS Google Scholar
Hogaboam CM, Vallance BA, Kumar A, Addison CL, Graham FL, Gauldie J, Collins SM (1997) Therapeutic effects of interleukin-4 gene transfer in experimental inflammatory bowel disease. J Clin Invest 100(11):2766–2776. doi:10.1172/JCI119823 ArticlePubMedCAS Google Scholar
Arranz A, Juarranz Y, Leceta J, Gomariz RP, Martínez C (2008) VIP balances innate and adaptive immune responses induced by specific stimulation of TLR2 and TLR4. Peptides 29(6):948–956. doi:10.1016/j.peptides.2008.01.019 ArticlePubMedCAS Google Scholar
Arranz A, Abad C, Juarranz Y, Torroba M, Rosignoli F, Leceta J, Gomariz RP, Martínez C (2006) Effect of VIP on TLR2 and TLR4 expression in lymph node immune cells during TNBS-induced colitis. Ann N Y Acad Sci 1070:129–134. doi:10.1196/annals.1317.001 ArticlePubMedCAS Google Scholar
Araki A, Kanai T, Ishikura T, Makita S, Uraushihara K, Iiyama R, Totsuka T, Takeda K, Akira S, Watanabe M (2005) MyD88-deficient mice develop severe intestinal inflammation in dextran sodium sulfate colitis. J Gastroenterol 40:16–23. doi:10.1007/s00535-004-1492-9 ArticlePubMedCAS Google Scholar
For further reading
Hanai H, Iida T, Takeuchi K, Watanabe F, Maruyama Y, Andoh A, Tsujikawa T, Fujiyama Y, Mitsuyama K, Sata M, Yamada M, Iwaoka Y, Kanke K, Hiraishi H, Hirayama K, Arai H, Yoshii S, Uchijima M, Nagata T, Koide Y (2006) Curcumin maintenance therapy for ulcerative colitis: randomized, multicenter, double-blind, placebo-controlled trial. Clin Gastroenterol Hepatol 4(12):1502–1506 ArticlePubMedCAS Google Scholar
Bremner P, Heinrich M (2002) Natural products as targeted modulators of the nuclear factor-kappaB pathway. J Pharm Pharmacol 54(4):453–472 (Review) ArticlePubMedCAS Google Scholar
Jian YT, Wang JD, Mai GF, Zhang YL, Lai ZS (2004) Modulation of intestinal mucosal inflammatory factors by curcumin in rats with colitis. Di Yi Jun Yi Da Xue Xue Bao 24(12):1353–1358 (Chinese) PubMedCAS Google Scholar
Fukata M, Abreu MT (2007) TLR4 signalling in the intestine in health and disease. Biochem Soc Trans 35(Pt 6):1473–1478 (Review) ArticlePubMedCAS Google Scholar
Zhang R, Li Y, Beck PL, McCafferty DM (2007) Toll-like receptor 4 regulates colitis-associated adenocarcinoma development in interleukin-10-deficient (IL-10(-/-) mice. Biochem Soc Trans 35(Pt 5):1375–1376 (Review) PubMedCAS Google Scholar
Cario E (2008) Therapeutic impact of toll-like receptors on inflammatory bowel diseases: a multiple-edged sword. Inflamm Bowel Dis 14(3):411–421 (Review) ArticlePubMed Google Scholar
Santin I, Castellanos-Rubio A, Hualde I, Castaño L, Vitoria JC, Bilbao JR (2007) Toll-like receptor 4 (TLR4) gene polymorphisms in celiac disease. Tissue Antigens 70(6):495–498 ArticlePubMedCAS Google Scholar
Browning BL, Huebner C, Petermann I, Gearry RB, Barclay ML, Shelling AN, Ferguson LR (2007) Has toll-like receptor 4 been prematurely dismissed as an inflammatory bowel disease gene? Association study combined with meta-analysis shows strong evidence for association. Am J Gastroenterol 102(11):2504–2512 ArticlePubMedCAS Google Scholar
Kullberg BJ, Ferwerda G, de Jong DJ, Drenth JP, Joosten LA, Van der Meer JW, Netea MG (2008) Crohn’s disease patients homozygous for the 3020insC NOD2 mutation have a defective NOD2/TLR4 cross-tolerance to intestinal stimuli. Immunology 123(4):600–605 ArticlePubMedCAS Google Scholar
Heimesaat MM, Fischer A, Jahn HK, Niebergall J, Freudenberg M, Blaut M, Liesenfeld O, Schumann RR, Göbel UB, Bereswill S (2007) Exacerbation of murine ileitis by toll-like receptor 4 mediated sensing of lipopolysaccharide from commensal Escherichia coli. Gut 56(7):941–948 ArticlePubMedCAS Google Scholar
Ishihara S, Rumi MA, Ortega-Cava CF, Kazumori H, Kadowaki Y, Ishimura N, Kinoshita Y (2006) Therapeutic targeting of toll-like receptors in gastrointestinal inflammation. Curr Pharm Des 12(32):4215–4228 (Review) ArticlePubMedCAS Google Scholar
Baumgart DC, Dignass AU (2004) Current biological therapies for inflammatory bowel disease. Curr Pharm Des 10:4127–4147 ArticlePubMedCAS Google Scholar
Beutler B (2002) TLR-4 as the mammalian endotoxin sensor. Curr Top Microbiol Immunol 270:109–120 PubMedCAS Google Scholar
Furrie E, Macfarlane S, Thomson G, Macfarlane GT (2005) Toll-like receptors-2, -3, and -4 expression patterns on human colon and their regulation by mucosal-associated bacteria. Immunology 115:565–574 ArticlePubMedCAS Google Scholar
Guslandi M (2005) Antibiotics for inflammatory bowel disease: do they work? Eur J Gastroenterol Hepatol 17:145–147 ArticlePubMedCAS Google Scholar
Ukil A, Maity S, Karmakar S, Datta N, Vedasiromoni JR, Das PK (2003) Curcumin, the major component of food flavour turmeric, reduces mucosal injury in trinitrobenzene sulphonic acid-induced colitis. Br J Pharmacol 139(2):209–218 ArticlePubMedCAS Google Scholar
Iwasaki A, Medzhitov R (2004) Toll-like receptor control of the adaptive immune responses. Nat Immunol 5:987–995 ArticlePubMedCAS Google Scholar
Kirschning CJ, Schumann RR (2002) TLR-2: cellular sensor for microbial and endogenous molecular patterns. Curr Top Microbiol Immunol 270:121–144 PubMedCAS Google Scholar
Kuhl AA, Loddenkemper C, Westermann J, Hoffmann JC (2002) Role of gamma delta T cells in inflammatory bowel disease. Pathobiology 70:150–155 ArticlePubMed Google Scholar