Sanz J, Fayad ZA. Imaging of atherosclerotic cardiovascular disease. Nature. 2008;451:953–7. ArticleCASPubMed Google Scholar
Canet-Soulas E, Letourneur D. Biomarkers of atherosclerosis and the potential of MRI for the diagnosis of vulnerable plaque. Magn Reson Mater Phy. 2007;20:129–42. ArticleCAS Google Scholar
Briley-Saebo KC, Mulder WJM, Venkatesh Mani V, Hyafil F, Amirbekian V, Aguinaldo JGS, et al. Magnetic resonance imaging of vulnerable atherosclerotic plaques: current imaging strategies and molecular imaging probes. J Mag Res Imag. 2007;26:460–79. Article Google Scholar
Jaffer FA, Libby P, Weissleder R. Molecular and cellular imaging of atherosclerosis. Emerging applications. J Am Coll Cardiol. 2006;47:1328–38. ArticleCASPubMed Google Scholar
Amirbekian V, Lipinski MJ, Briley-Saebo KC, Amirbekian S, Aguinaldo JGS, Weinreb DB, et al. Detecting and assessing macrophages in vivo to evaluate atherosclerosis noninvasively using molecular MRI. Proc Nat Acad Sci U S A. 2007;104:961–6. ArticleCAS Google Scholar
Nair SA, Kolodziej AF, Bhole G, Greenfield MT, McMurry TJ, Caravan P. Monovalent and bivalent fibrin-specific MRI contrast agents for detection of thrombus. Angew Chem Int Ed. 2008;47:4918–21. ArticleCAS Google Scholar
Winter PM, Caruthers SD, Zhang H, Williams TA, Wickline SA, Lanza GM. Antiangiogenic synergism of integrin-targeted Fumagillin nanoparticles and atorvastatin in atherosclerosis. JACC: Cardiovasc Imaging. 2008;1:624–34. Article Google Scholar
Winter PM, Neubauer AM, Caruthers SD, Harris TD, Robertson JD, Williams TA, et al. Endothelial avb3 integrin-targeted Fumagillin nanoparticles inhibit angiogenesis in atherosclerosis. Arterioscler Thromb Vasc Biol. 2006;26:2103–9. ArticleCASPubMed Google Scholar
Bhave G, Lewis JB, Chang SS. Association of gadolinium based magnetic resonance imaging contrast agents and nephrogenic systemic fibrosis. J Urol. 2008;180:830–5. ArticleCASPubMed Google Scholar
Thorek DLJ, Chen AK, Czupryna J, Tsourkas A. Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed Eng. 2006;34:23–38. ArticlePubMed Google Scholar
Sigovan M, Boussel L, Sulaiman A, Sappey-Marinier D, Alsaid H, Desbleds-Mansard C, et al. Rapid-clearance iron nanoparticles for inflammation imaging of atherosclerotic plaque: initial experience in animal model. Radiology. 2009;252:401–9. ArticlePubMed Google Scholar
Morris JB, Olzinski AR, Bernard RE, Aravindhan K, Mirabile RC, Boyce R, et al. p38 MAPK inhibition reduces aortic ultrasmall superparamagnetic iron oxide uptake in a mouse model of atherosclerosis. MRI assessment. Arterioscler Thromb Vasc Biol. 2008;28:265–71. ArticleCASPubMed Google Scholar
Durand E, Raynaud JS, Bruneval P, Brigger I, Al Haj Zen A, Mandet C, et al. Magnetic resonance imaging of ruptured plaques in the rabbit with ultrasmall superparamagnetic particles of iron oxide. J Vasc Res. 2007;44:119–28. ArticleCASPubMed Google Scholar
Ruehm SG, Corot C, Vogt P, Kolb S, Debatin JF. Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation. 2001;103:415–22. ArticleCASPubMed Google Scholar
Hyafil F, Laissy J-P, Mazighi M, Tchétché D, Louedec L, Adle-Biassette H, et al. Ferumoxtran-10–Enhanced MRI of the hypercholesterolemic rabbit aorta relationship between signal loss and macrophage infiltration. Arterioscler Thromb Vasc Biol. 2006;26:176–81. ArticleCASPubMed Google Scholar
Weissleder R, Stark DD, Engelstad BL, Bacon BR, Compton CC, White DL, et al. Superparamagnetic iron oxide: pharmacokinetics and toxicity. Am J Roentgenol. 1989;152:167–73. ArticleCAS Google Scholar
Singh N, Kenkins GJS, Asadi R, Doak SH. Potential toxicity of Superparamagnetic Iron Oxide Nanoparticles (SPION). Nano Rev. 2010;1:5358. Article Google Scholar
McAteer MA, Schneider JE, Ali ZA, Warrick N, Bursill CA, Von zur Muhlen C, et al. Magnetic resonance imaging of endothelial adhesion molecules in mouse atherosclerosis using dual-targeted microparticles of iron oxide. Arterioscler Thromb Vasc Biol. 2008;28:77–83. ArticleCASPubMed CentralPubMed Google Scholar
Nahrendorf M, Jaffer FA, Kelly KA, Sosnovik DE, Aikawa E, Libby P, et al. Noninvasive vascular cell adhesion Molecule-1 imaging identifies inflammatory activation of cells in atherosclerosis. Circulation. 2006;114:1504–11. ArticleCASPubMed Google Scholar
Kelly KA, Allport JR, Tsourkas A, Shinde-Patil VR, Josephson L, Weissleder R. Detection of vascular adhesion molecule-1 expression using a novel multimodal nanoparticle. Circ Res. 2005;96:327–36. ArticleCASPubMed Google Scholar
Smith BR, Heverhagen J, Knopp M, Schmalbrock P, Shapiro J, Shiomi M, et al. Localization to atherosclerotic plaque and biodistribution of biochemically derivatized Superparamagnetic Iron Oxide Nanoparticles (SPIONs) contrast particles for Magnetic Resonance Imaging (MRI). Biomed Microdevices. 2007;9:719–27. ArticlePubMed Google Scholar
Sosnovik DE, Schellenberger EA, Nahrendorf M, Novikov MS, Matsui T, Dai G, et al. Magnetic resonance imaging of cardiomyocyte apoptosis with a novel magneto-optical nanoparticle. Magn Reson Med. 2005;54:718–24. ArticlePubMed Google Scholar
Tu C, Ng TSC, Sohi HK, Palko HA, House A, Jacobs RE, et al. Receptor-targeted iron oxide nanoparticles for molecular MR imaging of inflamed atherosclerotic plaques. Biomaterials. 2011;32:7209–16. ArticleCASPubMed CentralPubMed Google Scholar
Radermacher KA, Beghein N, Boutry S, Laurent S, Elst LV, Muller RN, et al. In vivo detection of inflammation using pegylated iron oxide particles targeted at E-selectin a multimodal approach using MR Imaging and EPR Spectroscopy. Invest Radiol. 2009;44:398–404. ArticleCASPubMed Google Scholar
Kang HW, Josephson L, Petrovsky A, Weissleder R, Bogdanov A. Magnetic resonance imaging of inducible E-selectin expression in human endothelial cell culture. Bioconjugate Chem. 2002;13:122–7. ArticleCAS Google Scholar
Crowther MA. Pathogenesis of Atherosclerosis. Hematol. 2005:436–41.
Zhao L, Lee E, Zukas AM, Middleton MK, Kinder M, Acharya PS, et al. CD44 expressed on both bone marrow–derived and non–bone marrow–derived cells promotes atherogenesis in ApoE-deficient mice. Arterioscler Thromb Vasc Biol. 2008;28:1283–9. ArticleCASPubMed Google Scholar
Zhao L, Hall JA, Levenkova N, Lee E, Middleton MK, Zukas AM, et al. CD44 regulates vascular gene expression in a proatherogenic environment. Arterioscler Thromb Vasc Biol. 2007;27:886–92. ArticleCASPubMed Google Scholar
Cuff CA, Kothapalli D, Azonobi I, Chun S, Zhang Y, Belkin R, et al. The adhesion receptor CD44 promotes atherosclerosis by mediating inflammatory cell recruitment and vascular cell activation. J Clin Invest. 2001;108:1031–40. ArticleCASPubMed CentralPubMed Google Scholar
Hägg D, Sjöberg S, Hultén LM, Fagerberg B, Wiklund O, Rosengren A, et al. Augmented levels of CD44 in macrophages from atherosclerotic subjects: a possible IL-6–CD44 feedback loop? Atherosclerosis. 2007;190:291–7. ArticlePubMed Google Scholar
McKee CM, Penno MB, Cowman M, Burdick MD, Strieter RM, Bao C, et al. Hyaluronan (HA) fragments induce chemokine gene expression in alveolar macrophages: the role of HA size and CD44. J Clin Invest. 1996;98:2403–13. ArticleCASPubMed CentralPubMed Google Scholar
Jain M, He Q, Lee W-S, Kashiki S, Foster LC, Tsai J-C, et al. Role of CD44 in the reaction of vascular smooth muscles cells to arterial wall injury. J Clin Invest. 1996;97:596–603. ArticleCASPubMed CentralPubMed Google Scholar
Puré E, Cuff CA. A crucial role for CD44 in inflammation. Trends Mol Med. 2001;7:213–21. ArticlePubMed Google Scholar
Krettek A, Sukhova GK, Schönbeck U, Libby P. Enhanced expression of CD44 variants in human atheroma and abdominal aortic aneurysm. Possible role for a feedback loop in endothelial cells. Am J Pathol. 2004;165:1571–81. ArticleCASPubMed CentralPubMed Google Scholar
Kolodgie FD, Burke AP, Farb A, Weber DK, Kutys R, Wight TN, et al. Differential accumulation of proteoglycans and hyaluronan in culprit lesions. Insights into plaque erosion. Arterioscler Thromb Vasc Biol. 2002;22:1642–8. ArticleCASPubMed Google Scholar
Kinscherf R, Wagner M, Kamencic H, Bonaterra GA, Hou D, Schiele RA, et al. Characterization of apoptotic macrophages in atheromatous tissue of humans and heritable hyperlipidemic rabbits. Atherosclerosis. 1999;144:33–9. ArticleCASPubMed Google Scholar
Ponta H, Sherman L, Herrlich PA. CD44: from adhesion molecules to signalling regulators. Nature Rev Mol Cell Biol. 2003;4:33–45. ArticleCAS Google Scholar
Lapcik Jr L, Lapcik L, De Smedt S, Demeester J, Chabrecek P. Hyaluronan: preparation, structure, properties, and applications. Chem Rev. 1998;98:2663–84. ArticleCASPubMed Google Scholar
Nandi A, Estess P, Siegelman MH. Hyaluronan anchoring and regulation on the surface of vascular endothelial cells is mediated through the functionally active form of CD44. J Biol Chem. 2000;275:14939–48. ArticleCASPubMed Google Scholar
Levesque MC, Haynes BF. In vitro culture of human peripheral blood monocytes induces hyaluronan binding and up-regulates monocyte variant CD44 lsoform expression. J Immunol. 1996;156:1557–65. CASPubMed Google Scholar
Brown KL, Maiti A, Johnson P. Role of sulfation in CD44-mediated hyaluronan binding induced by inflammatory mediators in human CD14 peripheral blood monocytes. J Immunol. 2001;167:5367–74. ArticleCASPubMed Google Scholar
Maiti A, Maki G, Johnson P. TNF-alpha induction of CD44-mediated leukocyte adhesion by sulfation. Science. 1998;282:941–3. ArticleCASPubMed Google Scholar
DeGrendele HC, Estess P, Siegelman MH. Requirement for CD44 in activated T cell extravasation into an inflammatory site. Science. 1997;278:672–5. ArticleCASPubMed Google Scholar
DeGrendele HC, Estess P, Picker LJ, Siegelman MH. CD44 and its ligand hyaluronate mediate rolling under physiologic flow: a novel lymphocyte-endothelial cell primary adhesion pathway. J Exp Med. 1996;183:1119–30. ArticleCASPubMed Google Scholar
El-boubbou K, Huang X. Glyco-nanomaterials: translating insights from the “Sugar-Code” to biomedical applications. Curr Med Chem. 2011;18:2060–78. ArticleCASPubMed Google Scholar
Palmacci S, Josephson L, Groman EV. Synthesis of Polysaccharide Covered Superparamagnetic Oxide Colloids. US Patent WO/1995/005669. 1995.
Kamat M, El-boubbou K, Zhu D, Lansdell T, Lu X, Li W, et al. Hyaluronic acid immobilized magnetic nanoparticles for active targeting and imaging of macrophages. Bioconjugate Chem. 2010;21:2128–35. ArticleCAS Google Scholar
El-Dakdouki MH, El-boubbou K, Zhu DC, Huang X. A simple method for the synthesis of hyaluronic acid coated magnetic nanoparticles for highly efficient cell labelling and in vivo imaging. RSC Adv. 2011;1:1449–52. ArticleCASPubMed CentralPubMed Google Scholar
El-Dakdouki MH, Zhu DC, El-boubbou K, Kamat M, Chen J, Li W, et al. Development of multifunctional hyaluronan-coated nanoparticles for imaging and drug delivery to cancer cells. Biomacromolecules. 2012;13:1144–51. ArticleCASPubMed Google Scholar
Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharmaceutics. 2008;5:505–15. ArticleCAS Google Scholar
Davignon J, Ganz P. Role of endothelial dysfunction in atherosclerosis. Circulation. 2004;109:III27–32. ArticlePubMed Google Scholar
Bouïs D, Hospers GAP, Meijer C, Molema G, Mulder NH. Endothelium in vitro: a review of human vascular endothelial cell lines for blood vessel-related research. Angiogenesis. 2001;4:91–102. ArticlePubMed Google Scholar
Hurt EM, Kawasaki BT, Klarmann GJ, Thomas SB, Farrar WL. CD44+CD24- prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis. Br J Cancer. 2008;98:756–65. ArticleCASPubMed CentralPubMed Google Scholar
Dhir R, Gau JT, Krill D, Bastacky S, Bahnson RR, Cooper DL, et al. CD44 expression in benign and neoplastic human prostates. Mol Diagn. 1997;2:197–204. ArticleCASPubMed Google Scholar
Yanni AE. The laboratory rabbit: an animal model of atherosclerosis research. Lab Animals. 2004;38:246–56. ArticleCAS Google Scholar
El-Dakdouki MH, Huang X. Biological applications of hyaluronic acid functionalized nanomaterials. In X. Huang and J. Barchi (eds.), Petite and Sweet: Glyco-nanotechnology as a bridge to new medicines, ACS Symposium Series, 2011, pp. 181–213 and references cited therein.
Platt VM, Szoka Jr FC. Anticancer therapeutics: targeting macromolecules and nanocarriers to hyaluronan or CD44, a hyaluronan receptor. Mol Pharmaceutics. 2008;5:474–86. references cited therein. ArticleCAS Google Scholar
Choi KY, Min KH, Yoon HY, Kim K, Park JH, Kwon IC, et al. PEGylation of hyaluronic acid nanoparticles improves tumor targetability in vivo. Biomaterials. 2011;32:1880–9. ArticleCASPubMed Google Scholar
Rivkin I, Cohen K, Koffler J, Melikhov D, Peer D, Margalit R. Paclitaxel-clusters coated with hyaluronan as selective tumor-targeted nanovectors. Biomaterials. 2010;31:7106–14. ArticleCASPubMed Google Scholar
Bachar G, Cohen K, Hod R, Feinmesser R, Mizrachi A, Shpitzer T, et al. Hyaluronan-grafted particle clusters loaded with Mitomycin C as selective nanovectors for primary head and neck cancers. Biomaterials. 2011;32:4840–8. ArticleCASPubMed Google Scholar
Banerji S, Wright AJ, Noble M, Mahoney DJ, Campbell ID, Day AJ, et al. Structures of the CD44–hyaluronan complex provide insight into a fundamental carbohydrate protein interaction. Nat Struc Mol Biol. 2007;14:234–9. ArticleCAS Google Scholar
Tammi R, Rilla K, Pienimäki JP, MacCallum D, Hogg M, Luukkonen M, et al. Hyaluronan enters keratinocytes by a novel endocytic route for catabolism. J Biol Chem. 2001;276:35111–22. ArticleCASPubMed Google Scholar
Tammi R, MacCallum D, Hascall VC, Pienimäki JP, Hyttinen M, Tammi M. Hyaluronan bound to CD44 on keratinocytes is displaced by hyaluronan decasaccharides and not hexasaccharides. J Biol Chem. 1998;273:28878–88. ArticleCASPubMed Google Scholar
Eliaz RE, Nir S, Marty C, Szoka Jr FC. Determination and modeling of kinetics of cancer cell killing by doxorubicin and doxorubicin encapsulated in targeted liposomes. Cancer Res. 2004;64:711–8. ArticleCASPubMed Google Scholar
Luo Y, Bernshaw NJ, Lu ZR, Kopecek J, Prestwich GD. Targeted delivery of doxorubicin by HPMA copolymer-hyaluronan bioconjugates. Pharm Res. 2002;19:396–402. ArticleCASPubMed Google Scholar
Eliaz RE, Szoka Jr FC. Liposome-encapsulated doxorubicin targeted to CD44: a strategy to kill CD44-overexpressing tumor cells. Cancer Res. 2001;61:2592–601. CASPubMed Google Scholar
Lee JL, Wang MJ, Sudhir PR, Chen JY. CD44 engagement promotes matrix-derived survival through the CD44-Src-Integrin axis in lipid rafts. Mol Cell Biol. 2008;28:5710–23. ArticleCASPubMed CentralPubMed Google Scholar
Thankamony SP, Knudson W. Acylation of CD44 and its association with lipid rafts are required for receptor and hyaluronan endocytosis. J Biol Chem. 2006;281:34601–9. ArticleCASPubMed CentralPubMed Google Scholar
Qhattal HSS, Liu X. Characterization of CD44-mediated cancer cell uptake and intracellular distribution of hyaluronan-grafted liposomes. Mol Pharmaceutics. 2011;8:1233–46. ArticleCAS Google Scholar
Ahrens T, Assmann V, Fieber C, Termeer CC, Herrlich P, Hofmann M, et al. CD44 is the principal mediator of hyaluronic-acid-induced melanoma cell proliferation. J Invest Dermatol. 2001;116:93–101. ArticleCASPubMed Google Scholar
Tang TY, Howarth SPS, Miller SR, Graves MJ, Patterson AJ, U-King-Im J-M, et al. The ATHEROMA (Atorvastatin Therapy: Effects on Reduction of Macrophage Activity) Study: evaluation using ultrasmall superparamagnetic iron oxide-enhanced magnetic resonance imaging in carotid disease. J Am Coll Card. 2009;53:2039–50. ArticleCAS Google Scholar
Fayad ZA, Razzouk L, Briley-Saebo KC, Mani V. Iron oxide magnetic resonance imaging for atherosclerosis therapeutic evaluation. Still “Rusty?”. J Am Coll Card. 2009;53:2051–2. Article Google Scholar