Vezina C, Kudelski A, Sehgal SN. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot (Tokyo). 1975;28(10):721–6. ArticleCAS Google Scholar
Chopra I, Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev. 2001;65(2):232–60 second page, table of contents. ArticleCASPubMedPubMed Central Google Scholar
Li R. Marinopyrroles: unique drug discoveries based on marine natural products. Med Res Rev. 2016;36(1):169–89. ArticleCASPubMed Google Scholar
Mayer AM, Glaser KB, Cuevas C, Jacobs RS, Kem W, Little RD, et al. The odyssey of marine pharmaceuticals: a current pipeline perspective. Trends Pharmacol Sci. 2010;31(6):255–65. ArticleCASPubMed Google Scholar
Kaiser R. Meaningful scents around the world. Zurich: Wiley, VCH; 2006.
Tokunaga T, Sugawara H, Tadano C, Muro M. Effect of stimulation of cold receptors with menthol on EMG activity of quadriceps muscle during low load contraction. Somatosens Mot Res. 2017;34(2):85–91. ArticlePubMed Google Scholar
Suchodolski J, Feder-Kubis J, Krasowska A. Antifungal activity of ionic liquids based on (−)-menthol: a mechanism study. Microbiol Res. 2017;197:56–64. ArticleCASPubMed Google Scholar
Wondergem R, Bartley JW. Menthol increases human glioblastoma intracellular Ca2+, BK channel activity and cell migration. J Biomed Sci. 2009;16:90. ArticlePubMedPubMed CentralCAS Google Scholar
Park EJ, Kim SH, Kim BJ, Kim SY, So I, Jeon JH. Menthol enhances an Antiproliferative activity of 1alpha,25-Dihydroxyvitamin D(3) in LNCaP cells. J Clin Biochem Nutr. 2009;44(2):125–30. ArticleCASPubMedPubMed Central Google Scholar
Watt EE, Betts BA, Kotey FO, Humbert DJ, Griffith TN, Kelly EW, et al. Menthol shares general anesthetic activity and sites of action on the GABA(a) receptor with the intravenous agent, propofol. Eur J Pharmacol. 2008;590(1–3):120–6. ArticleCASPubMed Google Scholar
Shahverdi AR, Fazeli MR, Rafii F, Kakavand M, Jamalifar H, Hamedi J. Inhibition of nitrofurantoin reduction by menthol leads to enhanced antimicrobial activity. J Chemother. 2003;15(5):449–53. ArticleCASPubMed Google Scholar
Juergens UR, Stober M, Vetter H. The anti-inflammatory activity of L-menthol compared to mint oil in human monocytes in vitro: a novel perspective for its therapeutic use in inflammatory diseases. Eur J Med Res. 1998;3(12):539–45. CASPubMed Google Scholar
Zimmermann M, Preac-Mursic V. In vitro activity of taurolidine, chlorophenol-camphor-menthol and chlorhexidine against oral pathogenic microorganisms. Arzneimittelforschung. 1992;42(9):1157–9. CASPubMed Google Scholar
Hoenen T, Feldmann H. Reverse genetics systems as tools for the development of novel therapies against filoviruses. Expert Rev Anti-Infect Ther. 2014;12(10):1253–63. ArticleCASPubMed Google Scholar
Johansen LM, Brannan JM, Delos SE, Shoemaker CJ, Stossel A, Lear C, et al. FDA-approved selective estrogen receptor modulators inhibit Ebola virus infection. Sci Transl Med. 2013;5(190):190ra179–9. ArticlePubMedPubMed CentralCAS Google Scholar
Madrid PB, Chopra S, Manger ID, Gilfillan L, Keepers TR, Shurtleff AC, Green CE, Iyer LV, Dilks HH, Davey RA, Kolokoltsov AA, Carrion R, Jr., Patterson JL, Bavari S, Panchal RG, Warren TK, Wells JB, Moos WH, Burke RL, Tanga MJ. A systematic screen of FDA-approved drugs for inhibitors of biological threat agents. PLoS One 2013;8(4):e60579. ArticleCASPubMedPubMed Central Google Scholar
Johansen LM, DeWald LE, Shoemaker CJ, Hoffstrom BG, Lear-Rooney CM, Stossel A, et al. A screen of approved drugs and molecular probes identifies therapeutics with anti-Ebola virus activity. Sci Transl Med. 2015;7(290):290ra289. ArticlePubMedCAS Google Scholar
Kouznetsova J, Sun W, Martinez-Romero C, Tawa G, Shinn P, Chen CZ, et al. Identification of 53 compounds that block Ebola virus-like particle entry via a repurposing screen of approved drugs. Emerg Microbes Infect. 2014;3(12):e84. ArticleCAS Google Scholar
Edwards MR, Pietzsch C, Vausselin T, Shaw ML, Bukreyev A, Basler CF. High-throughput Minigenome system for identifying small-molecule inhibitors of Ebola virus replication. ACS Infect Dis. 2015;1(8):380–7. ArticleCASPubMedPubMed Central Google Scholar
Cheng H, Lear-Rooney CM, Johansen L, Varhegyi E, Chen ZW, Olinger GG, et al. Inhibition of Ebola and Marburg virus entry by G protein-coupled receptor antagonists. J Virol. 2015;89(19):9932–8. ArticleCASPubMedPubMed Central Google Scholar
Anantpadma M, Kouznetsova J, Wang H, Huang R, Kolokoltsov A, Guha R, et al. Large-scale screening and identification of novel Ebola virus and Marburg virus entry inhibitors. Antimicrob Agents Chemother. 2016;60(8):4471–81. ArticleCASPubMedPubMed Central Google Scholar
Wang Y, Cui R, Li G, Gao Q, Yuan S, Altmeyer R, et al. Teicoplanin inhibits Ebola pseudovirus infection in cell culture. Antivir Res. 2016;125:1–7. ArticleCASPubMed Google Scholar
Luthra P, Liang J, Pietzsch CA, Khadka S, Edwards MR, Wei S, et al. A high throughput screen identifies benzoquinoline compounds as inhibitors of Ebola virus replication. Antivir Res. 2018;150:193–201. ArticleCASPubMed Google Scholar
Picazo E, Giordanetto F. Small molecule inhibitors of ebola virus infection. Drug Discov Today. 2014;20:277–86. ArticlePubMedCAS Google Scholar
Basu A, Mills DM, Mitchell D, Ndungo E, Williams JD, Herbert AS, et al. Novel small molecule entry inhibitors of Ebola virus. J Infect Dis. 2015;212(Suppl 2):S425–34. ArticleCAS Google Scholar
Long J, Wright E, Molesti E, Temperton N, Barclay W. Antiviral therapies against Ebola and other emerging viral diseases using existing medicines that block virus entry. F1000Res. 2015;4:30. ArticlePubMedPubMed Central Google Scholar
Carette JE, Raaben M, Wong AC, Herbert AS, Obernosterer G, Mulherkar N, et al. Ebola virus entry requires the cholesterol transporter Niemann-pick C1. Nature. 2011;477(7364):340–3. ArticleCASPubMedPubMed Central Google Scholar
Rhein BA, Maury WJ. Ebola virus entry into host cells: identifying therapeutic strategies. Curr Clin Microbiol Rep. 2015;2(3):115–24. ArticlePubMedPubMed Central Google Scholar
Ekins S, Freundlich JS, Clark AM, Anantpadma M, Davey RA. P. M. machine learning models identify molecules active against the Ebola virus in vitro. F1000Res. 2016;4:1091. Article Google Scholar
Ekins S, Lingerfelt MA, Comer JE, Freiberg AN, Mirsalis JC, O’Loughlin K, et al. Efficacy of Tilorone Dihydrochloride against Ebola virus infection. Antimicrob Agents Chemother. 2017;In Press;62.
Bai JPF, Hsu CW. Drug repurposing for Ebola virus disease: principles of consideration and the animal rule. J Pharm Sci. 2018. https://doi.org/10.1016/j.xphs.2018.1009.1010 Epub ahead of print.
Murray MF. Nicotinamide: an oral antimicrobial agent with activity against both Mycobacterium tuberculosis and human immunodeficiency virus. Clin Infect Dis. 2003;36(4):453–60. ArticleCASPubMed Google Scholar
Andrade-Ochoa S, Nevarez-Moorillon GV, Sanchez-Torres LE, Villanueva-Garcia M, Sanchez-Ramirez BE, Rodriguez-Valdez LM, et al. Quantitative structure-activity relationship of molecules constituent of different essential oils with antimycobacterial activity against Mycobacterium tuberculosis and Mycobacterium bovis. BMC Complement Altern Med. 2015;15:332.
Li WY, Ren JH, Tao NN, Ran LK, Chen X, Zhou HZ, et al. The SIRT1 inhibitor, nicotinamide, inhibits hepatitis B virus replication in vitro and in vivo. Arch Virol. 2016;161(3):621–30. ArticlePubMedCAS Google Scholar
Sneader W. Drug discovery a history. Cheppenham: Wiley; 2005.
Ntie-Kang F, Zofou D, Babiaka SB, Meudom R, Scharfe M, Lifongo LL, et al. AfroDb: a select highly potent and diverse natural product library from African medicinal plants. PLoS One. 2013;8(10):e78085. ArticleCASPubMedPubMed Central Google Scholar
Aboubakr HA, Nauertz A, Luong NT, Agrawal S, El-Sohaimy SA, Youssef MM, et al. In vitro antiviral activity of clove and ginger aqueous extracts against feline Calicivirus, a surrogate for human norovirus. J Food Prot. 2016;79(6):1001–12. ArticleCASPubMed Google Scholar
Sun WJ, Lv WJ, Li LN, Yin G, Hang X, Xue Y, et al. Eugenol confers resistance to tomato yellow leaf curl virus (TYLCV) by regulating the expression of SlPer1 in tomato plants. New Biotechnol. 2016;33(3):345–54. ArticleCASPubMed Google Scholar
Wang C, Fan Y. Eugenol enhances the resistance of tomato against tomato yellow leaf curl virus. J Sci Food Agric. 2014;94(4):677–82. ArticleCASPubMed Google Scholar
Dai JP, Zhao XF, Zeng J, Wan QY, Yang JC, Li WZ, et al. Drug screening for autophagy inhibitors based on the dissociation of Beclin1-Bcl2 complex using BiFC technique and mechanism of eugenol on anti-influenza a virus activity. PLoS One. 2013;8(4):e61026. ArticleCASPubMedPubMed Central Google Scholar
Astani A, Reichling J, Schnitzler P. Screening for antiviral activities of isolated compounds from essential oils. Evid Based Complement Alternat Med. 2011;2011:253643. ArticlePubMedPubMed Central Google Scholar
Benencia F, Courreges MC. In vitro and in vivo activity of eugenol on human herpesvirus. Phytother Res. 2000;14(7):495–500. ArticleCASPubMed Google Scholar
Bourne KZ, Bourne N, Reising SF, Stanberry LR. Plant products as topical microbicide candidates: assessment of in vitro and in vivo activity against herpes simplex virus type 2. Antivir Res. 1999;42(3):219–26. ArticleCASPubMed Google Scholar
Turgeon N, Michel K, Ha TL, Robine E, Moineau S, Duchaine C. Resistance of aerosolized bacterial viruses to four germicidal products. PLoS One. 2016;11(12):e0168815. ArticlePubMedPubMed CentralCAS Google Scholar
Pandey SK, Tandon S, Ahmad A, Singh AK, Tripathi AK. Structure-activity relationships of monoterpenes and acetyl derivatives against Aedes aegypti (Diptera: Culicidae) larvae. Pest Manag Sci. 2013;69(11):1235–8. CASPubMed Google Scholar
Marchese A, Barbieri R, Coppo E, Orhan IE, Daglia M, Nabavi SF, et al. Antimicrobial activity of eugenol and essential oils containing eugenol: a mechanistic viewpoint. Crit Rev Microbiol. 2017;43(6):668–89. ArticleCASPubMed Google Scholar
Abdullah ML, Hafez MM, Al-Hoshani A, Al-Shabanah O. Anti-metastatic and anti-proliferative activity of eugenol against triple negative and HER2 positive breast cancer cells. BMC Complement Altern Med. 2018;18(1):321. ArticleCASPubMedPubMed Central Google Scholar
Murray CW, Blundell TL. Structural biology in fragment-based drug design. Curr Opin Struct Biol. 2010;20(4):497–507. ArticleCASPubMed Google Scholar
Erlanson DA, McDowell RS, O'Brien T. Fragment-based drug discovery. J Med Chem. 2004;47(14):3463–82. ArticleCASPubMed Google Scholar
Bembenek SD, Tounge BA, Reynolds CH. Ligand efficiency and fragment-based drug discovery. Drug Discov Today. 2009;14(5–6):278–83. ArticleCASPubMed Google Scholar
Showler AT, Harlien JL. Effects of the botanical compound p-Anisaldehyde on horn Fly (Diptera: Muscidae) repellency, mortality, and reproduction. J Med Entomol. 2018;55(1):183–92. ArticleCASPubMed Google Scholar
Showler AT, Harlien JL. Botanical compound p-Anisaldehyde repels larval lone star tick (Acari: Ixodidae), and halts reproduction by gravid adults. J Med Entomol. 2018;55(1):200–9. ArticleCASPubMed Google Scholar
Zhang QH, Schneidmiller RG, Hoover DR. Essential oils and their compositions as spatial repellents for pestiferous social wasps. Pest Manag Sci. 2013;69(4):542–52. ArticleCASPubMed Google Scholar
Swanson JA, Torto B, Kells SA, Mesce KA, Tumlinson JH, Spivak M. Odorants that induce hygienic behavior in honeybees: identification of volatile compounds in chalkbrood-infected honeybee larvae. J Chem Ecol. 2009;35(9):1108–16. ArticleCASPubMed Google Scholar
Liu G, Nash PJ, Johnson B, Pietzsch C, Ilagan MX, Bukreyev A, et al. A sensitive in vitro high-throughput screen to identify Pan-filoviral replication inhibitors targeting the VP35-NP Interface. ACS Infect Dis. 2017;(3, 3):190–8. ArticleCASPubMedPubMed Central Google Scholar
Reeves WC. Partners: serendipity in arbovirus research. J Vector Ecol. 2001;26(1):1–6. CASPubMed Google Scholar
Duffin J. Poisoning the spindle: serendipity and discovery of the anti-tumor properties of the Vinca alkaloids. Pharm Hist. 2002;44(2):64–76. PubMed Google Scholar
Mao J, Yuan H, Wang Y, Wan B, Pieroni M, Huang Q, et al. From serendipity to rational antituberculosis drug discovery of mefloquine-isoxazole carboxylic acid esters. J Med Chem. 2009;52(22):6966–78. ArticleCASPubMed Google Scholar
Howland RH. Serendipity and psychopharmacology. J Psychosoc Nurs Ment Health Serv. 2010;48(10):9–12. ArticlePubMed Google Scholar
Monneret C. Platinum anticancer drugs. From serendipity to rational design. Ann Pharm Fr. 2011;69(6):286–95. ArticleCASPubMed Google Scholar
Bolgar B, Arany A, Temesi G, Balogh B, Antal P, Matyus P. Drug repositioning for treatment of movement disorders: from serendipity to rational discovery strategies. Curr Top Med Chem. 2013;13(18):2337–63. ArticleCASPubMed Google Scholar
Ekins S, Diaz N, Chung J, Mathews P, McMurtray A. Enabling anyone to translate clinically relevant ideas to therapies. Pharm Res. 2017;34(1):1–6. ArticleCASPubMed Google Scholar
Young DW. Considerations related to small-molecule screening collections. In: Bittker JA, Ross NT, editors. High throughput screening methods: evolution and refinement. Cambridge: The Royal Society of Chemistry; 2017. p. 16–36. Google Scholar
Rodrigues T. Harnessing the potential of natural products in drug discovery from a cheminformatics vantage point. Org Biomol Chem. 2017;15(44):9275–82. ArticleCASPubMed Google Scholar
Mohamed A, Nguyen CH, Mamitsuka H. Current status and prospects of computational resources for natural product dereplication: a review. Brief Bioinform. 2016;17(2):309–21. ArticleCASPubMed Google Scholar
Harvey AL, Edrada-Ebel R, Quinn RJ. The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov. 2015;14(2):111–29. ArticleCASPubMed Google Scholar