Kuhn, J. H. et al. Conserved receptor-binding domains of Lake Victoria marburgvirus and Zaire ebolavirus bind a common receptor. J. Biol. Chem.281, 15951–15958 (2006) ArticleCASPubMed Google Scholar
Chandran, K., Sullivan, N. J., Felbor, U., Whelan, S. P. & Cunningham, J. M. Endosomal proteolysis of the Ebola virus glycoprotein is necessary for infection. Science308, 1643–1645 (2005) ArticleADSCASPubMedPubMed Central Google Scholar
Nickerson, D. P., Brett, C. L. & Merz, A. J. Vps-C complexes: gatekeepers of endolysosomal traffic. Curr. Opin. Cell Biol.21, 543–551 (2009) ArticleCASPubMedPubMed Central Google Scholar
Carstea, E. D. et al. Niemann-Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science277, 228–231 (1997) ArticleCASPubMed Google Scholar
Carette, J. E. et al. Global gene disruption in human cells to assign genes to phenotypes by deep sequencing. Nature Biotechnol.29, 542–546 (2011) ArticleCAS Google Scholar
Carette, J. E. et al. Haploid genetic screens in human cells identify host factors used by pathogens. Science326, 1231–1235 (2009) ArticleADSCASPubMed Google Scholar
Wong, A. C., Sandesara, R. G., Mulherkar, N., Whelan, S. P. & Chandran, K. A forward genetic strategy reveals destabilizing mutations in the Ebolavirus glycoprotein that alter its protease dependence during cell entry. J. Virol.84, 163–175 (2010) ArticleCASPubMed Google Scholar
Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell131, 861–872 (2007) ArticleCASPubMed Google Scholar
Poteryaev, D., Datta, S., Ackema, K., Zerial, M. & Spang, A. Identification of the switch in early-to-late endosome transition. Cell141, 497–508 (2010) ArticleCASPubMed Google Scholar
Rink, J., Ghigo, E., Kalaidzidis, Y. & Zerial, M. Rab conversion as a mechanism of progression from early to late endosomes. Cell122, 735–749 (2005) ArticleCASPubMed Google Scholar
Sbrissa, D. et al. Core protein machinery for mammalian phosphatidylinositol 3,5-bisphosphate synthesis and turnover that regulates the progression of endosomal transport. Novel Sac phosphatase joins the ArPIKfyve-PIKfyve complex. J. Biol. Chem.282, 23878–23891 (2007) ArticleCASPubMed Google Scholar
Dell’Angelica, E. C. The building BLOC(k)s of lysosomes and related organelles. Curr. Opin. Cell Biol.16, 458–464 (2004) ArticlePubMed Google Scholar
Tiede, S. et al. Mucolipidosis II is caused by mutations in GNPTA encoding the alpha/beta GlcNAc-1-phosphotransferase. Nature Med.11, 1109–1112 (2005) ArticleCASPubMed Google Scholar
Goldman, S. D. & Krise, J. P. Niemann-Pick C1 functions independently of Niemann-Pick C2 in the initial stage of retrograde transport of membrane-impermeable lysosomal cargo. J. Biol. Chem.285, 4983–4994 (2010) ArticleCASPubMed Google Scholar
Lloyd-Evans, E. et al. Niemann-Pick disease type C1 is a sphingosine storage disease that causes deregulation of lysosomal calcium. Nature Med.14, 1247–1255 (2008) ArticleCASPubMed Google Scholar
Tang, Y. Y., Leao, I. C., Coleman, E. M., Broughton, R. S. & Hildreth, J. E. K. Deficiency of Niemann-Pick type C-1 protein impairs release of human immunodeficiency virus type 1 and results in Gag accumulation in late endosomal/lysosomal compartments. J. Virol.83, 7982–7995 (2009) ArticleCASPubMedPubMed Central Google Scholar
Naureckiene, S. et al. Identification of HE1 as the second gene of Niemann-Pick C disease. Science290, 2298–2301 (2000) ArticleADSCASPubMed Google Scholar
Wool-Lewis, R. J. & Bates, P. Characterization of Ebola virus entry by using pseudotyped viruses: identification of receptor-deficient cell lines. J. Virol.72, 3155–3160 (1998) CASPubMedPubMed Central Google Scholar
Cenedella, R. J. Cholesterol synthesis inhibitor U18666A and the role of sterol metabolism and trafficking in numerous pathophysiological processes. Lipids44, 477–487 (2009) ArticleCASPubMed Google Scholar
Rodriguez-Lafrasse, C. et al. Abnormal cholesterol metabolism in imipramine-treated fibroblast cultures. Similarities with Niemann-Pick type C disease. Biochim Biophys Acta1043, 123–128 (1990) ArticleCASPubMed Google Scholar
Kondratowicz, A. S. et al. T-cell immunoglobulin and mucin domain 1 (TIM-1) is a receptor for Zaire Ebolavirus and Lake Victoria Marburgvirus. Proc. Natl Acad. Sci. USA.108, 8426–8431 (2011) ArticleADSCASPubMedPubMed Central Google Scholar
Alvarez, C. P. et al. C-type lectins DC-SIGN and L-SIGN mediate cellular entry by Ebola virus in cis and in trans . J. Virol.76, 6841–6844 (2002) ArticleCASPubMedPubMed Central Google Scholar
Saeed, M. F., Kolokoltsov, A. A., Albrecht, T. & Davey, R. A. Cellular entry of ebola virus involves uptake by a macropinocytosis-like mechanism and subsequent trafficking through early and late endosomes. PLoS Pathog . 6, http://dx.doi.org/10.1371/journal.ppat.1001110 (2010)
Nanbo, A. et al. Ebolavirus is internalized into host cells via macropinocytosis in a viral glycoprotein-dependent manner. PLoS Pathog . 6, http://dx.doi.org/10.1371/journal.ppat.1001121 (2010)
Cruz, J. C., Sugii, S., Yu, C. & Chang, T. Y. Role of Niemann-Pick type C1 protein in intracellular trafficking of low density lipoprotein-derived cholesterol. J. Biol. Chem.275, 4013–4021 (2000) ArticleCASPubMed Google Scholar
Geisbert, T. W. et al. Pathogenesis of Ebola hemorrhagic fever in cynomolgus macaques: evidence that dendritic cells are early and sustained targets of infection. Am. J. Pathol.163, 2347–2370 (2003) ArticleCASPubMedPubMed Central Google Scholar
Geisbert, T. W. et al. Pathogenesis of Ebola hemorrhagic fever in primate models: evidence that hemorrhage is not a direct effect of virus-induced cytolysis of endothelial cells. Am. J. Pathol.163, 2371–2382 (2003) ArticleCASPubMedPubMed Central Google Scholar
Whelan, S. P., Barr, J. N. & Wertz, G. W. Identification of a minimal size requirement for termination of vesicular stomatitis virus mRNA: implications for the mechanism of transcription. J. Virol.74, 8268–8276 (2000) ArticleCASPubMedPubMed Central Google Scholar
Whelan, S. P., Ball, L. A., Barr, J. N. & Wertz, G. T. Efficient recovery of infectious vesicular stomatitis virus entirely from cDNA clones. Proc. Natl Acad. Sci. USA92, 8388–8392 (1995) ArticleADSCASPubMedPubMed Central Google Scholar
Takada, A., Watanabe, S., Okazaki, K., Kida, H. & Kawaoka, Y. Infectivity-enhancing antibodies to Ebola virus glycoprotein. J. Virol.75, 2324–2330 (2001) ArticleCASPubMedPubMed Central Google Scholar
Morgenstern, J. P. & Land, H. Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res.18, 3587–3596 (1990) ArticleCASPubMedPubMed Central Google Scholar
Pentchev, P. G. et al. The cholesterol storage disorder of the mutant BALB/c mouse. A primary genetic lesion closely linked to defective esterification of exogenously derived cholesterol and its relationship to human type C Niemann-Pick disease. J. Biol. Chem.261, 2772–2777 (1986) CASPubMed Google Scholar
Ebert, D. H., Deussing, J., Peters, C. & Dermody, T. S. Cathepsin L and cathepsin B mediate reovirus disassembly in murine fibroblast cells. J. Biol. Chem.277, 24609–24617 (2002) ArticleCASPubMed Google Scholar
Blum, G. et al. Dynamic imaging of protease activity with fluorescently quenched activity-based probes. Nature Chem. Biol.1, 203–209 (2005) ArticleCAS Google Scholar
Cureton, D. K., Massol, R. H., Saffarian, S., Kirchhausen, T. L. & Whelan, S. P. Vesicular stomatitis virus enters cells through vesicles incompletely coated with clathrin that depend upon actin for internalization. PLoS Pathog.5, e1000394 (2009) ArticlePubMedPubMed Central Google Scholar
Ehrlich, M. et al. Endocytosis by random initiation and stabilization of clathrin-coated pits. Cell118, 591–605 (2004) ArticleCASPubMed Google Scholar
Lefrancois, L. & Lyles, D. S. The interaction of antibody with the major surface glycoprotein of vesicular stomatitis virus. I. Analysis of neutralizing epitopes with monoclonal antibodies. Virology121, 157–167 (1982) ArticleCASPubMed Google Scholar
Wilson, J. A. et al. Epitopes involved in antibody-mediated protection from Ebola virus. Science287, 1664–1666 (2000) ArticleADSCASPubMed Google Scholar
Maruyama, T. et al. Ebola virus can be effectively neutralized by antibody produced in natural human infection. J. Virol.73, 6024–6030 (1999) CASPubMedPubMed Central Google Scholar
Bray, M., Davis, K., Geisbert, T., Schmaljohn, C. & Huggins, J. A mouse model for evaluation of prophylaxis and therapy of Ebola hemorrhagic fever. J. Infect. Dis.178, 651–661 (1998) ArticleCASPubMed Google Scholar
Warfield, K. L. et al. Development of a model for marburgvirus based on severe-combined immunodeficiency mice. Virol. J.4, 108 (2007) ArticlePubMedPubMed Central Google Scholar
Muhlberger, E., Weik, M., Volchkov, V. E., Klenk, H. D. & Becker, S. Comparison of the transcription and replication strategies of Marburg virus and Ebola virus by using artificial replication systems. J. Virol.73, 2333–2342 (1999) CASPubMedPubMed Central Google Scholar