Brassicaceae: a rich source of health improving phytochemicals (original) (raw)
Abdull Razis AF, Noor NN (2013) Cruciferous vegetable: dietary phytochemicals for cancer prevention. Asian Pac J Cancer Prev 14:1565–1570 ArticlePubMed Google Scholar
Abdull Razis AF, Bagatta M, De Nicola GR, Iori R, Ioannides C (2010) Inatct glucosinolates modulate hepatic cytochrome P 450 and phase II conjugation activities and may contribute directly to the chemopreventive activity of cruciferous vegetables. Toxicology 277:74–85
Abdull Razis AF, De Nicola GR, Pagnotta E, Iori R, Ioannides C (2012) 4-Methylsulfanyl-3-butenyl isothiocyanate derived from glucoraphasatin is a potent inducer of rat hepatic phase II enzymes and a potential chemopreventive agent. Arch Toxicol 86:183–194 ArticleCASPubMed Google Scholar
Abdull Razis AF, Bagatta M, De Nicola GR, Iori R, Ioannides C (2011) Up-regulation of cytochrome P450 and phase I enzyme systes in rat precision-cut rat lung slices by the intact glucosinolates, glucoraphanin and glucoerucin. Lung Cancer 71:298–305 ArticlePubMed Google Scholar
Agerbirk N, Worwick S, Hansen PR, Olsen CE (2008) Sinapis phylogeny and evolution of glucosinolates and specific nitrile degrading enzymes. Phytochemistry 69:2937–2949 ArticleCAS Google Scholar
Agerbirk N, Olsen CE (2011) Isoferuloyl derivatives of five seed glucosinolates in the crucifer genus Barbarea. Phytochemistry 72:610–623 ArticleCASPubMed Google Scholar
Agerbirk N, Olsen CE, Nielsen JK (2001) Seasonal variation in leaf glucosinolates and insect resistance in two types of Barbarea vulgaris ssp. arcuata. Phytochemistry 58:91–100 ArticleCASPubMed Google Scholar
Agerbirk N, Ørgaard M, Nielsen JK (2003) Glucosinolates, flea beetle resistance, and leaf pubescence as taxonomic characters in the genus Barbarea (Brassicaceae). Phytochemistry 63:69–80 ArticleCASPubMed Google Scholar
Agerbirk N, De Vos M, Kim JH, Jander G (2009) Indole glucosinolate breakdown and its biological effects. Phytochem Rev 8:101–120 ArticleCAS Google Scholar
Agrawal AA, Kurashige NS (2003) A role for isothiocyanates in plant resistance against the specialist herbivore Pieris rapae. J Chem Ecol 29:1043–1415 Article Google Scholar
Al-Shehbaz IA, Beilstein MA, Kellog EA (2006) Systematic and phylogeny of the Brassicaceae (Crucifera): an overview. Plant Syst Evol 259:89–120 Article Google Scholar
Angiosperm Phylogeny Group (2003) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot J Linn Soc 141:399–436 Article Google Scholar
Ares AM, Nozal MJ, Bernal J (2013) Extraction, chemical characterization and biological activity determination of broccoli health promoting compounds. J Chromatogr A 1313:78–95 ArticleCASPubMed Google Scholar
Argentieri MP, Avato P (2005) Profilo metabolico e bioattività di Brassicaceae. Inf Bot Ital 37:948–949 Google Scholar
Argentieri MP, Accogli R, Fanizzi FP, Avato P (2011) Glucosinolates profile of “mugnolo”, a variety of Brassica oleracea L. native to Southern Italy (Salento). Planta Med 77:287–292 ArticleCASPubMed Google Scholar
Argentieri MP, Macchia F, Papadia P, Fanizzi FP, Avato P (2012) Bioactive compounds from Capparis spinosa subsp. rupestris. Ind Crops Prod 36:65–69 ArticleCAS Google Scholar
Avato P, D’Addabbo T, Leonetti P, Argentieri MP (2013) Nematicidal potential of Brassicaceae. Phytochem Rev 12:791–802 ArticleCAS Google Scholar
Baenas N, Moreno DA, García-Viguera C (2012) Selecting sprouts of Brassicaceae for optimum phytochemical composition. JAFC 60:11409–11420 ArticleCAS Google Scholar
Baenas N, Ferreres F, García-Viguera C, Moreno DA (2015) Radish sprouts—characterization and elicitation of novel varieties rich in anthocyanins. Food Res Int 69:305–312 ArticleCAS Google Scholar
Bailey CD, Koch MA, Mayer M, Mummenhoff K, O’Kane SL Jr, Warwick SI, Windham MD, Al-Shehbaz IA (2006) Toward a global phylogeny of the Brassicaceae. Mol Biol Evol 23:2142–2160 ArticleCASPubMed Google Scholar
Barillari J, Canistro D, Paolini M, Ferroni F, Pedulli GF, Iori R, Valmigli L (2005) Direct antioxidant activity of purified glucoerucin, the dietary secondary metabolite contained in rocket (Eruca sativa Mill.) seeds and sprouts. JAFC 53:2475–2482 ArticleCAS Google Scholar
Bell L, Oruna-Concha MJ, Wagstaff C (2015) Identification and quantification of glucosinolate and flavonol compounds in rocket salad (Eruca sativa, Eruca vesicaria and Diplotaxis tenuifolia) by LC-MS: highlighting the potential for improving nutritional value of rocket crops. Food Chem 172:852–861 ArticlePubMed CentralCASPubMed Google Scholar
Bellostas N, Kachlicki P, Sørensen JC, Sørensen H (2007) Glucosinolate profiling of seeds and sprout of B. oleracea varieties used for food. Sci Hortic 114:234–242 ArticleCAS Google Scholar
Bennett RN, Rosa EAS, Mellon FA, Kroon PA (2006) Ontogenic profiling of glucosinolates, flavonoids and other secondary metabolites in Eruca sativa (salad rocket), Diplotaxis erucoides (wall rocket), Diplotaxis tenuifolia (wild rocket) and Bunia orientalis (Turkish rocket). JAFC 54:4005–4015 ArticleCAS Google Scholar
Bjeldanes LF, Kim JY, Grose KR, Bartholomew JC, Bradfield CA (1991) Aromatic hydrocarbon responsiveness-receptor agonists generated from indole-3-carbinol in vitro and in vivo: comparisons with 2,3,7,8-tetrachlorodibenzo-_p_-dioxin. Proc Natl Acad Sci 88:9543–9547 ArticlePubMed CentralCASPubMed Google Scholar
Björkman M, Klingen I, Birch ANE, Bones AM, Bruce TJ-A, Johansen TJ, Meadow R, Mølmann J, Seljåsen R, Smart LE, Stewart D (2011) Phytochemicals of Brassicaceae in plant protection and human health—influences of climate, environment and agronomic practice. Phytochemistry 72:538–556 ArticlePubMedCAS Google Scholar
Branca F, Li G, Goyal S, Quiros CF (2002) Survey of aliphatic glucosinolates in Sicilian wild and cultivated Brassicaceae. Phytochemistry 59:717–724 ArticleCASPubMed Google Scholar
Brown AF, Yousef GG, Jeffery EH, Klein BP, Walling MA, Kushad MM, Juvik JA (2002) Glucosinolate profiles in broccoli: variation in levels and implications in breeding for cancer chemoprotection. J Am Soc Hortic Sci 127:807–813 CAS Google Scholar
Cartea ME, Velasco P (2008) Glucosinolates in Brassica foods: biovailability in food and significance for human health. Phytochem Rev 7:213–229 ArticleCAS Google Scholar
Cartea ME, Francisco M, Soengas P, Velasco P (2011) Phenolic compounds in Brassica vegetables. Molecules 16:251–280
Ciska E, Martyniak-Przybyszewska B, Kozlowska H (2000) Content of glucosinolates in cruciferous vegetables grown at the same site for two years under different climatic conditions. J Agric Food Chem 48:2862–2867 ArticleCASPubMed Google Scholar
Cornelis MC, El-Sohemy A, Campos H (2007) GSTT1 genotype modifies the association between cruciferous vegetable intake and the risk of myocardial infarction. Am J Clin Nutr 86:752–758 CASPubMed Google Scholar
D’Antuono LF, Elementi S, Neri R (2008) Glucosinolates in Diplotaxix and Eruca leaves: diversity, taxonomic relations and applied aspects. Phytochemistry 69:187–199 ArticlePubMedCAS Google Scholar
Daxenbichler ME, VanEtten CH, Williams PH (1979) Glucosinolates and derived products in cruciferous vegetables. Analysis of 14 varieties of Chinese cabbage. J Agric Food Chem 27:34–37 ArticleCASPubMed Google Scholar
Daxenbichler ME, Spencer GF, Carlson DG, Rose GB, Brinker AM, Powell RG (1991) Glucosinolate composition of seeds from 297 species of wild plants. Phytochemistry 30:2623–2638 ArticleCAS Google Scholar
Durazzo A, Azzini E, Lazzé MC, Raguzzini A, Pizzala R, Maiani G (2013) Italian wild rocket [Diplotaxis tenuifolia (L.) DC.]: influence of agricultural practices on antioxidant molecules and on cytotoxicity and antiproliferative effects. Agriculture 3:285–298 ArticleCAS Google Scholar
Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5–51 ArticleCASPubMed Google Scholar
Fenwick GR, Heaney RK, Mullin WJ (1983) Glucosinolates and their breakdown products in food and food plants. Cri Rev Food Sci Nutr 18:123–201 ArticleCAS Google Scholar
Fimognari C, Hrelia P (2007) Sulphoraphane as a promising molecule for fighting cancer. Mutat Res 636:90–104 ArticleCAS Google Scholar
Fimognari C, Turrini E, Ferruzzi L, Lenzi M, Hrelia P (2012) Natural isothiocyanates: genotoxic potential versus chemoprevention. Mutat Res 750:107–131 ArticleCASPubMed Google Scholar
Fréchard A, Fabre N, Pean C, Montaut S, Fauvel M, Rollin P, Fouraste I (2001) Novel indole-type glucosinolates from woad (Isatis tinctoria L.). Tetrahedron Lett 42:9015–9017 Article Google Scholar
Goffmann FD, Becker HC (2002) Genetic variation of tocopherol content in a germplasm collection of Brassica napus L. Euphytica 125:189–191 Article Google Scholar
Gómez-Campo C (2003) The genus Guenthera Andr. in Bess. (Brassicaceae, Brassiceae). An Jard Bot Madr 60:301–307 Article Google Scholar
Granado F, Olmedilla B, Blanco I (2003) Nutritional and clinical relevance of lutein in human health. Br J Nutr 90:487–502 ArticleCASPubMed Google Scholar
Griffiths DW, Birch ANE, Hillman JR (1998) Antinutritional compounds in the Brassicaceae: analysis, biosynthesis, chemistry, and dietary effects. J Hort Sci Biotechnol 73:1–18 ArticleCAS Google Scholar
Guerrero-Beltrán CE, Calderón M, Pedraza-Chaverri J, Chirino YI (2012) Protective effect of sulforaphane against oxidative stress: recent advances. Exp Toxicol Pathol 64:503–508 ArticlePubMedCAS Google Scholar
Hanlon PR, Weber DM, Barnes DM (2007) Aqueous extract from Spanish black radish (Raphanus sativus L. var. niger) induces detoxification enzymes in the HepG2 human hepatoma cell line. JAFC 55:6439–6446 ArticleCAS Google Scholar
Hashem FA, Motawea H, El-Shabrawy AE, Shaker K, El-Sherbini S (2012) Myrosinase hydrolysates of Brassica oleraceae L. var italica reduce the risk of colon cancer. Phytother Res 26:743–747 ArticleCASPubMed Google Scholar
Hecht SS, Carmella SG, Murphy SE (1999) Effects of watercress consumption onurinary metabolites of nicotine in smokers. Cancer Epidemiol Biomarkers Prev 8:907–913 CASPubMed Google Scholar
Herr I, Büchler MW (2010) Dietary constituents of broccoli and other cruciferous vegetables: implications for prevention and therapy of cancer. Cancer Treat Rev 36:383–477 ArticleCAS Google Scholar
Higdon JV, Delage B, Williams DE, Dashwood RH (2007) Cruciferous vegetables and human cancer risk: epidemiological evidence and mechanistic basis. Pharmacol Res 55:224–236 ArticlePubMed CentralCASPubMed Google Scholar
Ibrahim KE, Juvik JA (2009) Feasibility for improving phytonutrient content in vegetable crops using conventional breeding strategies: case study with carotenoids and tocopherols in sweet corn and broccoli. J Agric Food Chem 57:4636–4644 ArticleCASPubMed Google Scholar
Ingram D, Sanders K, Kolybaba M, Lopez D (1997) Case-control study of phyto-oestrogens and breast cancer. Lancet 350:990–994 ArticleCASPubMed Google Scholar
Jahangir M, Kim HK, Choi YH, Verpoorte R (2009) Health-affecting compounds in Brassicaceae. Compr Rev Food Sci Food Saf 8:31–43 ArticleCAS Google Scholar
Johnson IT (2002a) Anticarcinogenic effects of diet-related apoptosis in the colorectal mucosa. Food Chem Toxicol 40:1171–1178 ArticleCASPubMed Google Scholar
Johnson IT (2002b) Glucosinolates in the human diet. Bioavailability and implications for health. Phytochem Rev 1:183–188 ArticleCAS Google Scholar
Kabouw P, Biere A, van der Putten WH, van Dam NM (2010a) Intra-specific differences in root and shoot glucosinolate profiles among white cabbage (Brassica oleracea var. capitata) cultivars. J Agric Food Chem 58:411–417 ArticleCASPubMed Google Scholar
Kabouw P, van der Putten WH, van Dam NM, Biere A (2010b) Effects of intraspecific variation in white cabbage (Brassica oleracea var. capitata) on soil organisms. Plant Soil 336:509–518 ArticleCAS Google Scholar
Kim S-J, Uddin MdR, Park SU (2013) Glucosinolate accumulation in three important radish (Raphanus sativus) cultivars. AJCS 7:1843–1847 CAS Google Scholar
Kissen R, Rossiter JT, Bones AM (2009) The “mustard oil bomb”: not so easy to assemble?! Localization, expression and distribution of the components of the myrosinase enzyme system. Phytochem Rev 8:69–86 ArticleCAS Google Scholar
Kjaer A (1963) Isothiocyanates of natural origin. Pure Appl Chem 7:229–245 ArticleCAS Google Scholar
Koch MA, Kiefer C (2006) Molecules and migration: biogeographical studies in cruciferous plants. Plant Syst Evol 259:121–142 ArticleCAS Google Scholar
Kristal AR, Lampe JW (2002) Brassica vegetables and prostate cancer risk: a review of the epidemiological evidence. Nutr Cancer 42:1–9 ArticlePubMed Google Scholar
Latté KP, Appel K-E, Lampen A (2011) Health benefits and possible risks of broccoli—an overview. Food Chem Toxicol 49:3287–3309 ArticlePubMedCAS Google Scholar
Lin L-Z, Harnly JM (2010) Phenolic component profile of mustard greens, Yu Choy, and 15 other Brassica vegetables. JAFC 58:6850–6857 ArticleCAS Google Scholar
Lin L-Z, Sun J, Chen P, Harnly J (2011) UHPLC-PDA-ESI/HRMS/MS analysis of anthocyanins, flavonol glycosides and hydroxycinnamic acid derivatives in red mustard greens (Brassica juncea Cass variety). JAFC 59:12059–12072 ArticleCAS Google Scholar
Linscheid M, Wendisch D, Strack D (1980) The structures of sinapic acid esters and their metabolism in cotyledons of Raphanus sativus. Z Naturforsch 35c:907–914 CAS Google Scholar
Llorach R, Espian JC, Tomaas-Barberaan FA, Ferreres F (2003) Valorization of cauliflower (Brassicaoleracea var. botrytis) by-products as a source of antioxidant phenolics. JAFC 51:2181–2187 ArticleCAS Google Scholar
Manchali S, Chidambara Murthy KN, Patil BS (2012) Crucial facts about health benefits of popular cruciferous vegetables. J Funct Foods 4:94–106 ArticleCAS Google Scholar
Mandal S, Yadav S, Singh R, Begum G, Suneja P, Singh M (2002) Correlation studies on oil content and fatty acid profile of some cruciferous species. Genet Resour Crop Evol 49:551–556 Article Google Scholar
Martinez-Sanchez A, Llorach R, Gil MI, Ferreres F (2007) Identification of new flavonoid glycosides and flavonoid profiles to characterize rocket leafy salads (Eruca vesicaria and Diplotaxis tenuifolia). JAFC 55:1356–1363 ArticleCAS Google Scholar
Miean KH, Mohamed S (2001) Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. JAFC 49:3106–3112 ArticleCAS Google Scholar
Milder IEJ, Arts ICW, van de Putte B, Venema DP, Hollman PCH (2005) Lignan contents of Dutch plant foods: a database including lariciresinol, pinoresinol, secoisolariciresinol and matairesinol. Br J Nutr 93:393–402 ArticleCASPubMed Google Scholar
Mithen R (2001) Glucosinolates—biochemistry, genetics and biological activity. Plant Growth Regul 34:91–103 ArticleCAS Google Scholar
Mithen R, Bennet R, Marquez J (2010) Glucosinolate biochemical diversity and innovation in the Brassicales. Phytochemistry 71:2074–2086 ArticleCASPubMed Google Scholar
Montaut S, Barillari J, Iori R, Rollin P (2010) Glucoraphasatin: chemistry, occurrence, and biological properties. Phytochemistry 71:6–12 ArticleCASPubMed Google Scholar
Moreno DA, Pérez-Balibrea Ferreres F, Gil-Izquierdo García-Viguera C (2010) Acylated anthocyanins in broccoli sprouts. Food Chem 123:358–363 ArticleCAS Google Scholar
Nabloussi A, Márquez-Lema A, Fernandez-Martínez Velasco L (2008) Novel seed oil types of Ethiopian mustard with high levels of polyunsaturated fatty acids. Ind Crop Prod 27:359–363 ArticleCAS Google Scholar
Nakamura Y, Iwahashi T, Tanaka A, Koutani J, Matsuo T, Okamoto S, Sato K, Ohtsuki K (2001) 4-(methylthio)-3-butenyl isothiocyanate, a principal antiomutagen in daikon (Raphanus sativus; Japanese white radish). JAFC 49:5755–5760 ArticleCAS Google Scholar
Nho CW, Jeffery E (2001) The synergistic upregualtion of phase II detoxification enzymes by glucosinolates breakdown products in cruciferous vegetables. Toxicol Appl Pharmacol 174:146–152 ArticleCASPubMed Google Scholar
Nho CW, Jeffery E (2004) Crambene, a bioactive nitrile derived from glucosinolate hydrolysis, acts via the antioxidant response element to upregulate quinone reductase alone or synergistically with indole-3-carbinole. Toxicol Appl Pharmacol 198:40–48 ArticleCASPubMed Google Scholar
Padilla G, Cartea ME, Velasco P, de Haro A, Ordás A (2007) Variation of glucosinolates in vegetable crops of Brassica rapa. Phytochemistry 68:536–545 ArticleCASPubMed Google Scholar
Papi A, Orlandi M, Bartolini G, Barillari J, Iori R, Paolini M, Ferroni F, Grazia FM, Pedulli GF, Valmigli L (2008) Cytotoxic and antioxidant activity of 4-methylthio-3-butenyl isothiocyanate from Raphanus sativus L. (Kaiware Daikon) sprouts. JAFC 56:875–883 ArticleCAS Google Scholar
Payne AC, Mazzer A, Clarkson GJJ, Taylor G (2013) Antioxidant assays-consistent findings from FRAP and ORAC reveal a negative impact of organic cultivation on antioxidant potential in spinach but not watercress or rocket leaves. Food Sci Nutr 1:439–444 ArticlePubMed CentralCASPubMed Google Scholar
Podsedek A (2005) Natural antioxidants and antioxidant capacity of Brassica vegetables. LWT Food Sci Technol 40:1–11 ArticleCAS Google Scholar
Reichelt M, Brown P, Schneider B, Oldham N, Stauber E, Tokuhisa J, Kliebenstein D, Mitchell-Olds T, Gershenzon J (2002) Benzoic acid glucosinolate esters and other glucosinolates from Arabidospis thaliana. Phytochemistry 59:663–671 ArticleCASPubMed Google Scholar
Rosa EAS, Heaney RK, Fenwick GR, Portas CAM (1997) Glucosinolates in crop plants. Hortic Rev 19:99–215 CAS Google Scholar
Sang JP, Minchinton IR, Johnstone PK, Truscott RJW (1984) Glucosinolate profiles in the seed, root and leaf tissue of cabbage, mustard, rapeseed, radish and swede. Can J Plant Sci 64:77–93 ArticleCAS Google Scholar
Schmidt R, Bancroft J (2011) Genetics and genomics of the Brassicaceae. Springer, Germany Book Google Scholar
Soengas P, Sotelo T, Velasco P, Cartea ME (2011) Antioxidants properties of Brassica vegetables. In: Teixeira da Silva J (ed) Functional Plant Science and Biotechnology, vol 5 (Special Iusse 2). Global Science Books, pp. 43–55
Sønderby IE, Geu-Flores F, Halkier BA (2010) Biosynthesis of glucosinolates—gene discovery and beyond. Trends Plant Sci 15:283–290 ArticlePubMedCAS Google Scholar
Talalay P, Zhang Y (1996) Chemo protection against cancer by isothiocyanate and glucosinolates. Biochem Soc Trans 24:806–810 ArticleCASPubMed Google Scholar
Traka M, Mithen R (2009) Glucosinolates, isothiocyanates and human health. Phytochem Rev 8:269–282 ArticleCAS Google Scholar
Valmigli L, Iori R (2009) Antioxidant and pro-oxidant capacities of ITCs. Environ Mol Mutagen 50:222–237 ArticleCAS Google Scholar
Van Dam NM, Tytgat TOG, Kirkegaard JA (2009) Root and shoot glucosinolates: a comparison of their diversity, function and interactions in natural and managed ecosystems. Phytochem Rev 8:171–186 ArticleCAS Google Scholar
VanEtten CH, Daxenbicher ME, Wolff IA (1969) Natural glucosinolates (thioglucosides) in food and feed. J Agric Food Chem 17:483–491 ArticleCAS Google Scholar
Vaughn SF, Berhow MA (2005) Glucosinolate hydrolysis products from various plant sources: pH effects, isolation, and purification. Ind Crops Prod 21:193–202 ArticleCAS Google Scholar
Velasco L, Becker HC (2000) Variability for seed glucosinolates in a germplasm collection of the genus Brassica. Genet Resour Crop Evol 47:231–238 Article Google Scholar
Velasco P, Francisco M, Moreno DA, Ferreres F, Garcia-Viguera C, Cartea ME (2011) Phytochemical fingerprinting of vegetables Brassica oleracea and Brassica napus by simultaneous identification of glucosinolates and phenolics. Phytochem Anal 22:144–152 ArticleCASPubMed Google Scholar
Verkerk R, Schreiner M, Krumbein A, Ciska E, Holst B, Rowland I, De Schrijver R, Hansen M, Gerhauser C, Mithen R, Dekker M (2009) Glucosinolates in Brassica vegetables: the influence of the food supply chain on intake, bioavailability and human health. Mol Nutr Food Res 53:S219–S265 ArticlePubMed Google Scholar
Vig AP, Rampal G, Thind TS, Arora S (2009) Bio-protective effects of glucosinolates—a review. Food Sci Technol 42:1561–1572 CAS Google Scholar
Villantoro-Pulido M, Priego-Capote F, Alvarez-Sanchez B, Saha S, Philo M, Obregon-Cano S, De Haro-Bailon A, Font R, Del Rio-Celestino M (2013) An approach to the phytochemical profiling of rocket [Eruca sativa(Mill.) Thell]. J Sci Food Agric 93:3809–3819 ArticleCAS Google Scholar
Wang H, Wu J, Sun S, Liu B, Cheng F, Sun R, Wang X (2011) Glucosinolate biosynthetic genes in Brassicarapa. Gene 487:135–142 ArticleCASPubMed Google Scholar
Warwick SI (2011) Brassicaceae in agriculture. In: Schmidt R, Bancroft I (eds) Genetics and genomics of the Brassicaceae. Springer, Heidelberg, pp 33–65 Chapter Google Scholar
Wittkop B, Snowdon RJ, Friedt W (2009) Status and perspectives of breeding for enhanced yield and quality of oilseed crops for Europe. Euphytica 170:131–140 Article Google Scholar
Woodman OL, Meeker WF, Boujaoude M (2005) Vasorelaxant and antioxidant activity of flavonols and flavones: structure-activity relationships. J Cardiovasc Pharm 46:302–309 ArticleCAS Google Scholar
Xiao J, Suzuki M, Jiang X, Chen X, Yamamoto K, Ren F, Xu M (2008) Influence of B-ring hydroxylation on interactions of flavonols with bovine serum albumin. JAFC 56:2350–2356 ArticleCAS Google Scholar
Yang B, Quiros CF (2010) Survey of glucosinolate variation in leaves of Brassica rapa crops. Genet Resour Crop Evol 57:1079–1089 ArticleCAS Google Scholar
Yoder SC, Lancaster SM, Hullar MSJ, Lampe JW (2015) Gut microbial metabolism of plant lignans: influence on human health. In: Tuohy K, Del Rio D (eds) Diet–microbe interactions in the gut: effects on human health and disease. Academic Press, New York, pp 103–117 Google Scholar
Zhang Y, Talalay P (1998) Mechanism of differential potencies of isothiocyanates as inducers of anticarcinogenic phase 2 enzymes. Cancer Res 58:4632–4639 CASPubMed Google Scholar
Zhang Y, Li J, Tang L (2005) Cancer-preventive isothiocyanates: dichotomous modulators of oxidative stress. Free Radic Biol Med 38:70–77 ArticlePubMedCAS Google Scholar
Zhang Z, Ober JA, Kliebenstein DJ (2006) The gene controlling the quantitative trait locus EPITHIOSPECIFIER MODIFIER1 alters glucosinolate hydrolysis and insect resistance in Arabidopsis. Plant Cell 18:1524–1536 ArticlePubMed CentralCASPubMed Google Scholar
Znidarcic D, Ban D, Sircelj H (2011) Carotenoid and chlorophyll composition of commonly consumed leafy vegetables in Mediterranean countries. Food Chem 129:1164–1168 ArticleCASPubMed Google Scholar