Indole glucosinolate breakdown and its biological effects (original) (raw)
Agerbirk N, Bjergegaard C, Olsen CE, Sørensen H (1996) Kinetic investigation of the transformations of indol-3-ylcarbinol into oligomeric indolyl compounds based on micellar electrokinetic capillary chromatography. J Chromatogr A 745:239–248 ArticleCAS Google Scholar
Agerbirk N, Olsen CE, Sørensen H (1998) Initial and final products, nitriles and ascorbigens produced in myrosinase-catalyzed hydrolysis of indole glucosinolates. J Agric Food Chem 46:1563–1571 ArticleCAS Google Scholar
Agerbirk N, Petersen BL, Olsen CE et al (2001) 1,4-Dimethoxyglucobrassicin in Barbarea and 4-hydroxyglucobrassicin in Arabidopsis and Brassica. J Agric Food Chem 49:1502–1507 ArticlePubMedCAS Google Scholar
Agerbirk N, Ørgaard M, Nielsen JK (2003) Glucosinolates, flea beetle resistance, and leaf pubescence as taxonomic characters in the genus Barbarea (Brassicaceae). Phytochemistry 63:69–80 ArticlePubMedCAS Google Scholar
Aleksandrova LG, Korolev AM, Preobrazhenskaya MN (1992) Study of natural ascorbigen and related compounds by HPLC. Food Chem 45:61–69 ArticleCAS Google Scholar
Anderton MJ, Manson MM, Verschoyle RD et al (2004) Pharmacokinetics and tissue disposition of indole-3-carbinol and its acid condensation products after oral administration to mice. Clin Cancer Res 10:5233–5241 ArticlePubMedCAS Google Scholar
Baird WM, Hooven LA, Mahadevan B (2005) Carcinogenic polycyclic aromatic hydrocarbon-DNA adducts and mechanism of action. Environ Mol Mutagen 45:106–114 ArticlePubMedCAS Google Scholar
Barth C, Jander G (2006) Arabidopsis myrosinases TGG1 and TGG2 have redundant function in glucosinolate breakdown and insect defense. Plant J 46:549–562 ArticlePubMedCAS Google Scholar
Bartlet E, Kiddle G, Williams I, Wallsgrove R (1999) Wound-induced increases in the glucosinolate content of oilseed rape and their effect on subsequent herbivory by a crucifer specialist. Entomol Exp Appl 91:163–167 ArticleCAS Google Scholar
Bellostas N, Kachlicki P, Sørensen JC, Sørensen H (2007) Glucosinolate profiling of B. oleracea varieties used for food. Sci Hort 114:234–242 ArticleCAS Google Scholar
Bennet RN, Kiddle G, Wallsgrove RM (1997) Involvement of cytochrome P450 in glucosinolate biosynthesis in white mustard (a biochemical anomaly). Plant Physiol 114:1283–1291 Google Scholar
Bennet RN, Mellon FA, Kroon PA (2004) Screening crucifer seeds as sources of specific intact glucosinolates using ion-pair high-performance liquid chromatography negative ion electrospray mass spectrometry. J Agric Food Chem 52:428–438 ArticleCAS Google Scholar
Birch ANE, Griffiths DW, Hopkins RJ et al (1992) Glucosinolate responses of Swede, kale, forage and oilseed rape to root damage by turnip root fly (Delia floralis) larvae. J Sci Food Agric 60:1–9 ArticleCAS Google Scholar
Birch ANE, Griffiths DW, Hopkins RJ, MacFarlane-Smith WH (1996) A time-course study of chemical and physiological responses in Brassicas induced by turnip root fly (Delia floralis) larval feeding. Entomol Exp Appl 80:221–223 ArticleCAS Google Scholar
Bjeldanes LF, Kim JY, Grose KR et al (1991) Aromatic hydrocarbon responsiveness-receptor agonists generated from indole-3-carbinol in vitro and in vivo: comparisons with 2,3,7,8-tetrachlorodibenzo-_p_-dioxin. Proc Natl Acad Sci USA 88:9543–9547 ArticlePubMedCAS Google Scholar
Bodnaryk RP (1992) Effects of wounding on glucosinolates in the cotyledons of oilseed rape and mustard. Phytochemistry 31:2671–2677 ArticleCAS Google Scholar
Bodnaryk RP (1994) Potent effect of jasmonates on indole glucosinolates in oilseed rape and mustard. Phytochemistry 35:301–305 ArticleCAS Google Scholar
Bones AM, Rossiter JT (2006) The enzymic and chemically induced decomposition of glucosinolates. Phytochemistry 67:1053–1067 ArticlePubMedCAS Google Scholar
Bonnesen C, Stephensen PU, Andersen O et al (1999) Modulation of cytochrome P-450 and glutathione _S_-transferase isoform expression in vivo by intact and degraded indolyl glucosinolates. Nutr Cancer 33:178–187 ArticlePubMedCAS Google Scholar
Bonnesen C, Eggleston IM, Hayes JD (2001) Dietary indoles and isothiocyanates that are generated from cruciferous vegetables can both stimulate apoptosis and confer protection against DNA damage in human colon cell lines. Cancer Res 61:6120–6130 PubMedCAS Google Scholar
Brader G, Tas E, Palva ET (2001) Jasmonate-dependent induction of indole glucosinolates in Arabidopsis by culture filtrates of the nonspecific pathogen Erwinia carotovora. Plant Physiol 126:849–860 ArticlePubMedCAS Google Scholar
Bradfield CA, Bjeldanes LF (1987) High-performance liquid chromatographic analysis of anticarcinogenic indoles in Brassica oleracea. J Agric Food Chem 35:46–49 ArticleCAS Google Scholar
Brown PD, Tokuhisa JG, Reichelt M, Gershenzon J (2003) Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochemistry 62:471–481 ArticlePubMedCAS Google Scholar
Burow M, Wittstock U (2008) Regulation and function of specifier proteins in plants. Phytochem Rev
Burow M, Markert J, Gershenzon J, Wittstock U (2006) Comparative biochemical characterization of nitrile-forming proteins from plants and insects that alter myrosinase-catalysed hydrolysis of glucosinolates. FEBS J 273:2432–2446 ArticlePubMedCAS Google Scholar
Burow M, Rice M, Hause B et al (2007a) Cell- and tissue-specific localization and regulation of the epithiospecifier protein in Arabidopsis thaliana. Plant Mol Biol 64:173–185 ArticlePubMedCAS Google Scholar
Burow M, Zhang ZY, Ober JA et al (2007b) ESP and ESM1 mediate indol-3-acetonitrile production from indol-3-ylmethyl glucosinolate in Arabidopsis. Phytochemistry 69:663–671 ArticlePubMedCAS Google Scholar
Buskov S (2001) Glucosinolates, glucosinolate hydrolysis products and lipids: characterization by packed column chromatographic techniques NMR and MS. Thesis, Chemistry Department, The Royal Veterinary and Agricultural University, Copenhagen
Buskov S, Hansen LB, Olsen CE et al (2000a) Determination of ascorbigens in autolysates of various Brassica species using supercritical fluid chromatography. J Agric Food Chem 48:2693–2701 ArticlePubMedCAS Google Scholar
Buskov S, Olsen CE, Sørensen H, Sørensen S (2000b) Supercritical fluid chromatography as basis for identification and quantitative determination of indol-3-ylmethyl oligomers and ascorbigens. J Biochem Biophys Methods 43:175–195 ArticlePubMedCAS Google Scholar
Cartea ME, Velasco P, Obregón S et al (2008) Seasonal variation in glucosinolate content in Brassica oleracea crops grown in northwestern Spain. Phytochemistry 69:403–410 ArticlePubMedCAS Google Scholar
Celenza JL, Quiel JA, Smolen GA et al (2005) The Arabidopsis ATR1 Myb transcription factor controls indolic glucosinolate homeostasis. Plant Physiol 137:253–262 ArticlePubMedCAS Google Scholar
Chavadej S, Brisson N, McNeil JN, De Luca V (1994) Redirection of tryptophan leads to production of low indole glucosinolate canola. Proc Natl Acad Sci USA 91:2166–2170 ArticlePubMedCAS Google Scholar
Chevolleau S, Gasc N, Rollin P, Tulliez J (1997) Enzymatic, chemical, and thermal breakdown of 3H-Labeled glucobrassicin, the parent indole glucosinolate. J Agric Food Chem 45:4290–4296 ArticleCAS Google Scholar
De Vos M, Kriksunov K, Jander G (2008) Indole-3-acetonitrile production from indole glucosinolates deters oviposition by Pieris rapae (white cabbage butterfly). Plant Physiol 146:916–926 ArticlePubMedCAS Google Scholar
Doughty KJ, Porter AJR, Morton AM et al (1991) Variation in the glucosinolate content of oilseed rape (Brassica napus L.) leaves. II. Response to infection by Alternaria brassicae (Berk.) Sacc. Ann Appl Biol 118:469–477 ArticleCAS Google Scholar
Doughty KJ, Kiddle GA, Pye BJ et al (1995) Selective induction of glucosinolate in oilseed rape leaves by methyl jasmonate. Phytochemistry 38:347–350 ArticleCAS Google Scholar
El Sayed G, Louveaux A, Mavratzotis M et al (1996) Effects of glucobrassicin, epigoitrin and related breakdown products on locusts feeding: Shouwia purpurea and desert locust relationships. Entomol Exp Appl 78:231–236 ArticleCAS Google Scholar
Elliott MC, Stowe BB (1970) A novel sulphonated natural indole. Phytochemistry 9:1629 ArticleCAS Google Scholar
Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5–51 ArticlePubMedCAS Google Scholar
Frechard A, Fabre N, Pean C et al (2001) Novel indole-type glucosinolates from woad (Isatis tinctoria L.). Tetrahedron Lett 42:9015–9017 ArticleCAS Google Scholar
Gigolashvili T, Berger B, Mock HP et al (2007) The transcription factor HIG1/MYB51 regulates indolic glucosinolate biosynthesis in Arabidopsis thaliana. Plant J 56:886–890 ArticleCAS Google Scholar
Glawischnig E, Hansen BG, Olsen CE, Halkier BA (2004) Camalexin is synthesized from indole-3-acetaldoxime, a key branching point between primary and secondary metabolism in Arabidopsis. Proc Natl Acad Sci USA 101:8245–8250 ArticlePubMedCAS Google Scholar
Gmelin R, Virtanen AI (1961) Glucobrassicin, der Precursor von SCN−, 3-Indolylacetonitril und Ascorbigen in Brassica oleracea Species. Ann Acad Sci Fenn Ser A II. Chem 107:1–25 Google Scholar
Griffiths DW, Birch ANE, MacFarlane-Smith WH (1994) Induced changes in the indole glucosinolate content of oil-seed and forage rape (Brassica napus) plant in response to either turnip root fly (Delia floralis) larval feeding or artificial root damage. J Sci Food Agric 65:171–178 ArticleCAS Google Scholar
Grose KR, Bjeldanes LF (1992) Oligomerization of indole-3-carbinol in aqueous acid. Chem Res Toxicol 5:188–193 ArticlePubMedCAS Google Scholar
Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333 ArticlePubMedCAS Google Scholar
Hanley AB, Parsley KR (1990) Identification of 1-methoxyindolyl-3-methyl isothiocyanate as an indole glucosinolate breakdown product. Phytochemistry 29:769–777 ArticleCAS Google Scholar
Hanley AB, Belton PS, Fenwick GR, Janes NF (1985) Ring oxygenated glucosinolates of Brassica species. Phytochemistry 24:598–600 ArticleCAS Google Scholar
Harvey JA, Gols R, Wagenaar R, Bezemer TM (2007) Development of an insect herbivore and its pupal parasitoid reflect differences in direct plant defense. J Chem Ecol 33:1556–1569 ArticlePubMedCAS Google Scholar
Higdon JV, Delage B, Williams DE, Dashwood RH (2007) Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacol Res 55:224–236 ArticlePubMedCAS Google Scholar
Holst B, Williamson G (2004) A critical review of the bioavailability of glucosinolates and related compounds. Nat Prod Rep 21:425–447 ArticlePubMedCAS Google Scholar
Hopkins RJ, Griffiths DW, Birch ANE, McKinlay RG (1998) Influence of increasing herbivore pressure on modification of glucosinolate content of Swedes (Brassica napus spp. rapifera). J Chem Ecol 24:2003–2019 ArticleCAS Google Scholar
Hrncirik K, Valusek J, Velisek J (2001) Investigation of ascorbigen as a breakdown product of glucobrassicin autolysis in Brassica vegetables. Eur Food Res Technol 212:576–581 ArticleCAS Google Scholar
Huang XP, Renwick JAA (1993) Differential selection of host plants by two Pieris species: the role of oviposition stimulants and deterrents. Entomol Exp Appl 68:59–69 Article Google Scholar
Huang XP, Renwick JAA (1994) Relative activities of glucosinolates as oviposition stimulants for Pieris rapae and P. napi oleracea. J Chem Ecol 20:1025–1037 ArticleCAS Google Scholar
Irwin RE, Strauss SY, Storz S et al (2003) The role of herbivores in the maintenance of flower color polymorphism in wild radish. Ecology 84:1733–1743 Article Google Scholar
Isidoro N, VBartlet E, Ziesmann J, Williams IH (1998) Antennal contact chemosensilla in Psylliodes chrysocephala responding to cruciferous allelochemicals. Physiol Entomol 23:131–138 Article Google Scholar
Jensen SK, Michaelsen S, Kachlicki P, Sørensen H (1991) 4-Hydroxyglucobrassicin and degradation products of glucosinolates in relation to unsolved problems with the quality of double low oilseed rape. In: McGregor DI (ed) Eighth int. rapeseed congress. GCIRC 1991 Congress, Saskatchewan, Canada, pp 1359–1364 Google Scholar
Jongen WM (1996) Glucosinolates in Brassica: occurrence and significance as cancer-modulating agents. Proc Nutr Soc 55:433–446 ArticlePubMedCAS Google Scholar
Kim YS, Milner JA (2005) Targets for indole-3-carbinol in cancer prevention. J Nutr Biochem 16:65–73 ArticlePubMedCAS Google Scholar
Kim JH, Jander G (2007) Myzus persicae (green peach aphid) feeding on Arabidopsis induces the formation of a deterrent indole glucosinolate. Plant J 49:1008–1019 PubMedCAS Google Scholar
Kim JH, Lee BW, Schroeder FC, Jander G (2008) Identification of indole glucosinolate breakdown products with antifeedant effects on Myzus persicae (green peach aphid). Plant J Advance online publication
Kirkegaard JA, Sarvar M (1998) Biofumigation potential of Brassicas I. Variation in glucosinolate profiles of diverse field-grown Brassicas. Plant Soil 201:71–89 ArticleCAS Google Scholar
Kiss G, Neukom H (1966) Über die Struktur des Ascorbigens. Helv Chim Acta 49:989–992 ArticleCAS Google Scholar
Kliebenstein DJ, Kroymann J, Brown P et al (2001) Genetic control of natural variation in Arabidopsis glucosinolate accumulation. Plant Physiol 126:811–825 ArticlePubMedCAS Google Scholar
Kliebenstein DJ, Figuth A, Mitchell-Olds T (2002) Genetic architecture of plastic methyl jasmonate responses in Arabidopsis thaliana. Genetics 161:1685–1696 PubMedCAS Google Scholar
Kliebenstein DJ, Rowe HC, Denby KJ (2005) Secondary metabolites influence Arabidopsis/Botrytis interactions: variation in host production and pathogen sensitivity. Plant J 44:25–36 ArticlePubMedCAS Google Scholar
Koroleva OA, Davies A, Deeken R et al (2000) Identification of a new glucosinolate-rich cell type in Arabidopsis flower stalk. Plant Physiol 124:599–608 ArticlePubMedCAS Google Scholar
Loivamäki M, Holopainene JK, Nerg A-M (2004) Chemical changes induced by methyl jasmonate in oilseed rape grown in the laboratory and in the field. J Agric Food Chem 52:7607–7613 ArticlePubMedCAS Google Scholar
Loub WD, Wattenberg LW, Davis DW (1975) Aryl hydrocarbon hydroxylase induction in rat tissues by naturally occurring indoles of cruciferous plants. J Natl Cancer Inst 54:985–988 PubMedCAS Google Scholar
Ludwig-Mueller J (2008) Glucosinolate and the clubroot disease: defence compounds or auxin precursors. Phytochem Rev. doi:10.1007/s11101-008-9096-2 Google Scholar
Ludwig-Müller J, Bendell U, Thermann P et al (1993) Concentrations of indole-3-acetic acid in plants of tolerant and susceptible varieties of Chinese cabbage infected with Plasmodiophora brassicae Woron. New Phytol 125:763–769 Article Google Scholar
Ludwig-Müller J, Schubert B, Pieper K et al (1997) Glucosinolate content in susceptible and resistant Chinese cabbage varieties during development of clubroot disease. Phytochemistry 44:407–414 Article Google Scholar
Ludwig-Müller J, Bennett RN, Kiddle G et al (1999a) The host range of Plasmodiophora brassicae and its relationship to endogenous glucosinolate content. New Phytol 141:443–458 Article Google Scholar
Ludwig-Müller J, Pieper K, Ruppel M et al (1999b) Indole glucosinolate and auxin biosynthesis in Arabidopsis thaliana (L.) Heynh. glucosinolate mutants and the development of clubroot disease. Planta 208:409–419 ArticlePubMed Google Scholar
Ludwig-Müller J, Bennett RN, Garcia-Garrido JM et al (2002) Reduced arbuscular mycorrhizal root colonization in Tropaeolum majus and Carica papaya after jasmonic acid application can not be attributed to increased glucosinolate levels. J Plant Physiol 159:517–523 Article Google Scholar
Martin N, Müller C (2007) Induction of plant responses by a sequestering insect: relationship of glucosinolate concentration and myrosinase activity. Basic Appl Ecol 8:13–25 ArticleCAS Google Scholar
McDanell R, McLean AE, Hanley AB et al (1987) Differential induction of mixed-function oxidase (MFO) activity in rat liver and intestine by diets containing processed cabbage: correlation with cabbage levels of glucosinolates and glucosinolate hydrolysis products. Food Chem Toxicol 25:363–368 ArticlePubMedCAS Google Scholar
McDanell R, McLean AE, Hanley AB et al (1988) Chemical and biological properties of indole glucosinolates (glucobrassicins): a review. Food Chem Toxicol 26:59–70 ArticlePubMedCAS Google Scholar
Mewis I, Appel HM, Hom A et al (2005) Major signaling pathways modulate Arabidopsis glucosinolate accumulation and response to both phloem-feeding and chewing insects. Plant Physiol 138:1149–1162 ArticlePubMedCAS Google Scholar
Mewis I, Tokuhisa JG, Schultz JC et al (2006) Gene expression and glucosinolate accumulation in Arabidopsis thaliana in response to generalist and specialist herbivores of different feeding guilds and the role of defense signaling pathways. Phytochemistry 67:2450–2462 ArticlePubMedCAS Google Scholar
Mikkelsen MD, Petersen BL, Glawischnig E et al (2003) Modulation of CYP79 genes and glucosinolate profiles in Arabidopsis by defense signaling pathways. Plant Physiol 131:298–308 ArticlePubMedCAS Google Scholar
Mohn T, Cutting B, Ernst B, Hamburger M (2007) Extraction and analysis of intact glucosinolates—A validated pressurized liquid extraction/liquid chromatography–mass spectrometry protocol for Isatis tinctoria, and qualitative analysis of other cruciferous plants. J Chromatogr A 1166:142–151 ArticlePubMedCAS Google Scholar
Müller, C (2008) Interactions between plants containing glucosinolates and myrosinases and the sawfly Athalia rosae. Phytochem Rev
Müller C, Agerbirk N, Olsen CE et al (2001) Sequestration of host plant glucosinolates in the defensive hemolymph of the sawfly Athalia rosae. J Chem Ecol 27:2505–2516 ArticlePubMed Google Scholar
Müller C, Wittstock U (2005) Uptake and turn-over of glucosinolates sequestered in the sawfly Athalia rosae. Insect Biochem Mol Biol 35:1189–1198 ArticlePubMedCAS Google Scholar
Nafisi M, Goregaoker S, Botanga CJ et al (2007) Arabidopsis cytochrome P450 monooxygenase 71A13 catalyzes the conversion of indole-3-acetaldoxime in camalexin synthesis. Plant Cell 19:2039–2052 ArticlePubMedCAS Google Scholar
Pedras MSC, Nycholat CM, Montaut S et al (2002) Chemical defenses of crucifers: elicitation and metabolism of phytoalexins and indole-3-acetonitrile in brown mustard and turnip. Phytochemistry 59:611–625 ArticlePubMedCAS Google Scholar
Pedras MSC, Okinyo POD (2008) Remarkable incorporation of the first sulfur containing indole derivative: another piece in the biosynthetic puzzle of crucifer phytoalexins. Org Biomol Chemistry 6:51–54 ArticleCAS Google Scholar
Pedras MSC, Zheng Q, Sarma-Mamillapalle VK (2007) The phytoalexins from Brassicaceae: structure, biological activity, synthesis and biosynthesis. Nat Prod Commun 2:319–330 CAS Google Scholar
Petersen BL, Chen S, Hansen CH et al (2002) Composition and content of glucosinolates in developing Arabidopsis thaliana. Planta 214:562–571 ArticlePubMedCAS Google Scholar
Piotrowski M, Schemenewitz A, Lopukhina A et al (2004) Desulfoglucosinolate sulfotransferases from Arabidopsis thaliana catalyze the final step in the biosynthesis of the glucosinolate core structure. J Biol Chem 279:50717–50725 ArticlePubMedCAS Google Scholar
Preobrazhenskaya MN, Bukhman VM, Korolev AM, Efimov SA (1993a) Ascorbigen and other indole-derived compounds from Brassica vegetables and their analogs as anticarcinogenic and immunomodulating agents. Pharmacol Ther 60:301–313 ArticlePubMedCAS Google Scholar
Preobrazhenskaya MN, Korolev AM, Lazhko EI et al (1993b) Ascorbigen as a precursor of 5,11-dihydroindolo[3,2-_b_]carbazole. Food Chem 48:57–62 ArticleCAS Google Scholar
Reifenrath K, Riederer M, Müller C (2005) Leaf surface wax layers of Brassicaceae lack feeding stimulants for Phaedon cochleariae. Entomol Exp Appl 115:41–50 ArticleCAS Google Scholar
Renwick JAA, Radke CD, Sachdev-Gupta K, Städler E (1992) Leaf surface chemicals stimulating oviposition by Pieris rapae (Lepidoptera: Pieridae) on cabbage. Chemoecology 3:33–38 ArticleCAS Google Scholar
Roessingh P, Städler E, Baur R et al (1997) Tarsal chemoreceptors and oviposition behavior of the cabbage root fly (Delia radicum) sensitive to fractions and new compounds of host leaf surface extracts. Physiol Entomol 22:140–148 ArticleCAS Google Scholar
Rostás M, Bennett R, Hilker M (2002) Comparative physiological responses in Chinese cabbage induced by herbivory and fungal infection. J Chem Ecol 28:2449–2463 ArticlePubMed Google Scholar
Rothschild M, Schoonhoven LM (1977) Assessment of egg load by Pieris brassicae (Lepidoptera: Pieridae). Nature 266:352–355 Article Google Scholar
Safe S (2001) Molecular biology of the Ah receptor and its role in carcinogenesis. Toxic Lett 120:1–7 ArticleCAS Google Scholar
Sasagawa C, Matsushima T (1991) Mutagen formation on nitrite treatment of indole compounds derived from indole-glucosinolate. Mutat Res 250:169–174 PubMedCAS Google Scholar
Schraudolf H, Bauerle R (1986) _N_-acetyl-3-indolylmethylglucosinolate in seedlings of Tovaria pendula Ruiz et Pav. Z Naturforsch 41c:526–528 Google Scholar
Shapiro TA, Fahey JW, Wade KL et al (1998) Human metabolism and excretion of cancer chemoprotective glucosinolates and isothiocyanates of cruciferous vegetables. Cancer Epidemiol Biomarkers Prev 7:1091–1100 PubMedCAS Google Scholar
Slominski BA, Campbell LD (1989) Formation of indole glucosinolate breakdown products in autolyzed steamed and cooked Brassica vegetables. J Agric Food Chem 37:1297–1302 ArticleCAS Google Scholar
Städler E, Reifenrath K (2008) Glucosinolates on the leaf surface perceived by insect herbivores: review of ambiguous results and new investigations. Phytochem Rev
Städler E, Renwick JAA, Radke CD, Sachdev-Gupta K (1995) Tarsal contact chemoreceptor response to glucosinolates and cardenolides mediating oviposition in Pieris rapae. Physiol Entomol 20:175 Article Google Scholar
Staub RE, Feng C, Onisko B et al (2002) Fate of indole-3-carbinol in cultured human breast tumor cells. Chem Res Toxicol 15:101–109 ArticlePubMedCAS Google Scholar
Stephensen PU, Bonnesen C, Bjeldanes LF, Vang O (1999) Modulation of cytochrome P4501A1 activity by ascorbigen in murine hepatoma cells. Biochem Pharmacol 58:1145–1153 ArticleCAS Google Scholar
Stephensen PU, Bonnesen C, Schaldach C et al (2000) _N_-Methoxyindole-3-carbinol is a more efficient inducer of cytochrome P-450 1A1 in cultured cells than indole-3-carbinol. Nutr Cancer 36:112–121 ArticlePubMedCAS Google Scholar
Tabor MW, Shertzer HG, Myers BL (1988) In vitro metabolism of the dietary chemopreventive agent indole-3-carbinol. FASEB J 2(5):abstract 4881 Google Scholar
Tiedink HG, Davies JA, Visser NA et al (1989) The stability of the nitrosated products of indole, indole-3-acetonitrile, indole-3-carbinol and 4-chloroindole. Food Chem Toxicol 27:723–730 ArticlePubMedCAS Google Scholar
Travers-Martin N, Müller C (2007) Specificity of induction responses in Sinapis alba and their effects on a specialist herbivore. J Chem Ecol 33:1582–1597 ArticlePubMedCAS Google Scholar
Traw MB (2002) Is induction response negatively correlated with constitutive resistance in black mustard? Evolution 56:2196–2205 PubMed Google Scholar
Truscott RJW, Johnstone PK, Minchinton IR, Sang JP (1983) Indole glucosinolates in Swede (Brassica napobrassica L. Mill). J Agric Food Chem 31:863–867 ArticleCAS Google Scholar
van Dam NM, Witjes L, Svatos A (2004) Interactions between aboveground and belowground induction of glucosinolates in two wild Brassica species. New Phytol 161:801–810 Article Google Scholar
van Loon JJA, Blaakmeer A, Griepink FC et al (1992) Leaf surface compound from Brassica oleracea (Cruciferae) induces oviposition by Pieris brassicae (Lepidoptera: Pieridae). Chemoecology 3:39–44 Article Google Scholar
Vanderpas J (2006) Nutritional epidemiology and thyroid hormone metabolism. Annu Rev Nutr 26:293–322 ArticlePubMedCAS Google Scholar
Vierheilig H, Bennett R, Kiddle G et al (2000) Differences in glucosinolate patterns and arbuscular mycorrhizal status of glucosinolate-containing plant species. New Phytol 146:343–352 ArticleCAS Google Scholar
Vorwerk S, Biernacki S, Hillebrand H et al (2001) Enzymatic characterization of the recombinant Arabidopsis thaliana nitrilase subfamily encoded by the _NIT2/NIT1/NIT3_-gene cluster. Planta 212:508–516 ArticlePubMedCAS Google Scholar
Wakabayashi K, Nagao M, Ochiai M et al (1985) A mutagen precursor in Chinese cabbage, indole-3-acetonitrile, which becomes mutagenic on nitrite treatment. Mutat Res 143:17–21 ArticlePubMedCAS Google Scholar
Wattenberg LW (1971) Studies of polycyclic hydrocarbon hydroxylases of the intestine possibly related to cancer. Cancer 28:99–102 ArticlePubMedCAS Google Scholar
Windsor AJ, Reichelt M, Figuth A et al (2005) Geographic and evolutionary diversification of glucosinolates among near relatives of Arabidopsis thaliana (Brassicaceae). Phytochemistry 66:1321–1333 ArticlePubMedCAS Google Scholar
Wittstock U, Agerbirk N, Stauber EJ et al (2004) Successful herbivore attack due to metabolic diversion of a plant chemical defense. Proc Natl Acad Sci USA 101:4859–4864 ArticlePubMedCAS Google Scholar
Zhao Y, Hull AK, Gupta NR et al (2002) Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP79B2 and CYP79B3. Genes Dev 16:3100–3112 ArticlePubMedCAS Google Scholar