Álvarez C, Calo L, Romero LC, García I, Gotor C (2010) An o-acetylserine(thiol)lyase homolog with l-cysteine desulfhydrase activity regulates cysteine homeostasis in Arabidopsis. Plant Physiol 152:656–669. doi:10.1104/pp.109.147975 ArticlePubMed CentralPubMed Google Scholar
Bevan M, Bancroft I, Bent E et al (1998) Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature 391:485–488. doi:10.1038/35140 ArticleCASPubMed Google Scholar
Bloem E, Riemenschneider A, Volker J et al (2004) Sulphur supply and infection with Pyrenopeziza brassicae influence l-cysteine desulphydrase activity in Brassica napus L. J Exp Bot 55:2305–2312. doi:10.1093/jxb/erh236 ArticleCASPubMed Google Scholar
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3 ArticleCASPubMed Google Scholar
Chaki M, Valderrama R, Fernández-Ocaña AM et al (2011) High temperature triggers the metabolism of _S_-nitrosothiols in sunflower mediating a process of nitrosative stress which provokes the inhibition of ferredoxin-NADP reductase by tyrosine nitration. Plant, Cell Environ 34:1803–1818. doi:10.1111/j.1365-3040.2011.02376.x ArticleCAS Google Scholar
Christou A, Manganaris GA, Papadopoulos I, Fotopoulos V (2013) Hydrogen sulfide induces systemic tolerance to salinity and non-ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defence pathways. J Exp Bot 64:1953–1966. doi:10.1093/jxb/ert055 ArticlePubMed CentralCASPubMed Google Scholar
Christou A, Filippou P, Manganaris G, Fotopoulos V (2014) Sodium hydrosulfide induces systemic thermotolerance to strawberry plants through transcriptional regulation of heat shock proteins and aquaporin. BMC Plant Biol 14:42. doi:10.1186/1471-2229-14-42 ArticlePubMed CentralPubMed Google Scholar
Corpas FJ, Chaki M, Fernández-Ocaña A et al (2008) Metabolism of reactive nitrogen species in pea plants under abiotic stress conditions. Plant Cell Physiol 49:1711–1722. doi:10.1093/pcp/pcn144 ArticleCASPubMed Google Scholar
Esechie A, Kiss L, Olah G, Horvath EM, Horvath E, Szabo C, Traber DL (2008) Protective effect of hydrogen sulfide in a murine model of acute lung injury induced by combined burn and smoke inhalation. Clin Sci 115:91–97. doi:10.1042/CS20080021 ArticleCASPubMed Google Scholar
García-Sánchez F, Syvertsen JP, Gimeno V, Botía P, Perez-Perez JG (2007) Responses to flooding and drought stress by two citrus rootstock seedlings with different water-use efficiency. Physiologia Plant 130:532–542. doi:10.1111/j.1399-3054.2007.00925.x Article Google Scholar
Jin Z, Xue S, Luo Y, Tian B, Fang H, Li H, Pei Y (2013) Hydrogen sulfide interacting with abscisic acid in stomatal regulation responses to drought stress in Arabidopsis. Plant Physiol Biochem 62:41–46. doi:10.1016/j.plaphy.2012.10.017 ArticleCASPubMed Google Scholar
Kubo S, Kurokawa Y, Doe I, Masuko T, Sekiguchi F, Kawabata A (2007) Hydrogen sulfide inhibits activity of three isoforms of recombinant nitric oxide synthase. Toxicology 241:92–97. doi:10.1016/j.tox.2007.08.087 ArticleCASPubMed Google Scholar
Kurek I, Stoger E, Dulberger R, Christou P, Breiman A (2002) Overexpression of the wheat FK506-binding protein 73 (FKBP73) and the heat-induced wheat FKBP77 in transgenic wheat reveals different functions of the two isoforms. Transgenic Res 11:373–379. doi:10.1007/s00438-008-0318-5 ArticleCASPubMed Google Scholar
Leterrier M, Barroso JB, Palma JM, Corpas FJ (2012) Cytosolic NADP-isocitrate dehydrogenase in Arabidopsis leaves and roots. Biol Plant 56:705–710. doi:10.1007/s10535-012-0244-6 ArticleCAS Google Scholar
Lounifi I, Arc E, Molassiotis A, Job D, Rajjou L, Tanou G (2013) Interplay between protein carbonylation and nitrosylation in plants. Proteomics 13:568–578. doi:10.1002/pmic.201200304 ArticleCASPubMed Google Scholar
Mahe A, Grisvard J, Dron M (1992) Fungal and specific gene markers to follow the bean-anthracnose infection process and mormalize the bean chitinase rnRNA induction. Mol Plant Microbe Interact 5:242–248 ArticleCAS Google Scholar
Martínez MC, Achkor H, Persson B et al (1996) Arabidopsis formaldehyde dehydrogenase. Molecular properties of plant class III alcohol dehydrogenase provide further insights into the origins, structure and function of plant class P and liver class I alcohol dehydrogenases. Eur J Biochem 241:849–857. doi:10.1111/j.1432-1033.1996.00849.x ArticlePubMed Google Scholar
Nashef AS, Osuga DT, Feeney RE (1977) Determination of hydrogen sulfide with 5,5′-dithiobis-(2-nitrobenzoic acid), _N_-ethylmaleimide, and parachloromercuribenzoate. Anal Biochem 79:394–405. doi:10.1016/0003-2697(77)90413-4 ArticleCASPubMed Google Scholar
Ortega-Galisteo AP, Rodríguez-Serrano M, Pazmiño DM, Gupta DK, Sandalio LM, Romero-Puertas MC (2012) _S_-nitrosylated proteins in pea (Pisum sativum L.) leaf peroxisomes: changes under abiotic stress. J Exp Bot 63:2089–2103. doi:10.1093/jxb/err414 ArticlePubMed CentralCASPubMed Google Scholar
Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36. doi:10.1093/nar/30.9.e36 ArticlePubMed CentralPubMed Google Scholar
Qiao Z, Jing T, Liu Z, Zhang L, Jin Z, Liu D, Pei Y (2015) H2S acting as a downstream signaling molecule of SA regulates Cd tolerance in Arabidopsis. Plant Soil 393:137–146. doi:10.1007/s11104-015-2475-8 ArticleCAS Google Scholar
Riccardi F, Gazeau P, de Vienne D, Zivy M (1998) Protein changes in response to progressive water deficit in maize: quantitative variation and polypeptide identification. Plant Physiol 117:1253–1263. doi:10.1104/pp.117.4.1253 ArticlePubMed CentralCASPubMed Google Scholar
Riemenschneider A, Nikiforova V, Hoefgen R, De Kok LJ, Papenbrock J (2005a) Impact of elevated H2S on metabolite levels, activity of enzymes and expression of genes involved in cysteine metabolism. Plant Physiol Biochem 43:473–483. doi:10.1016/j.plaphy.2005.04.001 ArticleCASPubMed Google Scholar
Rizhsky L et al (2002) Double antisense plants lacking ascorbate peroxidase and catalase are less sensitive to oxidative stress than single antisense plants lacking ascorbate peroxidase or catalase. Plant J 32:329–342. doi:10.1046/j.1365-313X.2002.01427.x ArticleCASPubMed Google Scholar
Rümer S, Krischke M, Fekete A, Mueller MJ, Kaiser WM (2012) DAF-fluorescence without NO: elicitor treated tobacco cells produce fluorescing DAF-derivatives not related to DAF-2 triazol. Nitric Oxide 27:123–135. doi:10.1016/j.niox.2012.05.007 ArticlePubMed Google Scholar
Scuffi D, Álvarez C, Laspina N, Gotor C, Lamattina L, García-Mata C (2014) Hydrogen sulfide generated by l-cysteine desulfhydrase acts upstream of nitric oxide to modulate abscisic acid-dependent stomatal closure. Plant Physiol 166:2065–2076. doi:10.1104/pp.114.245373 ArticlePubMed Google Scholar
Shi H, Ye T, Chan Z (2013) Exogenous application of hydrogen sulfide donor sodium hydrosulfide enhanced multiple abiotic stress tolerance in bermudagrass (Cynodon dactylon (L). Pers.). Plant Physiol Biochem 71:226–234. doi:10.1016/j.plaphy.2013.07.021 ArticleCASPubMed Google Scholar
Shi H, Ye T, Zhu J-K, Chan Z (2014) Constitutive production of nitric oxide leads to enhanced drought stress resistance and extensive transcriptional reprogramming in Arabidopsis. J Exp Bot 65:4119–4131. doi:10.1093/jxb/eru184 ArticlePubMed CentralPubMed Google Scholar
Taketani S, Adachi Y, Kohno H, Ikehara S, Tokunaga R, Ishii T (1998) Molecular characterization of a newly identified heme-binding protein induced during differentiation of urine erythroleukemia cells. J Biol Chem 273:31388–31394. doi:10.1074/jbc.273.47.31388 ArticleCASPubMed Google Scholar
Tanou G, Job C, Rajjou L, Arc E, Belghazi M, Diamantidis G, Molassiotis A, Job D (2009) Proteomics reveals the overlapping roles of hydrogen peroxide and nitric oxide in the acclimation of citrus plants to salinity. Plant J 60:795–804. doi:10.1111/j.1365-313X.2009.04000.x ArticleCASPubMed Google Scholar
Tanou G, Job C, Belghazi M, Molassiotis A, Diamantidis G, Job D (2010) Proteomic signatures uncover hydrogen peroxide and nitric oxide cross-talk signaling network in citrus plants. J Proteome Res 9:5994–6006. doi:10.1021/pr100782h ArticleCASPubMed Google Scholar
Tanou G, Filippou P, Belghazi M, Job D, Diamantidis G, Fotopoulos V, Molassiotis A (2012a) Oxidative and nitrosative-based signaling and associated post-translational modifications orchestrate the acclimation of citrus plants to salinity stress. Plant J 72:585–599. doi:10.1111/j.1365-313X.2012.05100.x ArticleCASPubMed Google Scholar
Tanou G, Ziogas V, Belghazi M, Christou A, Filippou P, Job D, Fotopoulos V, Molassiotis A (2014) Polyamines reprogram oxidative and nitrosative status and the proteome of citrus plants exposed to salinity stress. Plant Cell Environ 37:864–885. doi:10.1111/pce.12204 ArticleCASPubMed Google Scholar
van Engelen FA, Hartog MV, Thomas TL, Taylor B, Sturm A, van Kammen A, de Vries SC (1993) The carrot secreted glycoprotein gene EP1 is expressed in the epidermis and has sequence homology to Brassica S-locus glycoproteins. Plant J 4:855–862. doi:10.1046/j.1365-313X.1993.04050855.x ArticlePubMed Google Scholar
Wang P, Du Y, Hou Y-J, Zhao Y, Hsu C-C, Yuan F, Zhu X, Tao WA, Song C-P, Zhu J-K (2015) Nitric oxide negatively regulates abscisic acid signaling in guard cells by _S_-nitrosylation of OST1. Proc Natl Acad Sci USA 112:613–618. doi:10.1073/pnas.1423481112 ArticlePubMed CentralCASPubMed Google Scholar
Whiteman M, Li L, Kostetski I, Chu SH, Siau JL, Bhatia M, Moore PK (2006) Evidence for the formation of a novel nitrosothiol from the gaseous mediators nitric oxide and hydrogen sulphide. Biochem Biophys Res Commun 343:303–310. doi:10.1016/j.bbrc.2006.02.154 ArticleCASPubMed Google Scholar
Wünsche H, Baldwin IT, Wu J (2011) _S_-Nitrosoglutathione reductase (GSNOR) mediates the biosynthesis of jasmonic acid and ethylene induced by feeding of the insect herbivore Manduca sexta and is important for jasmonate-elicited responses in Nicotiana attenuata. J Exp Bot 62:4605–4616. doi:10.1093/jxb/err171 ArticlePubMed CentralPubMed Google Scholar
Xiong L, Wang R-G, Mao G, Koczan JM (2006) Identification of drought tolerance determinants by genetic analysis of root response to drought stress and abscisic acid. Plant Physiol 142:1065–1074. doi:10.1104/pp.106.084632 ArticlePubMed CentralCASPubMed Google Scholar
Xu C, Jiang Z, Huang B (2011) Nitrogen deficiency-induced protein changes in immature and mature leaves of creeping bentgrass. J Am Soc Hortic Sci 136:399–407 CAS Google Scholar
Yu Y, Zhang H, Li W, Mu C, Zhang F, Wang L, Meng Z (2012) Genome-wide analysis and environmental response profiling of the FK506-binding protein gene family in maize (Zea mays L.). Gene 498:212–222. doi:10.1016/j.gene.2012.01.094 ArticleCASPubMed Google Scholar
Zadražnik T, Hollung K, Egge-Jacobsen W, Meglič V, Šuštar-Vozlič J (2013) Differential proteomic analysis of drought stress response in leaves of common bean (Phaseolus vulgaris L.). J Proteomics 78:254–272. doi:10.1016/j.jprot.2012.09.021 ArticlePubMed Google Scholar
Zhang A, Jiang M, Zhang J, Ding H, Xu S, Hu X, Tan M (2007) Nitric oxide induced by hydrogen peroxide mediates abscisic acid-induced activation of the mitogen-activated protein kinase cascade involved in antioxidant defense in maize leaves. New Phytol 175:36–50. doi:10.1111/j.1469-8137.2007.02071.x ArticleCASPubMed Google Scholar
Zhou B, Guo Z, Xing J, Huang B (2005) Nitric oxide is involved in abscisic acid-induced antioxidant activities in Stylosanthes guianensis. J Exp Bot 56:3223–3228. doi:10.1093/jxb/eri319 ArticleCASPubMed Google Scholar
Ziogas V, Tanou G, Filippou P, Diamantidis G, Vasilakakis M, Fotopoulos V, Molassiotis A (2013) Nitrosative responses in citrus plants exposed to six abiotic stress conditions. Plant Physiol Biochem 68:118–126. doi:10.1016/j.plaphy.2013.04.004 ArticleCASPubMed Google Scholar