Molecular backgrounds of age-related osteoporosis from mouse genetics approaches (original) (raw)
References
Bullamore JR, Gallagher JC, Wilkinson R, Nordin BE, Marshall DH. Effect of age on calcium absorption. Lancet 1970;12:535–7. Article Google Scholar
Gallagher JC, Riggs BL, Eisman J, Hamstra A, Arnaud SB, DeLuca HF. Intestinal calcium absorption and serum vitamin D metabolites in normal subjects and osteoporotic patients. J Clin Invest 1979;64:729–36. PubMedCAS Google Scholar
Horst RL, Goff JP, Reinhardt TA. Advancing age results in reduction of intestinal and bone 1,25-dihydroxyvitamin D receptor. Endocrinology 1990;126:1053–7. ArticlePubMedCAS Google Scholar
Wood RJ, Fleet JC, Cashman K, Bruns ME, Deluca HF. Intestinal calcium absorption in the aged rat: evidence of intestinal resistance to 1,25(OH)2 vitamin D. Endocrinology 1998;139:3843–8. ArticlePubMedCAS Google Scholar
Slovik DM, Adams JS, Neer R, Potts JT Jr. Deficient production of 1,25-dihydroxyvitamin D in elderly osteoporotic patients. N Engl J Med 1981;305:372–4. ArticlePubMedCAS Google Scholar
Ledger GA, Burritt MF, Kao PC, O’Fallon WM, Riggs BL, Khosla S. Abnormalities of parathyroid hormone secretion in elderly women that are reversible by short term therapy with 1,25-dihydroxyvitamin D3. J Clin Endocrinol Metab 1994;79:211–6. ArticlePubMedCAS Google Scholar
Haden ST, Brown EM, Hurwitz S, Scott J, El-Hajj Fuleihan G. The effects of age and gender on parathyroid hormone dynamics. Clin Endocrinol (Oxf) 2000;52:329–38. ArticleCAS Google Scholar
Cummings SR, Browner WS, Bauer D, Stone K, Ensrud K, Jamal S, et al. Endogenous hormones and the risk of hip and vertebral fractures among older women. Study of Osteoporotic Fractures Research Group. N Engl J Med 1998;339:733–8. ArticlePubMedCAS Google Scholar
Christiansen M, Kveiborg M, Kassem M, Clark BF, Rattan SI. CBFA1 and topoisomerase I mRNA levels decline during cellular aging of human trabecular osteoblasts. J Gerontol A Biol Sci Med Sci 2000;55:B194–200. PubMedCAS Google Scholar
Nicolas V, Prewett A, Bettica P, Mohan S, Finkelman RD, Baylink DJ, et al. Age-related decreases in insulin-like growth factor-I and transforming growth factor-beta in femoral cortical bone from both men and women: implications for bone loss with aging. J Clin Endocrinol Metab 1994;78:1011–6. ArticlePubMedCAS Google Scholar
Rosen CJ. Growth hormone, insulin-like growth factors, and the senescent skeleton: Ponce de Leon’s Fountain revisited? J Cell Biochem 1994;56:348–56. ArticlePubMedCAS Google Scholar
Sugimoto T, Nishiyama K, Kuribayashi F, Chihara K. Serum levels of insulin-like growth factor (IGF) I, IGF-binding protein (IGFBP)-2, and IGFBP-3 in osteoporotic patients with and without spinal fractures. J Bone Miner Res 1997;12:1272–9. ArticlePubMedCAS Google Scholar
Kodama Y, Takeuchi Y, Suzawa M, Fukumoto S, Murayama H, Yamato H, et al. Reduced expression of interleukin-11 in bone marrow stromal cells of senescence-accelerated mice (SAMP6): relationship to osteopenia with enhanced adipogenesis. J Bone Miner Res 1998;13:1370–7. ArticlePubMedCAS Google Scholar
Pfeilschifter J, Diel I, Scheppach B, Bretz A, Krempien R, Erdmann J, et al. Concentration of transforming growth factor beta in human bone tissue: relationship to age, menopause, bone turnover, and bone volume. J Bone Miner Res 1998;13:716–30. ArticlePubMedCAS Google Scholar
Fleet JC, Cashman K, Cox K, Rosen V. The effects of aging on the bone inductive activity of recombinant human bone morphogenetic protein-2. Endocrinology 1996;137:4605–10. ArticlePubMedCAS Google Scholar
Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Sugi T, Utsugi T, et al: Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 1997;390:45–51. ArticlePubMedCAS Google Scholar
Kawaguchi H, Manabe N, Miyaura C, Chikuda H, Nakamura K, Kuro-o M. Independent impairment of osteoblast and osteoclast differentiation in klotho mouse exhibiting low-turnover osteopenia. J Clin Invest 1999;104:229–37. PubMedCAS Google Scholar
Manabe N, Kawaguchi H, Chikuda H, Miyaura C, Inada M, Nagai R, et al. Connection between B lymphocyte and osteoclast differentiation pathways. J Immunol 2000;167:2625–31. Google Scholar
Takahashi Y, Kuro-o M, Ishikawa F. Aging mechanisms. Proc Natl Acad Sci U S A 2000;97:12407–8. ArticlePubMedCAS Google Scholar
Kurosu H, Yamamoto M, Clark JD, Pastor JV, Nandi A, Gurnani P, et al. Suppression of aging in mice by the hormone Klotho. Science 2005;309:1829–33. ArticlePubMedCAS Google Scholar
Tatar M, Bartke A, Antebi A. The endocrine regulation of aging by insulin-like signals. Science 2003;299:1346–51. ArticlePubMedCAS Google Scholar
Kawano K, Ogata N, Chiano M, Molloy H, Kleyn P, Spector TD, et al. Klotho gene polymorphisms associated with bone density of aged postmenopausal women. J Bone Miner Res 2002;17:1744–51. ArticlePubMedCAS Google Scholar
Ogata N, Matsumura Y, Shiraki M, Kawano K, Koshizuka Y, Hosoi T, et al. Association of klotho gene polymorphism with bone density and spondylosis of the lumbar spine in postmenopausal women. Bone 2002;31:37–42. ArticlePubMedCAS Google Scholar
Yamada Y, Ando F, Niino N, Shimokata H. Association of polymorphisms of the androgen receptor and klotho genes with bone mineral density in Japanese women. J Mol Med 2005;83:50–7. ArticlePubMedCAS Google Scholar
Arking DE, Krebsova A, Macek M Sr, Macek M Jr, Arking A, Mian IS, et al. Association of human aging with a functional variant of klotho. Proc Natl Acad Sci U S A 2002;99:856–61. ArticlePubMedCAS Google Scholar
Arking DE, Becker DM, Yanek LR, Fallin D, Judge DP, Moy TF, et al. KLOTHO allele status and the risk of early-onset occult coronary artery disease. Am J Hum Genet 2003;72:1154–61. ArticlePubMedCAS Google Scholar
Arking DE, Atzmon G, Arking A, Barzilai N, Dietz HC. Association between a functional variant of the KLOTHO gene and high-density lipoprotein cholesterol, blood pressure, stroke, and longevity. Circ Res 2005;96:412–8. ArticlePubMedCAS Google Scholar
Beresford JN. Osteogenic stem cells and the stromal system of bone and marrow. Clin Orthop 1989;240:270–80. PubMed Google Scholar
Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284:143–7. ArticlePubMedCAS Google Scholar
Bennett JH, Joyner CJ, Triffitt JT, Owen ME. Adipocytic cells cultured from marrow have osteogenic potential. J Cell Sci 1991;99:131–9. PubMed Google Scholar
Tontonoz P, Hu E, Spiegelman BM. Stimulation of adipogenesis in fibroblasts by PPARγ gamma 2, a lipid-activated transcription factor. Cell 1994;79:1147–56. ArticlePubMedCAS Google Scholar
Meunier P, Aaron J, Edouard C, Vignon G. Osteoporosis and the replacement of cell populations of the marrow by adipose tissue. A quantitative study of 84 iliac bone biopsies. Clin Orthop 1971;80:147–54. ArticlePubMedCAS Google Scholar
Burkhardt R, Kettner G, Bohm W, Schmidmeier M, Schlag R, Frisch B, et al. Changes in trabecular bone, hematopoiesis and bone marrow vessels in aplastic anemia, primary osteoporosis, and old age: a comparative histomorphometric study. Bone 1987;8:157–64. ArticlePubMedCAS Google Scholar
Rozman C, Feliu E, Berga L, Reverter JC, Climent C, Ferran MJ. Age-related variations of fat tissue fraction in normal human bone marrow depend both on size and number of adipocytes: a stereological study. Exp Hematol 1989;17:34–7. PubMedCAS Google Scholar
Akune T, Ohba S, Kamekura S, Yamaguchi M, Chung U, Kubota N, et al. PPARγ insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors. J Clin Invest 2004;113:846–55. ArticlePubMedCAS Google Scholar
Kubota N, Terauchi Y, Miki H, Tamemoto H, Yamauchi T, Komeda K, et al. PPARγ gamma mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance. Mol Cell 1999;4:597–609. ArticlePubMedCAS Google Scholar
Kadowaki T. Insights into insulin resistance and type 2 diabetes from knockout mouse models. J Clin Invest 2000;106:459–65. ArticlePubMedCAS Google Scholar
Ogawa S, Urano T, Hosoi T, Miyao M, Hoshino S, Fujita M, et al. Association of bone mineral density with a polymorphism of the peroxisome proliferator-activated receptor gamma gene: PPARγgamma expression in osteoblasts. Biochem Biophys Res Commun 1999;260:122–6. ArticlePubMedCAS Google Scholar
Koutnikova H, Cock TA, Watanabe M, Houten SM, Champy MF, Dierich A, et al. Compensation by the muscle limits the metabolic consequences of lipodystrophy in PPARγ gamma hypomorphic mice. Proc Natl Acad Sci U S A 2003;100:14457–62. ArticlePubMedCAS Google Scholar
Cock TA, Back J, Elefteriou F, Karsenty G, Kastner P, Chan S, et al. Enhanced bone formation in lipodystrophic PPARγhyp/hyp mice relocates haematopoiesis to the spleen. EMBO Rep 2004;5:1007–12. ArticlePubMedCAS Google Scholar
Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT, et al. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 2000;100:197–207. ArticlePubMedCAS Google Scholar
Takeda S, Elefteriou F, Levasseur R, Liu X, Zhao L, Parker KL, et al. Leptin regulates bone formation via the sympathetic nervous system. Cell 2002;111:305–17. ArticlePubMedCAS Google Scholar
Berner HS, Lyngstadaas SP, Spahr A, Monjo M, Thommesen L, Drevon CA, et al. Adiponectin and its receptors are expressed in bone-forming cells. Bone 2004;35:842–9. ArticlePubMedCAS Google Scholar
Lenchik L, Register TC, Hsu FC, Lohman K, Nicklas BJ, Freedman BI, et al. Adiponectin as a novel determinant of bone mineral density and visceral fat. Bone 2003;33:646–51. ArticlePubMedCAS Google Scholar
Shinoda Y, Yamaguchi M, Ogata N, Akune T, Kubota N, Yamauchi T, et al. Regulation of bone formation by adiponectin through autocrine/paracrine and endocrine pathways. J Cell Biochem 2006;99(1):196–208. ArticlePubMedCAS Google Scholar
Kadowaki T, Tobe K, Honda-Yamamoto R, Tamemoto H, Kaburagi Y, Momomura K, et al. Signal transduction mechanism of insulin and insulin-like growth factor-1. Endocr J 1996;43:S33–41. PubMedCAS Google Scholar
Ogata N, Chikazu D, Kubota N, Terauchi Y, Tobe T, Azuma Y, et al. Insulin receptor substrate-1 in osteoblast is indispensable for maintaining bone turnover. J Clin Invest 2000;105:935–43. PubMedCAS Google Scholar
Akune T, Hoshi K, Kubota Y, Terauchi K, Tobe Y, Azuma T, et al. Insulin receptor substrate-2 maintains predominance of anabolic function over catabolic function of osteoblasts. J Cell Biol 2002;159:147–56. ArticlePubMedCAS Google Scholar