Molecular backgrounds of age-related osteoporosis from mouse genetics approaches (original) (raw)

References

  1. Bullamore JR, Gallagher JC, Wilkinson R, Nordin BE, Marshall DH. Effect of age on calcium absorption. Lancet 1970;12:535–7.
    Article Google Scholar
  2. Gallagher JC, Riggs BL, Eisman J, Hamstra A, Arnaud SB, DeLuca HF. Intestinal calcium absorption and serum vitamin D metabolites in normal subjects and osteoporotic patients. J Clin Invest 1979;64:729–36.
    PubMed CAS Google Scholar
  3. Horst RL, Goff JP, Reinhardt TA. Advancing age results in reduction of intestinal and bone 1,25-dihydroxyvitamin D receptor. Endocrinology 1990;126:1053–7.
    Article PubMed CAS Google Scholar
  4. Wood RJ, Fleet JC, Cashman K, Bruns ME, Deluca HF. Intestinal calcium absorption in the aged rat: evidence of intestinal resistance to 1,25(OH)2 vitamin D. Endocrinology 1998;139:3843–8.
    Article PubMed CAS Google Scholar
  5. Slovik DM, Adams JS, Neer R, Potts JT Jr. Deficient production of 1,25-dihydroxyvitamin D in elderly osteoporotic patients. N Engl J Med 1981;305:372–4.
    Article PubMed CAS Google Scholar
  6. Ledger GA, Burritt MF, Kao PC, O’Fallon WM, Riggs BL, Khosla S. Abnormalities of parathyroid hormone secretion in elderly women that are reversible by short term therapy with 1,25-dihydroxyvitamin D3. J Clin Endocrinol Metab 1994;79:211–6.
    Article PubMed CAS Google Scholar
  7. Haden ST, Brown EM, Hurwitz S, Scott J, El-Hajj Fuleihan G. The effects of age and gender on parathyroid hormone dynamics. Clin Endocrinol (Oxf) 2000;52:329–38.
    Article CAS Google Scholar
  8. Cummings SR, Browner WS, Bauer D, Stone K, Ensrud K, Jamal S, et al. Endogenous hormones and the risk of hip and vertebral fractures among older women. Study of Osteoporotic Fractures Research Group. N Engl J Med 1998;339:733–8.
    Article PubMed CAS Google Scholar
  9. Christiansen M, Kveiborg M, Kassem M, Clark BF, Rattan SI. CBFA1 and topoisomerase I mRNA levels decline during cellular aging of human trabecular osteoblasts. J Gerontol A Biol Sci Med Sci 2000;55:B194–200.
    PubMed CAS Google Scholar
  10. Nicolas V, Prewett A, Bettica P, Mohan S, Finkelman RD, Baylink DJ, et al. Age-related decreases in insulin-like growth factor-I and transforming growth factor-beta in femoral cortical bone from both men and women: implications for bone loss with aging. J Clin Endocrinol Metab 1994;78:1011–6.
    Article PubMed CAS Google Scholar
  11. Rosen CJ. Growth hormone, insulin-like growth factors, and the senescent skeleton: Ponce de Leon’s Fountain revisited? J Cell Biochem 1994;56:348–56.
    Article PubMed CAS Google Scholar
  12. Sugimoto T, Nishiyama K, Kuribayashi F, Chihara K. Serum levels of insulin-like growth factor (IGF) I, IGF-binding protein (IGFBP)-2, and IGFBP-3 in osteoporotic patients with and without spinal fractures. J Bone Miner Res 1997;12:1272–9.
    Article PubMed CAS Google Scholar
  13. Kodama Y, Takeuchi Y, Suzawa M, Fukumoto S, Murayama H, Yamato H, et al. Reduced expression of interleukin-11 in bone marrow stromal cells of senescence-accelerated mice (SAMP6): relationship to osteopenia with enhanced adipogenesis. J Bone Miner Res 1998;13:1370–7.
    Article PubMed CAS Google Scholar
  14. Pfeilschifter J, Diel I, Scheppach B, Bretz A, Krempien R, Erdmann J, et al. Concentration of transforming growth factor beta in human bone tissue: relationship to age, menopause, bone turnover, and bone volume. J Bone Miner Res 1998;13:716–30.
    Article PubMed CAS Google Scholar
  15. Fleet JC, Cashman K, Cox K, Rosen V. The effects of aging on the bone inductive activity of recombinant human bone morphogenetic protein-2. Endocrinology 1996;137:4605–10.
    Article PubMed CAS Google Scholar
  16. Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Sugi T, Utsugi T, et al: Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 1997;390:45–51.
    Article PubMed CAS Google Scholar
  17. Kawaguchi H, Manabe N, Miyaura C, Chikuda H, Nakamura K, Kuro-o M. Independent impairment of osteoblast and osteoclast differentiation in klotho mouse exhibiting low-turnover osteopenia. J Clin Invest 1999;104:229–37.
    PubMed CAS Google Scholar
  18. Manabe N, Kawaguchi H, Chikuda H, Miyaura C, Inada M, Nagai R, et al. Connection between B lymphocyte and osteoclast differentiation pathways. J Immunol 2000;167:2625–31.
    Google Scholar
  19. Takahashi Y, Kuro-o M, Ishikawa F. Aging mechanisms. Proc Natl Acad Sci U S A 2000;97:12407–8.
    Article PubMed CAS Google Scholar
  20. Kurosu H, Yamamoto M, Clark JD, Pastor JV, Nandi A, Gurnani P, et al. Suppression of aging in mice by the hormone Klotho. Science 2005;309:1829–33.
    Article PubMed CAS Google Scholar
  21. Tatar M, Bartke A, Antebi A. The endocrine regulation of aging by insulin-like signals. Science 2003;299:1346–51.
    Article PubMed CAS Google Scholar
  22. Kawano K, Ogata N, Chiano M, Molloy H, Kleyn P, Spector TD, et al. Klotho gene polymorphisms associated with bone density of aged postmenopausal women. J Bone Miner Res 2002;17:1744–51.
    Article PubMed CAS Google Scholar
  23. Ogata N, Matsumura Y, Shiraki M, Kawano K, Koshizuka Y, Hosoi T, et al. Association of klotho gene polymorphism with bone density and spondylosis of the lumbar spine in postmenopausal women. Bone 2002;31:37–42.
    Article PubMed CAS Google Scholar
  24. Yamada Y, Ando F, Niino N, Shimokata H. Association of polymorphisms of the androgen receptor and klotho genes with bone mineral density in Japanese women. J Mol Med 2005;83:50–7.
    Article PubMed CAS Google Scholar
  25. Arking DE, Krebsova A, Macek M Sr, Macek M Jr, Arking A, Mian IS, et al. Association of human aging with a functional variant of klotho. Proc Natl Acad Sci U S A 2002;99:856–61.
    Article PubMed CAS Google Scholar
  26. Arking DE, Becker DM, Yanek LR, Fallin D, Judge DP, Moy TF, et al. KLOTHO allele status and the risk of early-onset occult coronary artery disease. Am J Hum Genet 2003;72:1154–61.
    Article PubMed CAS Google Scholar
  27. Arking DE, Atzmon G, Arking A, Barzilai N, Dietz HC. Association between a functional variant of the KLOTHO gene and high-density lipoprotein cholesterol, blood pressure, stroke, and longevity. Circ Res 2005;96:412–8.
    Article PubMed CAS Google Scholar
  28. Beresford JN. Osteogenic stem cells and the stromal system of bone and marrow. Clin Orthop 1989;240:270–80.
    PubMed Google Scholar
  29. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284:143–7.
    Article PubMed CAS Google Scholar
  30. Bennett JH, Joyner CJ, Triffitt JT, Owen ME. Adipocytic cells cultured from marrow have osteogenic potential. J Cell Sci 1991;99:131–9.
    PubMed Google Scholar
  31. Tontonoz P, Hu E, Spiegelman BM. Stimulation of adipogenesis in fibroblasts by PPARγ gamma 2, a lipid-activated transcription factor. Cell 1994;79:1147–56.
    Article PubMed CAS Google Scholar
  32. Meunier P, Aaron J, Edouard C, Vignon G. Osteoporosis and the replacement of cell populations of the marrow by adipose tissue. A quantitative study of 84 iliac bone biopsies. Clin Orthop 1971;80:147–54.
    Article PubMed CAS Google Scholar
  33. Burkhardt R, Kettner G, Bohm W, Schmidmeier M, Schlag R, Frisch B, et al. Changes in trabecular bone, hematopoiesis and bone marrow vessels in aplastic anemia, primary osteoporosis, and old age: a comparative histomorphometric study. Bone 1987;8:157–64.
    Article PubMed CAS Google Scholar
  34. Rozman C, Feliu E, Berga L, Reverter JC, Climent C, Ferran MJ. Age-related variations of fat tissue fraction in normal human bone marrow depend both on size and number of adipocytes: a stereological study. Exp Hematol 1989;17:34–7.
    PubMed CAS Google Scholar
  35. Akune T, Ohba S, Kamekura S, Yamaguchi M, Chung U, Kubota N, et al. PPARγ insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors. J Clin Invest 2004;113:846–55.
    Article PubMed CAS Google Scholar
  36. Kubota N, Terauchi Y, Miki H, Tamemoto H, Yamauchi T, Komeda K, et al. PPARγ gamma mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance. Mol Cell 1999;4:597–609.
    Article PubMed CAS Google Scholar
  37. Kadowaki T. Insights into insulin resistance and type 2 diabetes from knockout mouse models. J Clin Invest 2000;106:459–65.
    Article PubMed CAS Google Scholar
  38. Ogawa S, Urano T, Hosoi T, Miyao M, Hoshino S, Fujita M, et al. Association of bone mineral density with a polymorphism of the peroxisome proliferator-activated receptor gamma gene: PPARγgamma expression in osteoblasts. Biochem Biophys Res Commun 1999;260:122–6.
    Article PubMed CAS Google Scholar
  39. Koutnikova H, Cock TA, Watanabe M, Houten SM, Champy MF, Dierich A, et al. Compensation by the muscle limits the metabolic consequences of lipodystrophy in PPARγ gamma hypomorphic mice. Proc Natl Acad Sci U S A 2003;100:14457–62.
    Article PubMed CAS Google Scholar
  40. Cock TA, Back J, Elefteriou F, Karsenty G, Kastner P, Chan S, et al. Enhanced bone formation in lipodystrophic PPARγhyp/hyp mice relocates haematopoiesis to the spleen. EMBO Rep 2004;5:1007–12.
    Article PubMed CAS Google Scholar
  41. Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT, et al. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 2000;100:197–207.
    Article PubMed CAS Google Scholar
  42. Takeda S, Elefteriou F, Levasseur R, Liu X, Zhao L, Parker KL, et al. Leptin regulates bone formation via the sympathetic nervous system. Cell 2002;111:305–17.
    Article PubMed CAS Google Scholar
  43. Berner HS, Lyngstadaas SP, Spahr A, Monjo M, Thommesen L, Drevon CA, et al. Adiponectin and its receptors are expressed in bone-forming cells. Bone 2004;35:842–9.
    Article PubMed CAS Google Scholar
  44. Lenchik L, Register TC, Hsu FC, Lohman K, Nicklas BJ, Freedman BI, et al. Adiponectin as a novel determinant of bone mineral density and visceral fat. Bone 2003;33:646–51.
    Article PubMed CAS Google Scholar
  45. Shinoda Y, Yamaguchi M, Ogata N, Akune T, Kubota N, Yamauchi T, et al. Regulation of bone formation by adiponectin through autocrine/paracrine and endocrine pathways. J Cell Biochem 2006;99(1):196–208.
    Article PubMed CAS Google Scholar
  46. Kadowaki T, Tobe K, Honda-Yamamoto R, Tamemoto H, Kaburagi Y, Momomura K, et al. Signal transduction mechanism of insulin and insulin-like growth factor-1. Endocr J 1996;43:S33–41.
    PubMed CAS Google Scholar
  47. Ogata N, Chikazu D, Kubota N, Terauchi Y, Tobe T, Azuma Y, et al. Insulin receptor substrate-1 in osteoblast is indispensable for maintaining bone turnover. J Clin Invest 2000;105:935–43.
    PubMed CAS Google Scholar
  48. Akune T, Hoshi K, Kubota Y, Terauchi K, Tobe Y, Azuma T, et al. Insulin receptor substrate-2 maintains predominance of anabolic function over catabolic function of osteoblasts. J Cell Biol 2002;159:147–56.
    Article PubMed CAS Google Scholar

Download references