- de Groen PC, Gores GJ, LaRusso NF, Gunderson LL, Nagorney DM (1999) Biliary tract cancers. N Engl J Med 341:1368–1378
Article PubMed Google Scholar
- Ahrendt SA, Nakeeb A, Pitt HA (2001) Cholangiocarcinoma. Clin Liver Dis 5:191–218
Article PubMed CAS Google Scholar
- bores-Saavedra J, Henson DE, Sobin LH (1992) The WHO histological classification of tumors of the gallbladder and extrahepatic bile ducts. A commentary on the second edition. Cancer 70:410–414
Article Google Scholar
- Fleming KA, Boberg KM, Glaumann H et al (2001) Biliary dysplasia as a marker of cholangiocarcinoma in primary sclerosing cholangitis. J Hepatol 34:360–365
Article PubMed CAS Google Scholar
- Hansel DE, Rahman A, Hidalgo M et al (2003) Identification of novel cellular targets in biliary tract cancers using global gene expression technology. Am J Pathol 163:217–229
PubMed CAS Google Scholar
- Terada T, Nakanuma Y, Sirica AE (1998) Immunohistochemical demonstration of MET overexpression in human intrahepatic cholangiocarcinoma and in hepatolithiasis. Hum Pathol 29:175–180
Article PubMed CAS Google Scholar
- Endo K, Yoon BI, Pairojkul C, Demetris AJ, Sirica AE (2002) ERBB-2 overexpression and cyclooxygenase-2 up–regulation in human cholangiocarcinoma and risk conditions. Hepatology 36:439–450
Article PubMed CAS Google Scholar
- Villa R, Gornati D, Zaffaroni N et al (1997) Comparative in vitro sensitivity of human cholangiocarcinoma and colon adenocarcinoma cells to anticancer agents. Anticancer Res 17:961–968
PubMed CAS Google Scholar
- Hudd C, Euhus DM, LaRegina MC et al (1985) Effect of cholecystokinin on human cholangiocarcinoma xenografted into nude mice. Cancer Res 45:1372–1377
PubMed CAS Google Scholar
- Sirica AE (2005) Cholangiocarcinoma: molecular targeting strategies for chemoprevention and therapy. Hepatology 41:5–15
Article PubMed Google Scholar
- Yeh CN, Maitra A, Lee KF, Jan YY, Chen MF (2004) Thioacetamide-induced intestinal-type cholangiocarcinoma in rat: an animal model recapitulating the multi-stage progression of human cholangiocarcinoma. Carcinogenesis 25:631–636
Article PubMed CAS Google Scholar
- Kelloff GJ, Hoffman JM, Johnson B et al (2005) Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development. Clin Cancer Res 11:2785–2808
Article PubMed CAS Google Scholar
- Keiding S, Hansen SB, Rasmussen HH et al (1998) Detection of cholangiocarcinoma in primary sclerosing cholangitis by positron emission tomography. Hepatology 28:700–706
Article PubMed CAS Google Scholar
- Ho CL, Yu SC, Yeung DW (2003) 11C-acetate PET imaging in hepatocellular carcinoma and other liver masses. J Nucl Med 44:213–221
PubMed Google Scholar
- Oyama N, Akino H, Kanamaru H et al (2002) 11C-acetate PET imaging of prostate cancer. J Nucl Med 43:181–186
PubMed CAS Google Scholar
- Ho CL, Chen S, Yeung DW, Cheng TK (2007) Dual-tracer PET/CT imaging in evaluation of metastatic hepatocellular carcinoma. J Nucl Med 48:902–909
Article PubMed CAS Google Scholar
- Laverman P, Blokx WA, Te Morsche RH et al (2007) [(18)F]FDG accumulation in an experimental model of multistage progression of cholangiocarcinoma. Hepatol Res 37:127–132
PubMed CAS Google Scholar
- Ishiwata K, Ishii S, Senda M (2005) Successive preparation of C-11 labeled sodium acetate and/or sodium hexanoate. Appl Radiat Isot 46:1035–1037
Article Google Scholar
- Fuchtner F, Steinbach J, Mading P, Johannsen B (1996) Basic hydrolysis of 2-[F-18]fluoro-1,3,4,6-tetra-_O_-acetyl-d-glucose in the preparation of 2-[F-18]fluoro-2-dexoy-d-glucose. Appl Radiat Isot 47:61–66
Article Google Scholar
- Lin KJ, Yen TC, Wey SP et al (2004) Characterization of the binding sites for 123I-ADAM and the relationship to the serotonin transporter in rat and mouse brains using quantitative autoradiography. J Nucl Med 45:673–681
PubMed CAS Google Scholar
- Young H, Baum R, Cremerius U et al (1999) Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. European Organization for Research and Treatment of Cancer (EORTC) PET Study Group. Eur J Cancer 35:1773–1782
Article PubMed CAS Google Scholar
- Jan YY, Yeh TS, Yeh JN, Yang HR, Chen MF (2004) Expression of epidermal growth factor receptor, apomucins, matrix metalloproteinases, and p53 in rat and human cholangiocarcinoma: appraisal of an animal model of cholangiocarcinoma. Ann Surg 240:89–94
Article PubMed Google Scholar
- Cherry SR, Gambhir SS (2001) Use of positron emission tomography in animal research. ILAR J 42:219–232
PubMed CAS Google Scholar
- Kim YJ, Yun M, Lee WJ, Kim KS, Lee JD (2003) Usefulness of 18F-FDG PET in intrahepatic cholangiocarcinoma. Eur J Nucl Med Mol Imaging 30:1467–1472
Article PubMed Google Scholar
- Fritscher-Ravens A, Bohuslavizki KH, Broering DC et al (2001) FDG PET in the diagnosis of hilar cholangiocarcinoma. Nucl Med Commun 22:1277–1285
Article PubMed CAS Google Scholar
- Salem N, MacLennan GT, Kuang Y et al (2007) Quantitative evaluation of 2-deoxy-2[F-18]fluoro-d-glucose-positron emission tomography imaging on the woodchuck model of hepatocellular carcinoma with histological correlation. Mol Imaging Biol 9:135–143
Article PubMed Google Scholar
- Lee JD, Yang WI, Park YN et al (2005) Different glucose uptake and glycolytic mechanisms between hepatocellular carcinoma and intrahepatic mass–forming cholangiocarcinoma with increased (18)F–FDG uptake. J Nucl Med 46:1753–1759
PubMed CAS Google Scholar
- Kondo S, Hosono MN, Wada Y et al (2004) Use of FDG–microPET for detection of small nodules in a rabbit model of pulmonary metastatic cancer. Ann Nucl Med 18:51–57
Article PubMed Google Scholar
- Jadvar H, Henderson RW, Conti PS (2007) [F-18]fluorodeoxyglucose positron emission tomography and positron emission tomography: computed tomography in recurrent and metastatic cholangiocarcinoma. J Comput Assist Tomogr 31:223–228
Article PubMed Google Scholar
- Ishiwata K, Liu HY, Teramoto K et al (2006) Tumor viability evaluation by positron emission tomography with [18F]FDG in the liver metastasis rat model. Ann Nucl Med 20:463–469
PubMed CAS Google Scholar
- Yao R, Seidel J, Johnson CA et al (2000) Performance characteristics of the 3-D OSEM algorithm in the reconstruction of small animal PET images. Ordered-subsets expectation-maximization. IEEE Trans Med Imaging 19:798–804
Article PubMed CAS Google Scholar
- Teo BK, Seo Y, Bacharach SL et al (2007) Partial-volume correction in pet: validation of an iterative postreconstruction method with phantom and patient data. J Nucl Med 48:802–810
PubMed Google Scholar
- Keiding S, Munk OL, Schiott KM, Hansen SB (2000) Dynamic 2-[18F]fluoro-2-deoxy-d–glucose positron emission tomography of liver tumours without blood sampling. Eur J Nucl Med 27:407–412
Article PubMed CAS Google Scholar
- Hong D, Lunagomez S, Kim EE et al (2005) Value of baseline positron emission tomography for predicting overall survival in patient with nonmetastatic esophageal or gastroesophageal junction carcinoma. Cancer 104:1620–1626
Article PubMed Google Scholar
- Stumpe KD, Dazzi H, Schaffner A, von Schulthess GK (2000) Infection imaging using whole–body FDG–PET. Eur J Nucl Med 27:822–832
Article PubMed CAS Google Scholar
- Tietge UJ, Selberg O, Kreter A et al (2004) Alterations in glucose metabolism associated with liver cirrhosis persist in the clinically stable long-term course after liver transplantation. Liver Transpl 10:1030–1040
Article PubMed Google Scholar
- Hamazawa Y, Koyama K, Okamura T et al (2007) Comparison of dynamic FDG–microPET study in a rabbit turpentine–induced inflammatory model and in a rabbit VX2 tumor model. Ann Nucl Med 21:47–55
PubMed Google Scholar