Bactericidal/permeability-increasing protein in host defense and its efficacy in the treatment of bacterial sepsis (original) (raw)
Hoffman J, Kafatos F, Janeway C, Ezekowitz R: Phylogenetic perspectives in innate immunity. Science 1999, 284:1313–1318. Article Google Scholar
Elsbach P, Weiss J, Levy O: Oxygen-independent antimicrobial systems of phagocytes. In Inflammation: Basic Principles and Clinical Correlates. Edited by Gallin J and Snyderman R. Philadelphia: Lippincott Williams & Wilkins; 1999:801–817.
Ganz T, Lehrer RI: Antibiotic peptides from higher eukaryotes: biology and applications. Mol Med Today, 1999, 5:292–297. ArticleCASPubMed Google Scholar
Zanetti M, Gennaro R, Romeo D: Cathelicidins: a novel protein family with a common proregion and a variable C-terminal antimicrobial domain. FEBS Lett 1995, 374:1–5. ArticleCASPubMed Google Scholar
Hoffmann JA, Reichhart JM, Hetru C: Innate immunity in higher insects. Curr Opin Immunol 1996, 8:8–13. ArticleCASPubMed Google Scholar
García-Olmedo F, Molina A, Alamillo JM, Rodríguez-Palenzuéla P: Plant defense peptides. Biopolymers 1998, 47:479–491. ArticlePubMed Google Scholar
Anderson M, Zasloff M: Antimicrobial peptides: complementing classical inflammatory mechanisms of defense. In Inflammation: Basic Principles and Clinical Correlates. Edited by Gallin J and Snyderman R. Philadelphia: Lippincott Williams & Wilkins; 1999:1279–1292. Google Scholar
Weiss J, Elsbach P, Olsson I, Odeberg H: Purification and characterization of a potent bactericidal and membrane active protein from the granules of human polymorphonuclear leukocytes. J Biol Chem 1978, 253:2664–2672. CASPubMed Google Scholar
Gazzano-Santoro H, Parent JB, Grinna L, et al.: High-affinity binding of the bactericidal/permeability-increasing protein and a recombinant amino-terminal fragment to the lipid A region of lipopolysaccharide. Infect Immun 1992, 60:4754–4761. CASPubMed CentralPubMed Google Scholar
Mannion BA, Weiss J, Elsbach P: Separation of sublethal and lethal effects of the bactericidal/permeability increasing protein on Escherichia coli. J Clin Invest 1990, 85:853–860. ArticleCASPubMed CentralPubMed Google Scholar
Marra MN, Wilde CG, Griffith JE, et al.: Bactericidal/permeability- increasing protein has endotoxin-neutralizing activity. J Immunol 1990, 144:662–666. CASPubMed Google Scholar
Iovine NM, Elsbach P, Weiss J: An opsonic function of the neutrophil bactericidal/permeability-increasing protein depends on both its N- and C-terminal domains. Proc Natl Acad Sci U S A 1997, 94:10973–10978. ArticleCASPubMed CentralPubMed Google Scholar
Kaufhold M, Purtic B, Fadem M, Little R: Angiogenesis inhibition by synthetic peptides derived from bactericidal/permeabilityincreasing protein. Proc Am Assoc Cancer Res 1997, 38:266. Google Scholar
van der Schaft DW, Toebes EA, Haseman JR, et al.: Bactericidal/ permeability-increasing protein (BPI) inhibits angiogenesis via induction of apoptosis in vascular endothelial cells. Blood 2000, 96:176–181. PubMed Google Scholar
Calafat J, Janssen H, Tool A, et al.: The bactericidal/permeability- increasing protein (BPI) is present in specific granules of human eosinophils. Blood 1998, 91:4770–4775. CASPubMed Google Scholar
Levy O, Martin S, Eichenwald E, et al.: Impaired innate immunity in the newborn: newborn neutrophils are deficient in bactericidal/permeability-increasing protein (BPI). Pediatrics 1999, 104:1327–1333. ArticleCASPubMed Google Scholar
Hubacek JA, Buchler C, Aslanidis C, Schmitz G: The genomic organization of the genes for human lipopolysaccharide binding protein (LBP) and bactericidal permeability increasing protein (BPI) is highly conserved. Biochem Biophys Res Commun 1997, 236:427–430. ArticleCASPubMed Google Scholar
Beamer LJ, Carroll SF, Eisenberg D: The BPI/LBP family of proteins: a structural analysis of conserved regions. Protein Sci 1998, 7:906–914. ArticleCASPubMed Google Scholar
Ooi CE, Weiss J, Doerfler ME, Elsbach P: Endotoxin-neutralizing properties of the 25 kD N-terminal fragment and a newly isolated 30 kD C-terminal fragment of the 55-60 kD bactericidal/ permeability-increasing protein of human neutrophils. J Exp Med 1991, 174:649–655. ArticleCASPubMed Google Scholar
Beamer LJ, Carroll SF, Eisenberg D: Crystal structure of human BPI and two bound phospholipids at 2.4 angstrom resolution. Science 1997, 276:1861–1864. ArticleCASPubMed Google Scholar
Beamer LJ, Carroll SF, Eisenberg D: The three-dimensional structure of human bactericidal/permeability-increasing protein: implications for understanding protein-lipopolysaccharide interactions. Biochem Pharmacol 1999, 57:225–229. ArticleCASPubMed Google Scholar
Weiss J, Elsbach P, Shu C, et al.: Human bactericidal/permeability- increasing protein and a recombinant NH2-terminal fragment cause killing of serum-resistant gram-negative bacteria in whole blood and inhibit tumor necrosis factor release induced by the bacteria. J Clin Invest 1992, 90:1122–1130. ArticleCASPubMed CentralPubMed Google Scholar
Levy O, Sisson R, Kenyon J, et al.: Enhancement of neonatal innate defense: effects of adding an N-terminal recombinant fragment of bactericidal/permeability-increasing protein (rBPI21) on growth and TNF-inducing activity of Gramnegative bacteria tested in neonatal cord blood ex vivo. Infect Immun 2000, 68:5120–5125. ArticleCASPubMed CentralPubMed Google Scholar
Elsbach P, Weiss J: Non-oxidative antimicrobial systems of phagocytes. In Inflammation: Basic Principles and Clinical Correlates, 2nd edn. Edited by Gallin J, Goldstein I, Snyderman R. New York: Raven Press; 1992:603–636. Google Scholar
Horwitz A, Williams R, Liu P, Nadell R: Bactericidal/permeability- increasing protein inhibits growth of a strain of Acholeplasma laidlawii and L forms of the gram-positive bacteria Staphyloccus aureus and Streptococcus pyogenes. Antimicrob Agents Chemother 1999, 43:2314–2316. CASPubMed CentralPubMed Google Scholar
Khan A, Lambert LJ, Remington J, Araujo F: Recombinant bactericidal/permeability-increasing protein (rBPI21) in combination with sulfadiazine is active against Toxoplasma gondii. Antimicrob Agents Chemother 1999, 43:758–762. CASPubMed CentralPubMed Google Scholar
Gavit P, Better M: Production of antifungal recombinant peptides in Escherichia coli. J Biotechnol 2000, 79:127–136. ArticleCASPubMed Google Scholar
in’t Veld G, Mannion B, Weiss J, Elsbach P: Effects of the bactericidal/permeability-increasing protein of polymorphonuclear leukocytes on isolated bacterial cytoplasmic membrane vesicles. Infect Immun 1988, 56:1203–1208. PubMed CentralPubMed Google Scholar
Levy O, Ooi CE, Weiss J, et al.: Individual and synergistic effects of rabbit granulocyte proteins on Escherichia coli. J Clin Invest 1994, 94:672–682. ArticleCASPubMed CentralPubMed Google Scholar
Wright GC, Weiss J, Kim KS, et al.: Bacterial phospholipid hydrolysis enhances the destruction of Escherichia coli ingested by rabbit neutrophils. Role of cellular and extracellular phospholipases J Clin Invest. 1990, 85:1925–1935. ArticleCASPubMed CentralPubMed Google Scholar
Tobias P, Tapping R, Gegner J: Endotoxin interactions with lipopolysaccharide-responsive cells. Clin Infect Dis 1999, 28:476–481. ArticleCASPubMed Google Scholar
Tobias PS, Soldau K, Iovine NM, et al.: Lipopolysaccharide (LPS)-binding proteins BPI and LBP form different types of complexes with LPS. J Biol Chem 1997, 272:18682–18685. ArticleCASPubMed Google Scholar
Opal SM, Palardy JE, Marra MN, et al.: Relative concentrations of endotoxin-binding proteins in body fluids during infection. Lancet 1994, 344:429–431. ArticleCASPubMed Google Scholar
Fransen E, Maessen J, Dentener M, et al.: Systemic inflammation present in patients undergoing CABG without extracorporeal circulation. Chest 1998, 113:1290–1295. ArticleCASPubMed Google Scholar
Kemppainen E, Hietaranta A, Puolakkainen P, et al.: Bactericidal/permeability-increasing protein and group I and II phospholipase A2 during the induction phase of human acute pancreatitis. Pancreas 1999, 18:21–27. ArticleCASPubMed Google Scholar
Haapamaki MM, Haggblom JO, Gronroos JM, et al.: Bactericidal/ permeability-increasing protein in colonic mucosa in ulcerative colitis. Hepato-Gastroenterology 1999, 46:2273–2277. CASPubMed Google Scholar
Sundaram S, King AJ, Pereira BJ: Lipopolysaccharide-binding protein and bactericidal/permeability-increasing factor during hemodialysis: clinical determinants and role of different membranes. J Am Soc Nephrol 1997, 8:463–470. CASPubMed Google Scholar
Lequier LL, Nikaidoh H, Leonard SR, et al.: Preoperative and postoperative endotoxemia in children with congenital heart disease. Chest 2000, 117:1706–1712. ArticleCASPubMed Google Scholar
Hubacek J, Stuber F, Frohlich D, et al.: Gene variants of the bactericidal/permeability-increasing protein and lipopolysaccharide binding protein in sepsis patients: gender-specific genetic predisposition to sepsis. Crit Care Med 2001, 29:557–561. ArticleCASPubMed Google Scholar
Cooper T, Savige J, Nassis L, et al.: Clinical associations and characterisation of antineutrophil cytoplasmic antibodies directed against bactericidal/permeability-increasing protein and azurocidin. Rheumatol Int 2000, 19:129–136. ArticleCASPubMed Google Scholar
Aebi C, Theiler F, Aebischer CC, Schoeni MH: Autoantibodies directed against bactericidal/permeability-increasing protein in patients with cystic fibrosis: association with microbial respiratory tract colonization. Pediatr Infect Dis J 2000, 19:207–212. ArticleCASPubMed Google Scholar
Dunn AC, Walmsley RS, Dedrick RL, et al.: Anti-neutrophil cytoplasmic autoantibodies (ANCA) to bactericidal/permeability- increasing (BPI) protein recognize the carboxyl terminal domain. J Infect 1999, 39:81–87. ArticleCASPubMed Google Scholar
Evans TJ, Carpenter A, Moyes D, et al.: Protective effects of a recombinant amino-terminal fragment of human bactericidal/ permeability-increasing protein in an animal model of gram-negative sepsis. J Infect Dis 1995, 171:153–160. ArticleCASPubMed Google Scholar
Lin Y, Leach WJ, Ammons WS: Synergistic effect of a recombinant N-terminal fragment of bactericidal/permeabilityincreasing protein and cefamandole in treatment of rabbit gram-negative sepsis. Antimicrob Agents Chemother 1996, 40:65–69. CASPubMed CentralPubMed Google Scholar
Schlag G, Redl H, Davies J, Scannon PJ: Protective effect of bactericidal/permeability-incresaing protein (rBPI21) in baboon sepsis is related to its antibacterial, not antiendotoxin, properties. Ann Surg 1999, 229:262–271. ArticleCASPubMed Google Scholar
Wiezer M, Langendoen S, Meijer C, et al.: Pharmacokinetics of a recombinant amino terminal fragment of bactericidal/permeability-increasing protein (rBPI21) after liver surgery in rats and humans. Shock 1998, 10:161–166. ArticleCASPubMed Google Scholar
von der Mohlen M, van Deventer S, Levi M, et al.: Inhibition of endotoxin-induced cytokine release and neutrophil activation in humans by use of recombinant bactericidal/permeability- increasing protein. J Infect Dis 1995, 172:144–151. ArticlePubMed Google Scholar
von der Mohlen M, van Deventer S, Levi M, et al.: Inhibition of endotoxin-induced activation of the coagulation and fibrinolytic pathways using a recombinant endotoxinbinding protien (rBPI23). Blood 1995, 85:3437–3443. PubMed Google Scholar
De Winter R, Von der Mohlen M, Van Lieshout H, et al.: Recombinant endotoxin binding protein (rBPI23) attentuates endotoxin-induced circulatory changes in humans. J Inflamm 1995, 45:193–206. PubMed Google Scholar
Wiezer M, Meijer C, Sietses C, et al.: Bactericidal/permeability increasing protein preserves leukocyte functions after major liver resection. Ann Surg 2000, 232:208–215. ArticleCASPubMed Google Scholar
Nijveldt R, Wiezer M, Meijer C, et al.: Major liver resection results in a changed plasma amino acid pattern as reflected by a decreased Fischer ratio which improves by bactericidal/ permeability-increasing protein. Liver 2001, 21:56–63. ArticleCASPubMed Google Scholar
Demetriades D, Smith J, Jacobsen L, et al.: Bactericidal/permeability- increasing protein (rBPI21) in patients with hemorrhage due to trauma: results of a multicenter phase II clinical trial., rBPI21 Acute Hemorrhagic Trauma Study Group. J Trauma-Injury Infect Crit Care. 1999, 46:667–676. ArticleCAS Google Scholar
Giroir BP, Quint PA, Barton P, et al.: Preliminary evaluation of recombinant amino-terminal fragment of human bactericidal/ permeability-increasing protein in children with severe meningococcal sepsis. Lancet 1997, 350:1439–1443. ArticleCASPubMed Google Scholar
Levin M, Quint P, Goldstein B, et al.: Recombinant bactericidal/ permeability-increasing protein (rBPI21) as adjunctive treatment for children with severe meningococcal sepsis: a randomised trial. Lancet 2000, 356:961–967. ArticleCASPubMed Google Scholar
Weinrauch Y, Foreman A, Shu C, et al.: Extracellular accumulation of potently microbicidal bactericidal/permeability-increasing protein and p15s in an evolving sterile rabbit peritoneal inflammatory exudate. J Clin Invest 1995, 95:1916–1924. ArticleCASPubMed CentralPubMed Google Scholar
Marra MN, Wilde CG, Collins MS, et al.: The role of bactericidal/permeability-increasing protein as a natural inhibitor of bacterial endotoxin. J Immunol 1992, 148:532–537. CASPubMed Google Scholar
Opal S, Scannon P, Vincent J, et al.: Relationship between plasma levels of lipopolysaccharide (LPS) and LPS-binding protein in patients with severe sepsis and septic shock. J Infect Dis 1999, 180:1584–1589. ArticleCASPubMed Google Scholar
Gardiner K, Halliday M, Barclay G, et al.: Significance of systemic endotoxemia in inflammatory bowel disease. Gut 1995, 36:897–901. ArticleCASPubMed Google Scholar
Bernard G, Vincent J, Laterre P, et al.: Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 2001, 345:219–221. Article Google Scholar
Giroir BP, Scannon PJ, Levin M: Bactericidal/permeabilityincreasing protein (BPI)- Lessons learned from the phase III, randomised, clinical trial of rBPI21 for adjunctive treatment of children with severe meningococcal sepsis. Crit Care Med 2001, 29:5130–5135. Article Google Scholar
Nell MJ, Koerten HK, Grote JJ: Bactericidal/permeabilityincreasing protein prevents mucosal damage in an experimental rat model of chronic otitis media with effusion. Infect Immun 2000, 68:2992–2994. ArticleCASPubMed CentralPubMed Google Scholar
Newman S, Gootee L, Gbay J, Selsted M: Identification of constituents of human neutrophil azurophil granules that mediate fungistasis against histoplasma capsulatum. Infect Immun 2000, 68:5668–5672. ArticleCASPubMed CentralPubMed Google Scholar