Stem Cells, Including a Population of Very Small Embryonic-Like Stem Cells, are Mobilized Into Peripheral Blood in Patients After Skin Burn Injury (original) (raw)

References

  1. Kucia, M., Dawn, B., Hunt, G., Guo, Y., Wysoczynski, M., Majka, M., et al. (2004). Cell expressing early cardiac marcers reside in the bone marrow and are mobilized into the peripheral blood after myocardial infraction. Circulation Research, 95, 1191–9.
    Article PubMed CAS Google Scholar
  2. Kucia, M., Reca, R., Campbell, F. R., Zuba-Surma, E., Majka, M., Ratajczak, J., et al. (2006). A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia, 20, 857–69.
    Article PubMed CAS Google Scholar
  3. Paczkowska, E., Kucia, M., Koziarska, D., Halasa, M., Safranow, K., Masiuk, M., et al. (2009). Clinical evidence that very small embryonic-like stem cells are mobilized into peripheral blood in patients after stroke. Stroke, 40, 1237–4.
    Article PubMed CAS Google Scholar
  4. Barrandon, Y., & Green, H. (1987). Three clonal types of keratinocyte with different capacities for multiplication. Proceedings of the National Academy of Sciences of the United States of America, 84, 2302–6.
    Article PubMed CAS Google Scholar
  5. Cotsarelis, G., Sun, T. T., & Lavker, R. M. (1990). Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell, 61, 1329–37.
    Article PubMed CAS Google Scholar
  6. Jones, P. H., Harper, S., & Watt, F. M. (1995). Stem cell pattering and fate in human epidermis. Cell, 80, 83–93.
    Article PubMed CAS Google Scholar
  7. Li, A., Simmons, P. J., & Kaur, P. (1998). Identification and isolation of candidate human keratinocyte stem cells based on cell surface phenotype. Proceedings of the National Academy of Sciences of the United States of America, 95, 3902–7.
    Article PubMed CAS Google Scholar
  8. Niemann, C., & Watt, F. M. (2002). Designer skin: lineage commitment in postnatal epidermis. Trends in Cell Biology, 12, 185–92.
    Article PubMed CAS Google Scholar
  9. Fuchs, E., Tumbar, T., & Guasch, G. (2004). Socializing with the neighbors: stem cells and their niche. Cell, 116, 769–78.
    Article PubMed CAS Google Scholar
  10. Webb, A., Li, A., & Kaur, P. (2004). Location and phenotype of human adult keratinocyte stem cells of the skin. Differentiation, 72, 378–95.
    Article Google Scholar
  11. Moore, K. A., & Lemischka, I. R. (2006). Stem cells and their niches. Science, 311, 1880–5.
    Article PubMed CAS Google Scholar
  12. Bell, E., Ehrlich, H. P., Buttle, D. J., & Nakatsuji, T. (1988). Living tissue formed in vitro and accepted as skin equivalent tissue of full thickness. Science, 211, 1052–4.
    Article Google Scholar
  13. Boyce, S. T., & Hansbrough, J. F. (1988). Biologic attachment, growth, and differentiation of cultured human epidermal keratinocytes on a graftable collagen and chondroitin-6-sulfate substrate. Surgery, 103, 421–31.
    PubMed CAS Google Scholar
  14. Parenteau, N. L., Hardin-Young, J., & Ross, R. N. (2000). Skin. In R. P. Lanza, R. S. Langer, & W. L. Chick (Eds.), Principles of the tissue engineering (pp. 879–890). San Diego: Academic.
    Chapter Google Scholar
  15. Compton, C. C. (1996). Cultured epithelial autografts for burn wound resurfacing: review of observations from an 11-year biopsy study. Wounds, 8, 125–33.
    Google Scholar
  16. Horch, R. E., Bannasch, H., Kopp, J., Andree, C., & Stark, G. B. (1997). Single-cell suspension of cultured human keratinocytes in fibrin-glue reconstitute the epidermis. Cell Transplantation, 7, 309–17.
    Article Google Scholar
  17. Wood, F. (2003). Clinical potential of autologous epithelial suspension. Wounds, 15, 16–22.
    Google Scholar
  18. Drukala, J., Bandura, L., Cieslik, K., & Korohoda, W. (2001). Locomotion of human skin keratinocytes on polystyrene, fibrin, and collagen substrata and its modification by cell-to-cell contacts. Cell Transplantation, 10, 765–71.
    PubMed CAS Google Scholar
  19. Badiavas, E. V., & Falanga, V. (2003). Treatment of chronic wounds with bone marrow-derived cells. Archives of Dermatology, 139, 510–6.
    Article PubMed Google Scholar
  20. Satoh, H., Kishi, K., Tanaka, T., Kubota, Y., Nakajima, T., Akasaka, Y., et al. (2004). Transplanted mesenchymal stem cells are effective for skin regeneration in acute cutaneous wounds. Cell Transplantation, 13, 405–12.
    Article PubMed Google Scholar
  21. Sasaki, M., Abe, R., Fujita, Y., Ando, S., Inokuma, D., & Shimizu, H. (2008). Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. Journal of Immunology, 180, 2581–7.
    CAS Google Scholar
  22. Fu, X., & Li, H. (2009). Mesenchymal stem cells and skin wound repair and regeneration: possibilities and questions. Cell and Tissue Research, 335, 317–21.
    Article PubMed Google Scholar
  23. Wojakowski, W., Tendera, M., Kucia, M., Zuba-Surma, E., Paczkowska, E., Ciosek, J., et al. (2009). Mobilization of bone marrow-derived Oct-4+ SSEA-4+ very small embryonic-like stem cells in patients with acute myocardial infarction. Journal of the American College of Cardiology, 53, 1–9.
    Article PubMed CAS Google Scholar
  24. Paczkowska, E., Larysz, B., Rzeuski, R., Karbicka, A., Jałowiński, R., Kornacewicz-Jach, Z., et al. (2005). Human hematopoietic stem/progenitor-enriched CD34(+) cells are mobilized into peripheral blood during stress related to ischemic stroke or acute myocardial infarction. European Journal of Haematology, 75, 461–7.
    Article PubMed CAS Google Scholar
  25. Massberg, S., Schaerli, P., Knezevic-Maramica, I., Köllnberger, M., Tubo, N., Moseman, E. A., et al. (2007). Immunosurveillance by hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues. Cell, 131, 994–1008.
    Article PubMed CAS Google Scholar
  26. Zou, Y. R., Kottmann, A. H., Kuroda, M., Taniuchi, I., & Littman, D. R. (1998). Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature, 393, 595–9.
    Article PubMed CAS Google Scholar
  27. Lapidot, T., & Kollet, O. (2002). The essential roles of the chemokine SDF-1 and its receptor CXCR4 in human stem cell homing and repopulation of transplanted immune-deficient NOD/SCID and NOD/SCID/B2m(null) mice. Leukemia, 16, 1992–2003.
    Article PubMed CAS Google Scholar
  28. Kmiecik, T. E., Keller, J. R., Rosen, E., & Vande Woude, G. F. (1992). Hepatocyte growth factor is a synergistic factor for the growth of hematopoietic progenitor cells. Blood, 80, 2454–7.
    PubMed CAS Google Scholar
  29. Ma, Q., Jones, D., Borghesani, P. R., Segal, R. A., Nagasawa, T., Kishimoto, T., et al. (1998). Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 95, 9448–53.
    Article PubMed CAS Google Scholar
  30. Nagasawa, T. (2000). A chemokine, SDF-1/PBSF, and its receptor, CXC chemokine receptor 4, as mediators of hematopoiesis. International Journal of Hematology, 72, 408–11.
    PubMed CAS Google Scholar
  31. Taichman, R. S., Wang, Z., Shiozawa, Y., Jung, Y., Song, J., Balduino, A., et al. (2010). Prospective identification and skeletal localization of cells capable of multilineage differentiation in vivo. Stem Cells and Development, 19, 1557–70.
    Article PubMed CAS Google Scholar
  32. LaBarge, M. A., & Blau, H. M. (2002). Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell, 111, 589–601.
    Article PubMed CAS Google Scholar
  33. Ratajczak, M. Z., Reca, R., Wysoczynski, M., Yan, J., & Ratajczak, J. (2006). Modulation of the SDF-1-CXCR4 axis by the third complement component (C3)–implications for trafficking of CXCR4+ stem cells. Experimental Hematology, 34, 986–95.
    Article PubMed CAS Google Scholar
  34. Ratajczak, M. Z., Lee, H., Wysoczynski, M., Wan, W., Marlicz, W., Laughlin, M. J., et al. (2010). Novel insight into stem cell mobilization-plasma sphingosine-1-phosphate is a major chemoattractant that directs the egress of hematopoietic stem progenitor cells from the bone marrow and its level in peripheral blood increases during mobilization due to activation of complement cascade/membrane attack complex. Leukemia, 24, 976–85.
    Article PubMed CAS Google Scholar
  35. Ratajczak, M. Z., Kim, C. H., Wojakowski, W., Janowska-Wieczorek, A., Kucia, M., & Ratajczak, J. (2010). Innate immunity as orchestrator of stem cell mobilization. Leukemia, 24, 1667–75.
    Article PubMed CAS Google Scholar
  36. Petit, I., Szyper-Kravitz, M., Nagler, A., Lahav, M., Peled, A., Habler, L., et al. (2002). G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nature Immunology, 3, 687–94.
    Article PubMed CAS Google Scholar
  37. Stocum, D. L. (2001). Stem cells in regenerative biology and medicine. Wound Repair and Regeneration, 9, 429–42.
    Article PubMed CAS Google Scholar
  38. Wojakowski, W., Tendera, M., Michałowska, A., Majka, M., Kucia, M., Maślankiewicz, K., et al. (2004). Mobilization of CD34/CXCR4+, CD34/CD117+, c-met + stem cells, and mononuclear cells expressing early cardiac, muscle, and endothelial markers into peripheral blood in patients with acute myocardial infarction. Circulation, 110, 3213–20.
    Article PubMed CAS Google Scholar
  39. Dawn, B., Tiwari, S., Kucia, M. J., Zuba-Surma, E. K., Guo, Y., Sanganalmath, S. K., et al. (2008). Transplantation of bone marrow-derived very small embryonic-like stem cells attenuates left ventricular dysfunction and remodeling after myocardial infarction. Stem Cells, 26, 1646–55.
    Article PubMed Google Scholar
  40. Shyu, W. C., Lin, S. Z., Yang, H. I., Tzeng, Y. S., Pang, C. Y., Yen, P. S., et al. (2004). Functional recovery of stroke rats induced by granulocyte colony-stimulating factor-stimulated stem cells. Circulation, 110, 1847–54.
    Article PubMed CAS Google Scholar
  41. Kassirer, M., Zeltser, D., Gluzman, B., Leibovitz, E., Goldberg, Y., Roth, A., et al. (1999). The appearance of L-selectin(low) polymorphonuclear leukocytes in the circulating pool of peripheral blood during myocardial infarction correlates with neutrophilia and with the size of the infarct. Clinical Cardiology, 22, 721–6.
    Article PubMed CAS Google Scholar
  42. Ratajczak, J., Reca, R., Kucia, M., Majka, M., Allendorf, D. J., Baran, J. T., et al. (2004). Mobilization studies in mice deficient in either C3 or C3a receptor (C3aR) reveal a novel role for complement in retention of hematopoietic stem/progenitor cells in bone marrow. Blood, 103(6), 2071–8. Epub 2003 Nov 6.
    Article PubMed CAS Google Scholar
  43. Reca, R., Mastellos, D., Majka, M., Marquez, L., Ratajczak, J., Franchini, S., et al. (2003). Functional receptor for C3a anaphylatoxin is expressed by normal hematopoietic stem/progenitor cells, and C3a enhances their homing-related responses to SDF-1. Blood, 101, 3784–93.
    Article PubMed CAS Google Scholar
  44. Lapidot, T., Dar, A., & Kollet, O. (2005). How do stem cells find their way home? Blood, 106, 1901–10.
    Article PubMed CAS Google Scholar
  45. Lévesque, J. P., Takamatsu, Y., Nilsson, S. K., Haylock, D. N., & Simmons, P. J. (2000). Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor. Blood, 98, 1289–97.
    Article Google Scholar
  46. Lee, H., & Ratajczak, M. Z. (2009). Innate immunity: a key player in the mobilization of hematopoietic stem/progenitor cells. Archivum Immunologiae et Therapiae Experimentalis (Warsz), 57, 269–78.
    Article CAS Google Scholar
  47. Sweeney, E. A., Lortat-Jacob, H., Priestley, G. V., Nakamoto, B., & Papayannopoulou, T. (2002). Sulfated polysaccharides increase plasma levels of SDF-1 in monkeys and mice: involvement in mobilization of stem/progenitor cells. Blood, 99, 44–51.
    Article PubMed CAS Google Scholar
  48. Hänel, P., Andréani, P., & Gräler, M. H. (2007). Erythrocytes store and release sphingosine 1-phosphate in blood. The FASEB Journal, 21, 1202–9.
    Article Google Scholar
  49. Ohkawa, R., Nakamura, K., Okubo, S., Hosogaya, S., Ozaki, Y., Tozuka, M., et al. (2008). Plasma sphingosine-1-phosphate measurement in healthy subjects: close correlation with red blood cell parameters. Annals of Clinical Biochemistry, 45, 356–63.
    Article PubMed CAS Google Scholar
  50. Gronthos, S., Zannettino, A. C., Hay, S. J., Shi, S., Graves, S. E., Kortesidis, A., et al. (2003). Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. Journal of Cell Science, 116, 1827–35.
    Article PubMed CAS Google Scholar
  51. Aliotta, J. M., Pereira, M., Johnson, K. W., de Paz, N., Dooner, M. S., Puente, N., et al. (2010). Microvesicle entry into marrow cells mediates tissue-specific changes in mRNA by direct delivery of mRNA and induction of transcription. Experimental Hematology, 38, 233–45.
    Article PubMed CAS Google Scholar
  52. Rodgerson DO, Harris AG (2011). A Comparison of Stem Cells for Therapeutic Use. Stem Cells Review 2011; (in press): doi: 10.1007/s12015-011-9241-y.
  53. Kucia, M., Ratajczak, J., & Ratajczak, M. Z. (2005). Are bone marrow stem cells plastic or heterogenous–that is the question. Experimental Hematology, 33, 613–23.
    Article PubMed Google Scholar
  54. Ratajczak, M. Z., Shin, D. M., Liu, R., Marlicz, W., Tarnowski, M., Ratajczak, J., et al. (2010). Epiblast/germ line hypothesis of cancer development revisited: lesson from the presence of Oct-4+ cells in adult tissues. Stem Cell Reviews, 6, 307–16.
    Article PubMed Google Scholar

Download references