Stem Cells, Including a Population of Very Small Embryonic-Like Stem Cells, are Mobilized Into Peripheral Blood in Patients After Skin Burn Injury (original) (raw)
References
Kucia, M., Dawn, B., Hunt, G., Guo, Y., Wysoczynski, M., Majka, M., et al. (2004). Cell expressing early cardiac marcers reside in the bone marrow and are mobilized into the peripheral blood after myocardial infraction. Circulation Research, 95, 1191–9. ArticlePubMedCAS Google Scholar
Kucia, M., Reca, R., Campbell, F. R., Zuba-Surma, E., Majka, M., Ratajczak, J., et al. (2006). A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia, 20, 857–69. ArticlePubMedCAS Google Scholar
Paczkowska, E., Kucia, M., Koziarska, D., Halasa, M., Safranow, K., Masiuk, M., et al. (2009). Clinical evidence that very small embryonic-like stem cells are mobilized into peripheral blood in patients after stroke. Stroke, 40, 1237–4. ArticlePubMedCAS Google Scholar
Barrandon, Y., & Green, H. (1987). Three clonal types of keratinocyte with different capacities for multiplication. Proceedings of the National Academy of Sciences of the United States of America, 84, 2302–6. ArticlePubMedCAS Google Scholar
Cotsarelis, G., Sun, T. T., & Lavker, R. M. (1990). Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell, 61, 1329–37. ArticlePubMedCAS Google Scholar
Jones, P. H., Harper, S., & Watt, F. M. (1995). Stem cell pattering and fate in human epidermis. Cell, 80, 83–93. ArticlePubMedCAS Google Scholar
Li, A., Simmons, P. J., & Kaur, P. (1998). Identification and isolation of candidate human keratinocyte stem cells based on cell surface phenotype. Proceedings of the National Academy of Sciences of the United States of America, 95, 3902–7. ArticlePubMedCAS Google Scholar
Niemann, C., & Watt, F. M. (2002). Designer skin: lineage commitment in postnatal epidermis. Trends in Cell Biology, 12, 185–92. ArticlePubMedCAS Google Scholar
Fuchs, E., Tumbar, T., & Guasch, G. (2004). Socializing with the neighbors: stem cells and their niche. Cell, 116, 769–78. ArticlePubMedCAS Google Scholar
Webb, A., Li, A., & Kaur, P. (2004). Location and phenotype of human adult keratinocyte stem cells of the skin. Differentiation, 72, 378–95. Article Google Scholar
Bell, E., Ehrlich, H. P., Buttle, D. J., & Nakatsuji, T. (1988). Living tissue formed in vitro and accepted as skin equivalent tissue of full thickness. Science, 211, 1052–4. Article Google Scholar
Boyce, S. T., & Hansbrough, J. F. (1988). Biologic attachment, growth, and differentiation of cultured human epidermal keratinocytes on a graftable collagen and chondroitin-6-sulfate substrate. Surgery, 103, 421–31. PubMedCAS Google Scholar
Parenteau, N. L., Hardin-Young, J., & Ross, R. N. (2000). Skin. In R. P. Lanza, R. S. Langer, & W. L. Chick (Eds.), Principles of the tissue engineering (pp. 879–890). San Diego: Academic. Chapter Google Scholar
Compton, C. C. (1996). Cultured epithelial autografts for burn wound resurfacing: review of observations from an 11-year biopsy study. Wounds, 8, 125–33. Google Scholar
Horch, R. E., Bannasch, H., Kopp, J., Andree, C., & Stark, G. B. (1997). Single-cell suspension of cultured human keratinocytes in fibrin-glue reconstitute the epidermis. Cell Transplantation, 7, 309–17. Article Google Scholar
Wood, F. (2003). Clinical potential of autologous epithelial suspension. Wounds, 15, 16–22. Google Scholar
Drukala, J., Bandura, L., Cieslik, K., & Korohoda, W. (2001). Locomotion of human skin keratinocytes on polystyrene, fibrin, and collagen substrata and its modification by cell-to-cell contacts. Cell Transplantation, 10, 765–71. PubMedCAS Google Scholar
Badiavas, E. V., & Falanga, V. (2003). Treatment of chronic wounds with bone marrow-derived cells. Archives of Dermatology, 139, 510–6. ArticlePubMed Google Scholar
Satoh, H., Kishi, K., Tanaka, T., Kubota, Y., Nakajima, T., Akasaka, Y., et al. (2004). Transplanted mesenchymal stem cells are effective for skin regeneration in acute cutaneous wounds. Cell Transplantation, 13, 405–12. ArticlePubMed Google Scholar
Sasaki, M., Abe, R., Fujita, Y., Ando, S., Inokuma, D., & Shimizu, H. (2008). Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. Journal of Immunology, 180, 2581–7. CAS Google Scholar
Fu, X., & Li, H. (2009). Mesenchymal stem cells and skin wound repair and regeneration: possibilities and questions. Cell and Tissue Research, 335, 317–21. ArticlePubMed Google Scholar
Wojakowski, W., Tendera, M., Kucia, M., Zuba-Surma, E., Paczkowska, E., Ciosek, J., et al. (2009). Mobilization of bone marrow-derived Oct-4+ SSEA-4+ very small embryonic-like stem cells in patients with acute myocardial infarction. Journal of the American College of Cardiology, 53, 1–9. ArticlePubMedCAS Google Scholar
Paczkowska, E., Larysz, B., Rzeuski, R., Karbicka, A., Jałowiński, R., Kornacewicz-Jach, Z., et al. (2005). Human hematopoietic stem/progenitor-enriched CD34(+) cells are mobilized into peripheral blood during stress related to ischemic stroke or acute myocardial infarction. European Journal of Haematology, 75, 461–7. ArticlePubMedCAS Google Scholar
Massberg, S., Schaerli, P., Knezevic-Maramica, I., Köllnberger, M., Tubo, N., Moseman, E. A., et al. (2007). Immunosurveillance by hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues. Cell, 131, 994–1008. ArticlePubMedCAS Google Scholar
Zou, Y. R., Kottmann, A. H., Kuroda, M., Taniuchi, I., & Littman, D. R. (1998). Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature, 393, 595–9. ArticlePubMedCAS Google Scholar
Lapidot, T., & Kollet, O. (2002). The essential roles of the chemokine SDF-1 and its receptor CXCR4 in human stem cell homing and repopulation of transplanted immune-deficient NOD/SCID and NOD/SCID/B2m(null) mice. Leukemia, 16, 1992–2003. ArticlePubMedCAS Google Scholar
Kmiecik, T. E., Keller, J. R., Rosen, E., & Vande Woude, G. F. (1992). Hepatocyte growth factor is a synergistic factor for the growth of hematopoietic progenitor cells. Blood, 80, 2454–7. PubMedCAS Google Scholar
Ma, Q., Jones, D., Borghesani, P. R., Segal, R. A., Nagasawa, T., Kishimoto, T., et al. (1998). Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 95, 9448–53. ArticlePubMedCAS Google Scholar
Nagasawa, T. (2000). A chemokine, SDF-1/PBSF, and its receptor, CXC chemokine receptor 4, as mediators of hematopoiesis. International Journal of Hematology, 72, 408–11. PubMedCAS Google Scholar
Taichman, R. S., Wang, Z., Shiozawa, Y., Jung, Y., Song, J., Balduino, A., et al. (2010). Prospective identification and skeletal localization of cells capable of multilineage differentiation in vivo. Stem Cells and Development, 19, 1557–70. ArticlePubMedCAS Google Scholar
LaBarge, M. A., & Blau, H. M. (2002). Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell, 111, 589–601. ArticlePubMedCAS Google Scholar
Ratajczak, M. Z., Reca, R., Wysoczynski, M., Yan, J., & Ratajczak, J. (2006). Modulation of the SDF-1-CXCR4 axis by the third complement component (C3)–implications for trafficking of CXCR4+ stem cells. Experimental Hematology, 34, 986–95. ArticlePubMedCAS Google Scholar
Ratajczak, M. Z., Lee, H., Wysoczynski, M., Wan, W., Marlicz, W., Laughlin, M. J., et al. (2010). Novel insight into stem cell mobilization-plasma sphingosine-1-phosphate is a major chemoattractant that directs the egress of hematopoietic stem progenitor cells from the bone marrow and its level in peripheral blood increases during mobilization due to activation of complement cascade/membrane attack complex. Leukemia, 24, 976–85. ArticlePubMedCAS Google Scholar
Ratajczak, M. Z., Kim, C. H., Wojakowski, W., Janowska-Wieczorek, A., Kucia, M., & Ratajczak, J. (2010). Innate immunity as orchestrator of stem cell mobilization. Leukemia, 24, 1667–75. ArticlePubMedCAS Google Scholar
Petit, I., Szyper-Kravitz, M., Nagler, A., Lahav, M., Peled, A., Habler, L., et al. (2002). G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nature Immunology, 3, 687–94. ArticlePubMedCAS Google Scholar
Stocum, D. L. (2001). Stem cells in regenerative biology and medicine. Wound Repair and Regeneration, 9, 429–42. ArticlePubMedCAS Google Scholar
Wojakowski, W., Tendera, M., Michałowska, A., Majka, M., Kucia, M., Maślankiewicz, K., et al. (2004). Mobilization of CD34/CXCR4+, CD34/CD117+, c-met + stem cells, and mononuclear cells expressing early cardiac, muscle, and endothelial markers into peripheral blood in patients with acute myocardial infarction. Circulation, 110, 3213–20. ArticlePubMedCAS Google Scholar
Dawn, B., Tiwari, S., Kucia, M. J., Zuba-Surma, E. K., Guo, Y., Sanganalmath, S. K., et al. (2008). Transplantation of bone marrow-derived very small embryonic-like stem cells attenuates left ventricular dysfunction and remodeling after myocardial infarction. Stem Cells, 26, 1646–55. ArticlePubMed Google Scholar
Shyu, W. C., Lin, S. Z., Yang, H. I., Tzeng, Y. S., Pang, C. Y., Yen, P. S., et al. (2004). Functional recovery of stroke rats induced by granulocyte colony-stimulating factor-stimulated stem cells. Circulation, 110, 1847–54. ArticlePubMedCAS Google Scholar
Kassirer, M., Zeltser, D., Gluzman, B., Leibovitz, E., Goldberg, Y., Roth, A., et al. (1999). The appearance of L-selectin(low) polymorphonuclear leukocytes in the circulating pool of peripheral blood during myocardial infarction correlates with neutrophilia and with the size of the infarct. Clinical Cardiology, 22, 721–6. ArticlePubMedCAS Google Scholar
Ratajczak, J., Reca, R., Kucia, M., Majka, M., Allendorf, D. J., Baran, J. T., et al. (2004). Mobilization studies in mice deficient in either C3 or C3a receptor (C3aR) reveal a novel role for complement in retention of hematopoietic stem/progenitor cells in bone marrow. Blood, 103(6), 2071–8. Epub 2003 Nov 6. ArticlePubMedCAS Google Scholar
Reca, R., Mastellos, D., Majka, M., Marquez, L., Ratajczak, J., Franchini, S., et al. (2003). Functional receptor for C3a anaphylatoxin is expressed by normal hematopoietic stem/progenitor cells, and C3a enhances their homing-related responses to SDF-1. Blood, 101, 3784–93. ArticlePubMedCAS Google Scholar
Lapidot, T., Dar, A., & Kollet, O. (2005). How do stem cells find their way home? Blood, 106, 1901–10. ArticlePubMedCAS Google Scholar
Lévesque, J. P., Takamatsu, Y., Nilsson, S. K., Haylock, D. N., & Simmons, P. J. (2000). Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor. Blood, 98, 1289–97. Article Google Scholar
Lee, H., & Ratajczak, M. Z. (2009). Innate immunity: a key player in the mobilization of hematopoietic stem/progenitor cells. Archivum Immunologiae et Therapiae Experimentalis (Warsz), 57, 269–78. ArticleCAS Google Scholar
Sweeney, E. A., Lortat-Jacob, H., Priestley, G. V., Nakamoto, B., & Papayannopoulou, T. (2002). Sulfated polysaccharides increase plasma levels of SDF-1 in monkeys and mice: involvement in mobilization of stem/progenitor cells. Blood, 99, 44–51. ArticlePubMedCAS Google Scholar
Hänel, P., Andréani, P., & Gräler, M. H. (2007). Erythrocytes store and release sphingosine 1-phosphate in blood. The FASEB Journal, 21, 1202–9. Article Google Scholar
Ohkawa, R., Nakamura, K., Okubo, S., Hosogaya, S., Ozaki, Y., Tozuka, M., et al. (2008). Plasma sphingosine-1-phosphate measurement in healthy subjects: close correlation with red blood cell parameters. Annals of Clinical Biochemistry, 45, 356–63. ArticlePubMedCAS Google Scholar
Gronthos, S., Zannettino, A. C., Hay, S. J., Shi, S., Graves, S. E., Kortesidis, A., et al. (2003). Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. Journal of Cell Science, 116, 1827–35. ArticlePubMedCAS Google Scholar
Aliotta, J. M., Pereira, M., Johnson, K. W., de Paz, N., Dooner, M. S., Puente, N., et al. (2010). Microvesicle entry into marrow cells mediates tissue-specific changes in mRNA by direct delivery of mRNA and induction of transcription. Experimental Hematology, 38, 233–45. ArticlePubMedCAS Google Scholar
Rodgerson DO, Harris AG (2011). A Comparison of Stem Cells for Therapeutic Use. Stem Cells Review 2011; (in press): doi: 10.1007/s12015-011-9241-y.
Kucia, M., Ratajczak, J., & Ratajczak, M. Z. (2005). Are bone marrow stem cells plastic or heterogenous–that is the question. Experimental Hematology, 33, 613–23. ArticlePubMed Google Scholar
Ratajczak, M. Z., Shin, D. M., Liu, R., Marlicz, W., Tarnowski, M., Ratajczak, J., et al. (2010). Epiblast/germ line hypothesis of cancer development revisited: lesson from the presence of Oct-4+ cells in adult tissues. Stem Cell Reviews, 6, 307–16. ArticlePubMed Google Scholar