The essential roles of the chemokine SDF-1 and its receptor CXCR4 in human stem cell homing and repopulation of transplanted immune-deficient NOD/SCID and NOD/SCID/B2mnull mice (original) (raw)
References
Takeuchi M, Sekiguchi T, Hara T, Kinoshita T, Miyajima A . Cultivation of aorta–gonad–mesonephros-derived hematopoietic stem cells in the fetal liver microenvironment amplifies long-term repopulating activity and enhances engraftment to the bone marrow Blood 2002 99: 1190–1196 CASPubMed Google Scholar
Yoder MC, Hiatt K, Mukherjee P . In vivo repopulating hematopoietic stem cells are present in the murine yolk sac at day 9.0 postcoitus Proc Natl Acad Sci USA 1997 94: 6776–6780 CASPubMedPubMed Central Google Scholar
Moore MA, Metcalf D . Ontogeny of the haemopoietic system: yolk sac origin of in vivo and in vitro colony forming cells in the developing mouse embryo Br J Haematol 1970 18: 279–296 CASPubMed Google Scholar
Cumano A, Dieterlen-Lievre F, Godin I . Lymphoid potential, probed before circulation in mouse, is restricted to caudal intraembryonic splanchnopleura Cell 1996 86: 907–916 CASPubMed Google Scholar
Muller AM, Medvinsky A, Strouboulis J, Grosveld F, Dzierzak E . Development of hematopoietic stem cell activity in the mouse embryo Immunity 1994 1: 291–301 CASPubMed Google Scholar
Medvinsky A, Dzierzak E . Definitive hematopoiesis is autonomously initiated by the AGM region Cell 1996 86: 897–906 CASPubMed Google Scholar
Weissman IL . Stem cells: units of development, units of regeneration, and units in evolution Cell 2000 100: 157–168 CASPubMed Google Scholar
To LB, Haylock DN, Simmons PJ, Juttner CA . The biology and clinical uses of blood stem cells Blood 1997 89: 2233–2258 CASPubMed Google Scholar
Link DC . Mechanisms of granulocyte colony-stimulating factor-induced hematopoietic progenitor-cell mobilization Semin Hematol 2000 37: 25–32 CASPubMed Google Scholar
Maekawa T, Ishii T . Chemokine/receptor dynamics in the regulation of hematopoiesis Intern Med 2000 39: 90–100 CASPubMed Google Scholar
Nagasawa T, Tachibana K, Kishimoto T . A novel CXC chemokine PBSF/SDF-1 and its receptor CXCR4: their functions in development, hematopoiesis and HIV infection Semin Immunol 1998 10: 179–185 CASPubMed Google Scholar
Ponomaryov T, Peled A, Petit I, Taichman R, Habler L, Sandbank J, Arenzana-Seisdedos F, Magerus A, Caruz A, Fujii N, Nagler A, Lahav M, Szyper-Kravitz M, Zipori D, Lapidot T . Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function JCI 2000 106: 1331–1339 CASPubMedPubMed Central Google Scholar
Nagasawa T, Kikutani H, Kishimoto T . Molecular cloning and structure of a pre-B-cell growth-stimulating factor Proc Natl Acad Sci USA 1994 91: 2305–2309 CASPubMedPubMed Central Google Scholar
Imai K, Kobayashi M, Wang J, Shinobu N, Yoshida H, Hamada J, Shindo M, Higashino F, Tanaka J, Asaka M, Hosokawa M . Selective secretion of chemoattractants for haemopoietic progenitor cells by bone marrow endothelial cells: a possible role in homing of haemopoietic progenitor cells to bone marrow Br J Haematol 1999 106: 905–911 CASPubMed Google Scholar
Itoh K, Tezuka H, Sakoda H, Konno M, Nagata K, Uchiyama T, Uchino H, Mori KJ . Reproducible establishment of hemopoietic supportive stromal cell lines from murine bone marrow Exp Hematol 1989 17: 145–153 CASPubMed Google Scholar
Issaad C, Croisille L, Katz A, Vainchenker W, Coulombel L . A murine stromal cell line allows the proliferation of very primitive human CD34++/CD38− progenitor cells in long-term cultures and semisolid assays Blood 1993 81: 2916–2924 CASPubMed Google Scholar
Zipori D, Lee F . Introduction of interleukin-3 gene into stromal cells from the bone marrow alters hemopoietic differentiation but does not modify stem cell renewal Blood 1988 71: 586–596 CASPubMed Google Scholar
Peled A, Hardan I, Magid M, Zipori D, Lapidot T . Enhanced engraftment by human SRC and CML cells and increased formation of primitive CFU-GEMM colonies in response to short interactions between CD34+ cells and BM stromal cells Blood 1999 94: 557a (Abstr.) Google Scholar
Bleul CC, Schultze JL, Springer TA . B lymphocyte chemotaxis regulated in association with microanatomic localization, differentiation state, and B cell receptor engagement J Exp Med 1998 187: 753–762 CASPubMedPubMed Central Google Scholar
Aiuti A, Webb IJ, Bleul C, Springer T, Gutierrez-Ramos JC . The chemokine SDF-1 is a chemoattractant for human CD34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34+ progenitors to peripheral blood J Exp Med 1997 185: 111–120 CASPubMedPubMed Central Google Scholar
Loetscher M, Geiser T, O'Reilly T, Zwahlen R, Baggiolini M, Moser B . Cloning of a human seven-transmembrane domain receptor, LESTR, that is highly expressed in leukocytes J Biol Chem 1994 269: 232–237 CASPubMed Google Scholar
Nagasawa T, Hirota S, Tachibana K, Takakura N, Nishikawa S, Kitamura Y, Yoshida N, Kikutani H, Kishimoto T . Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1 Nature 1996 382: 635–638 CASPubMed Google Scholar
Ma Q, Jones D, Borghesani PR, Segal RA, Nagasawa T, Kishimoto T, Bronson RT, Springer TA . Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice Proc Natl Acad Sci USA 1998 95: 9448–9453 CASPubMedPubMed Central Google Scholar
Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR . Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development Nature 1998 393: 595–599 CASPubMed Google Scholar
Tachibana K, Hirota S, Iizasa H, Yoshida H, Kawabata K, Kataoka Y, Kitamura Y, Matsushima K, Yoshida N, Nishikawa S, Kishimoto T, Nagasawa T . The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract Nature 1998 393: 591–594 CASPubMed Google Scholar
Kawabata K, Ujikawa M, Egawa T, Kawamoto H, Tachibana K, Iizasa H, Katsura Y, Kishimoto T, Nagasawa T . A cell-autonomous requirement for CXCR4 in long-term lymphoid and myeloid reconstitution Proc Natl Acad Sci USA 1999 96: 5663–5667 CASPubMedPubMed Central Google Scholar
Ma Q, Jones D, Springer TA . The chemokine receptor CXCR4 is required for the retention of B lineage and granulocytic precursors within the bone marrow microenvironment Immunity 1999 10: 463–471 CASPubMed Google Scholar
Cheng T, Rodrigues N, Shen H, Yang Y, Dombkowski D, Sykes M, Scadden DT . Hematopoietic stem cell quiescence maintained by p21cip1/waf1 Science 2000 287: 1804–1808 CASPubMed Google Scholar
Kollet O, Grabovsky V, Franitza S, Lider O, Alon R, Lapidot T . SDF-1 induces survival, adhesion, and migration in 3D-ECM like gels of murine CXCR4 null fetal liver cells Blood 2000 96: 65a Google Scholar
Janowska-Wieczorek A, Majka M, Kijowski J, Baj-Krzyworzeka M, Reca R, Turner AR, Ratajczak J, Emerson SG, Kowalska MA, Ratajczak MZ . Platelet-derived microparticles bind to hematopoietic stem/progenitor cells and enhance their engraftment Blood 2001 98: 3143–3149 CASPubMed Google Scholar
Baj-Krzyworzeka M, Majka M, Pratico D, Ratajczak J, Vilaire G, Kijowski J, Reca R, Janowska-Wieczorek A, Ratajczak MZ . Platelet-derived microparticles stimulate proliferation, survival, adhesion, and chemotaxis of hematopoietic cells Exp Hematol 2002 30: 450–459 CASPubMed Google Scholar
Shirozu M, Nakano T, Inazawa J, Tashiro K, Tada H, Shinohara T, Honjo T . Structure and chromosomal localization of the human stromal cell-derived factor 1 (SDF1) gene Genomics 1995 28: 495–500 CASPubMed Google Scholar
Sawada S, Gowrishankar K, Kitamura R, Suzuki M, Suzuki G, Tahara S, Koito A . Disturbed CD4+ T cell homeostasis and in vitro HIV-1 susceptibility in transgenic mice expressing T cell line-tropic HIV-1 receptors J Exp Med 1998 187: 1439–1449 CASPubMedPubMed Central Google Scholar
Onai N, Zhang Y, Yoneyama H, Kitamura T, Ishikawa S, Matsushima K . Impairment of lymphopoiesis and myelopoiesis in mice reconstituted with bone marrow-hematopoietic progenitor cells expressing SDF-1-intrakine Blood 2000 96: 2074–2080 CASPubMed Google Scholar
Lee Y, Gotoh A, Kwon HJ, You M, Kohli L, Mantel C, Cooper S, Hangoc G, Miyazawa K, Ohyashiki K, Broxmeyer HE . Enhancement of intracellular signaling associated with hematopoietic progenitor cell survival in response to SDF-1/CXCL12 in synergy with other cytokines Blood 2002 99: 4307–4317 CASPubMed Google Scholar
Wright DE, Bowman EP, Wagers AJ, Butcher EC, Weissman IL . Hematopoietic stem cells are uniquely selective in their migratory response to chemokines J Exp Med 2002 195: 1145–1154 CASPubMedPubMed Central Google Scholar
Mosier DE, Gulizia RJ, Baird SM, Wilson DB . Transfer of a functional human immune system to mice with severe combined immunodeficiency Nature 1988 335: 256–259 ArticleCASPubMed Google Scholar
McCune JM, Namikawa R, Kaneshima R, Schultz LD, Leiberman K, Weissman IL . The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function Science 1988 241: 1632–1639 CASPubMed Google Scholar
Heike Y, Ohira T, Takahashi M, Saijo N . Long-term human hematopoiesis in SCID-hu mice bearing transplanted fragments of adult bone and bone marrow cells Blood 1995 86: 524–530 CASPubMed Google Scholar
Kamel-Reid S, Dick JE . Engraftment of immune-deficient mice with human hematopoietic stem cells Science 1988 242: 1706–1709 CASPubMed Google Scholar
Bosma MJ, Carroll AM . The SCID mouse mutant: definition, characterization, and potential uses Annu Rev Immunol 1991 9: 323–350 CASPubMed Google Scholar
Zanjani ED, Silva MR, Flake AW . Retention and multilineage expression of human hematopoietic stem cells in human-sheep chimeras Blood Cells 1994 20: 331–338 CASPubMed Google Scholar
Kamel-Reid S, Letarte M, Doedens M, Greaves A, Murdoch B, Grunberger T, Lapidot T, Thorner P, Freedman MH, Phillips RA . Bone marrow from children in relapse with pre-B acute lymphoblastic leukemia proliferates and dissaminates rapidly in scid mice Blood 1991 78: 2973–2981 CASPubMed Google Scholar
Lapidot T, Pflumio F, Doedens M, Murdoch B, Williams DE, Dick JE . Cytokine stimulation of multilineage hematopoiesis from immature human cells engrafted in SCID mice Science 1992 255: 1137–1141 CASPubMed Google Scholar
Vormoor J, Lapidot T, Pflumio F, Risdon G, Broxmeyer H, Dick JE . Immature human cord blood cells give rise to multi lineage progenitors in SCID mice Blood 1994 83: 2489–2497 CASPubMed Google Scholar
Makalowski W, Zhang J, Boguski MS . Comparative analysis of 1196 orthologous mouse and human full-length mRNA and protein sequences Genome Res 1996 6: 846–857 CASPubMed Google Scholar
Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caseres-Cortes J, Minden M, Paterson B, Caligiuri MA, Dick JE . A cell initiating human acute myeloid leukemia after transplantation into SCID mice Nature 1994 367: 645–648 CASPubMed Google Scholar
Bonnet D, Dick JE . Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell Nat Med 1997 3: 730–737 CASPubMed Google Scholar
Terpstra W, Prins A, Ploemacher RE, Wognum BW, Wagemaker G, Lowenberg B, Wielenga JJ . Long-term leukemia-initiating capacity of a CD34-subpopulation of acute myeloid leukemia Blood 1996 87: 2187–2194 CASPubMed Google Scholar
Shultz LD, Schweitzer PA, Chritianson SW, Gott B, Schweitzer IB, Tennent B, McKenna S, Mobraaten L, Rajan TV, Greiner DL . Multiple defects in innate and adaptive immunological function in NOD/LtSz-scid mice J Immunol 1995 154: 180–191 CASPubMed Google Scholar
Wang JC, Doedens M, Dick JE . Primitive human hematopoietic cells are enriched in cord blood compared with adult bone marrow or mobilized peripheral blood as measured by the quantitative in vivo SCID-repopulating cell assay Blood 1997 89: 3919–3924 CASPubMed Google Scholar
Larochelle A, Vormoor J, Hanenberg H, Wang JCY, Bhatia M, Lapidot T, Moritz T, Murdoch B, Xiao XL, Kato I, Williams DA, Dick JE . Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mice using retroviral gene marking and cell purification: implications for gene therapy Nat Med 1996 2: 1329–1337 CASPubMed Google Scholar
Bhatia M, Bonnet D, Murdoch B, Gan OI, Dick JE . A newly discovered class of human hematopoietic cells with SCID- repopulating activity Nat Med 1998 4: 1038–1045 CASPubMed Google Scholar
Cashman JD, Lapidot T, Wang JC, Doedens M, Shultz LD, Lansdorp P, Dick JE, Eaves CJ . Kinetic evidence of the regeneration of multilineage hematopoiesis from primitive cells in normal human bone marrow transplanted into immunodeficient mice Blood 1997 89: 4307–4316 CASPubMed Google Scholar
Terstappen LW, Huang S, Safford M, Lansdorp PM, Loken MR . Sequential generations of hematopoietic colonies derived from single nonlineage-committed CD34+CD38- progenitor cells Blood 1991 77: 1218–1227 CASPubMed Google Scholar
Robin C, Pflumio F, Vainchenker W, Coulombel L . Identification of lymphomyeloid primitive progenitor cells in fresh human cord blood and in the marrow of nonobese diabetic-severe combined immunodeficient (NOD-SCID) mice transplanted with human CD34(+) cord blood cells J Exp Med 1999 189: 1601–1610 CASPubMedPubMed Central Google Scholar
Conneally E, Cashman J, Petzer A, Eaves C . Expansion in vitro of transplantable human cord blood stem cells demonstrated using a quantitative assay of their lympho–myeloid repopulating activity in nonobese diabetic-scid/scid mice Proc Natl Acad Sci USA 1997 94: 9836–9841 CASPubMedPubMed Central Google Scholar
Hogan CJ, Shpall EJ, Keller G . Differential long-term and multilineage engraftment potential from subfractions of human CD34+ cord blood cells transplanted into NOD/SCID mice Proc Natl Acad Sci USA 2002 99: 413–418 CASPubMedPubMed Central Google Scholar
Kerre TC, De Smet G, De Smedt M, Offner F, De Bosscher J, Plum J, Vandekerckhove B . Both CD34(+)38(+) and CD34(+)38(−) cells home specifically to the bone marrow of NOD/LtSZ scid/scid mice but show different kinetics in expansion J Immunol 2001 167: 3692–3698 CASPubMed Google Scholar
Verstegen MM, van Hennik PB, Terpstra W, van den Bos C, Wielenga JJ, van Rooijen N, Ploemacher RE, Wagemaker G, Wognum AW . Transplantation of human umbilical cord blood cells in macrophage-depleted SCID mice: evidence for accessory cell involvement in expansion of immature CD34+CD38− cells Blood 1998 91: 1966–1976 CASPubMed Google Scholar
van Hennik PB, Verstegen MM, Bierhuizen MF, Limon A, Wognum AW, Cancelas JA, Barquinero J, Ploemacher RE, Wagemaker G . Highly efficient transduction of the green fluorescent protein gene in human umbilical cord blood stem cells capable of cobblestone formation in long-term cultures and multilineage engraftment of immunodeficient mice Blood 1998 92: 4013–4022 CASPubMed Google Scholar
Guenechea G, Gan O, Dorrell C, Dick JE . Distinct classes of human stem cells that differ in proliferative and self-renewal potential Nat Immunol 2001 2: 75–82 CASPubMed Google Scholar
Peled A, Petit I, Kollet O, Magid M, Ponomaryov T, Byk T, Nagler A, Ben-Hur H, Many A, Shultz L, Lider O, Alon R, Zipori D, Lapidot T . Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4 Science 1999 283: 845–848 CASPubMed Google Scholar
Kollet O, Spiegel A, Peled A, Petit I, Byk T, Hershkoviz R, Guetta E, Barkai G, Nagler A, Lapidot T . Rapid and efficient homing of human CD34(+)CD38(−/low)CXCR4(+) stem and progenitor cells to the bone marrow and spleen of NOD/SCID and NOD/SCID/B2m(null) mice Blood 2001 97: 3283–3291 CASPubMed Google Scholar
Rosu-Myles M, Gallacher L, Murdoch B, Hess DA, Keeney M, Kelvin D, Dale L, Ferguson SS, Wu D, Fellows F, Bhatia M . The human hematopoietic stem cell compartment is heterogeneous for CXCR4 expression Proc Natl Acad Sci USA 2000 97: 14626–14631 CASPubMedPubMed Central Google Scholar
Bhatia M, Wang JCY, Kapp U, Bonnet D, Dick JE . Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice Proc Natl Acad Sci USA 1997 94: 5320–5325 CASPubMedPubMed Central Google Scholar
Kollet O, Petit I, Kahn J, Samira S, Dar A, Peled A, Deutsch V, Gunetti M, Piacibello W, Nagler A, Lapidot T . Human CD34+CXCR4− sorted cells harbor intracellular CXCR4, which can functionally be expressed and provide NOD/SCID repopulation Blood (in press)
Hogan CJ, Shpall EJ, McNulty O, McNiece I, Dick JE, Shultz LD, Keller G . Engraftment and development of human CD34(+)-enriched cells from umbilical cord blood in NOD/LtSz-scid/scid mice Blood 1997 90: 85–96 CASPubMed Google Scholar
Wagar EJ, Cromwell MA, Shultz LD, Woda BA, Sullivan JL, Hesselton RM, Greiner DL . Regulation of human cell engraftment and development of EBV-related lymphoproliferative disorders in Hu-PBL-scid mice J Immunol 2000 165: 518–527 CASPubMed Google Scholar
Christianson SW, Greiner DL, Hesselton RA, Leif JH, Wagar EJ, Schweitzer IB, Rajan TV, Gott B, Roopenian DC, Shultz LD . Enhanced human CD4+ T cell engraftment in beta2-microglobulin-deficient NOD-scid mice J Immunol 1997 158: 3578–3586 CASPubMed Google Scholar
Kollet O, Peled A, Byk T, Ben-Hur H, Greiner D, Shultz L, Lapidot T . beta2 microglobulin-deficient (B2m(null)) NOD/SCID mice are excellent recipients for studying human stem cell function Blood 2000 95: 3102–3105 CASPubMed Google Scholar
Glimm H, Eisterer W, Lee K, Cashman J, Holyoake TL, Nicolini F, Shultz LD, von Kalle C, Eaves CJ . Previously undetected human hematopoietic cell populations with short-term repopulating activity selectively engraft NOD/SCID-beta2 microglobulin-null mice J Clin Invest 2001 107: 199–206 CASPubMedPubMed Central Google Scholar
Kerre TCC, De Smet G, De Smedt M, Zippelius A, Pittet MJ, Langerak AW, De Bosscher J, Offner F, Vandekerckhove B, Plum J . Adapted NOD/SCID model supports development of phenotypically and functionally mature T cells from human umbilical cord blood CD34+ cells Blood 2002 99: 1620–1626 CASPubMed Google Scholar
Ito M, Hiramatsu H, Kobayashi K, Suzue K, Kawahata M, Hioki K, Ueyama Y, Koyanagi Y, Sugamura K, Tsuji K, Heike T, Nakahata T . NOD/SCID/γcnull mouse: an excellent recipient mouse model for engraftment of human cells Blood 2002 (in press)
Srour EF, Jetmore A, Wolber FM, Plett PA, Abonour R, Yoder MC, Orschell-Traycoff CM . Homing, cell cycle kinetics and fate of transplanted hematopoietic stem cells Leukemia 2001 15: 1681–1684 CASPubMed Google Scholar
Gothot A, van der Loo JC, Clapp DW, Srour EF . Cell cycle-related changes in repopulating capacity of human mobilized peripheral blood CD34(+) cells in non-obese diabetic/severe combined immune-deficient mice Blood 1998 92: 2641–2649 CASPubMed Google Scholar
Byk T, Kahn J, Kollet O, Petit I, Peled A, Piacibello W, Lapidot T . G1 CD34+/CD38+ cells potentiate the motility and engraftment of quiescent G0 CD34+/CD38−/low SCID repopulating cells Blood 2000 96: 288a (Abstr.) Google Scholar
Glimm H, Oh IH, Eaves CJ . Human hematopoietic stem cells stimulated to proliferate in vitro lose engraftment potential during their S/G(2)/M transit and do not reenter G(0) Blood 2000 96: 4185–4193 CASPubMed Google Scholar
Wilpshaar J, Falkenburg JH, Tong X, Noort WA, Breese R, Heilman D, Kanhai H, Orschell-Traycoff CM, Srour EF . Similar repopulating capacity of mitotically active and resting umbilical cord blood CD34(+) cells in NOD/SCID mice Blood 2000 96: 2100–2107 CASPubMed Google Scholar
Lucotti C, Malabarba L, Rosti V, Bergamaschi G, Danova M, Invernizzi R, Pecci A, Ramajoli I, Perotti C, Torretta L, De Amici M, Salvaneschi L, Cazzola M . Cell cycle distribution of cord blood-derived haematopoietic progenitor cells and their recruitment into the S-phase of the cell cycle Br J Haematol 2000 108: 621–628 CASPubMed Google Scholar
Luther-Wyrsch A, Costello E, Thali M, Buetti E, Nissen C, Surbek D, Holzgreve W, Gratwohl A, Tichelli A, Wodnar-Filipowicz A . Stable transduction with lentiviral vectors and amplification of immature hematopoietic progenitors from cord blood of preterm human fetuses Hum Gene Ther 2001 12: 377–389 CASPubMed Google Scholar
Fleming WH, Alpern EJ, Uchida N, Ikuta K, Spangrude GJ, Weissman IL . Functional heterogeneity is associated with the cell cycle status of murine hematopoietic stem cells J Cell Biol 1993 122: 897–902 CASPubMed Google Scholar
Orschell-Traycoff CM, Hiatt K, Dagher RN, Rice S, Yoder MC, Srour EF . Homing and engraftment potential of Sca-1(+)lin(−) cells fractionated on the basis of adhesion molecule expression and position in cell cycle Blood 2000 96: 1380–1387 CASPubMed Google Scholar
Huttmann A, Liu SL, Boyd AW, Li CL . Functional heterogeneity within rhodamine123(lo) Hoechst33342(lo/sp) primitive hemopoietic stem cells revealed by pyronin Y Exp Hematol 2001 29: 1109–1116 CASPubMed Google Scholar
Habibian HK, Peters SO, Hsieh CC, Wuu J, Vergilis K, Grimaldi CI, Reilly J, Carlson JE, Frimberger AE, Stewart FM, Quesenberry PJ . The fluctuating phenotype of the lymphohematopoietic stem cell with cell cycle transit J Exp Med 1998 188: 393–398 CASPubMedPubMed Central Google Scholar
Osawa M, Hanada K, Hamada H, Nakauchi H . Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell Science 1996 273: 242–245 CASPubMed Google Scholar
Sato T, Laver JH, Ogawa M . Reversible expression of CD34 by murine hematopoietic stem cells Blood 1999 94: 2548–2554 CASPubMed Google Scholar
Goodell MA, Rosenzweig M, Kim H, Marks DF, DeMaria M, Paradis G, Grupp SA, Sieff CA, Mulligan RC, Johnson RP . Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species Nat Med 1997 3: 1337–1345 CASPubMed Google Scholar
Hess DA, Gallacher L, Mei Wu D, Murdoch B, Karanu FN, Bhatia M . In vivo tracking of prospectively isolated CD34+Lin- and CD34-lin- subsets reveals functional regulation among cells within the human stem cell compartment Blood 2001 98: 116b Google Scholar
Gao Z, Fackler MJ, Leung W, Lumkul R, Ramirez M, Theobald N, Malech HL, Civin CI . Human CD34+ cell preparations contain over 100-fold greater NOD/SCID mouse engrafting capacity than do CD34− cell preparations Exp Hematol 2001 29: 910–921 CASPubMed Google Scholar
Zanjani ED, Almeida-Porada G, Livingston AG, Flake AW, Ogawa M . Human bone marrow CD34- cells engraft in vivo and undergo multilineage expression that includes giving rise to CD34+ cells Exp Hematol 1998 26: 353–360 CASPubMed Google Scholar
Verfaillie CM, Almeida-Porada G, Wissink S, Zanjani ED . Kinetics of engraftment of CD34(-) and CD34(+) cells from mobilized blood differs from that of CD34(−) and CD34(+) cells from bone marrow Exp Hematol 2000 28: 1071–1079 CASPubMed Google Scholar
Zanjani ED, Almeida-Porada G, Harada N, Zeng HQ, Ogawa M . Reversible expression of CD34 by adult human bone marrow long-term engrafting cells in vivoBlood 2001 98: 72a Google Scholar
Nakamura Y, Ando K, Chargui J, Kawada H, Sato T, Tsuji T, Hotta T, Kato S . Ex vivo generation of CD34(+) cells from CD34(−) hematopoietic cells Blood 1999 94: 4053–4059 CASPubMed Google Scholar
Kato S, Ando K, Nakamura Y, Muguruma Y, Sato T, Yabe H, Yabe M, Hattori K, Yasuda Y, Hotta T . Absence of a CD34- hematopoietic precursor population in recipients of CD34+ stem cell transplantation Bone Marrow Transplant 2001 28: 587–595 CASPubMed Google Scholar
Krause DS, Theise ND, Collector MI, Henegariu O, Hwang S, Gardner R, Neutzel S, Sharkis SJ . Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell Cell 2001 105: 369–377 CASPubMed Google Scholar
Dao MA, Pepper KA, Nolta JA . Long-term cytokine production from engineered primary human stromal cells influences human hematopoiesis in an in vivo xenograft model Stem Cells 1997 15: 443–454 CASPubMedPubMed Central Google Scholar
Majka M, Janowska-Wieczorek A, Ratajczak J, Ehrenman K, Pietrzkowski Z, Kowalska MA, Gewirtz AM, Emerson SG, Ratajczak MZ . Numerous growth factors, cytokines, and chemokines are secreted by human CD34(+) cells, myeloblasts, erythroblasts, and megakaryoblasts and regulate normal hematopoiesis in an autocrine/paracrine manner Blood 2001 97: 3075–3085 CASPubMed Google Scholar
Aiuti A, Turchetto L, Cota M, Cipponi A, Brambilla A, Arcelloni C, Paroni R, Vicenzi E, Bordignon C, Poli G . Human CD34(+) cells express CXCR4 and its ligand stromal cell-derived factor-1. Implications for infection by T-cell tropic human immunodeficiency virus Blood 1999 94: 62–73 CASPubMed Google Scholar
Lataillade JJ, Clay D, Bourin P, Herodin F, Dupuy C, Jasmin C, Bousse-Kerdiles MC . Stromal cell-derived factor 1 regulates primitive hematopoiesis by suppressing apoptosis and by promoting G(0)/G(1) transition in CD34(+) cells: evidence for an autocrine/paracrine mechanism Blood 2002 99: 1117–1129 CASPubMed Google Scholar
Viardot A, Kronenwett R, Deichmann M, Haas R . The human immunodeficiency virus (HIV)-type 1 coreceptor CXCR-4 (fusin) is preferentially expressed on the more immature CD34+ hematopoietic stem cells Ann Hematol 1998 77: 193–197 CASPubMed Google Scholar
Novelli EM, Ruyaner D, Chopra RK, Cheng L, Deans B, McIntosh KR, Civin C, Mosca JD . Human mesenchymal stem cells can enhance human CD34+ cell repopulating of NOD/SCID mice Blood 1998 92: 117a Google Scholar
Noort WA, Kruisselbrink AB, de Paus RA, Heemskerk MHM, Willemze R, Fibbe WE . Co-transplantation of mesenchymal stem cells (MSC) and UCBCD34(+) cells results in enhanced hematopoietic engraftment in NOD/SCID mice without homing of MSC to the bone marrow Blood 2001 98: 1243 (Abstr.) Google Scholar
El-Badri NS, Wang BY, Cherry, Good RA . Osteoblasts promote engraftment of allogeneic hematopoietic stem cells Exp Hematol 1998 26: 110–116 CASPubMed Google Scholar
Bonnet D, Bhatia M, Wang JC, Kapp U, Dick JE . Cytokine treatment or accessory cells are required to initiate engraftment of purified primitive human hematopoietic cells transplanted at limiting doses into NOD/SCID mice Bone Marrow Transplant 1999 23: 203–209 CASPubMed Google Scholar
Adams GB, Chabner KT, Foxall RB, Rodriques NP, Poznansky MC, Scadden DT . Lymphocyte augmentation of hematopoietic stem cell engraftment is due to cooperative effects of CD8+ T cells on CD34+ cell migration Blood 2000 96: 2490 (Abstr.) Google Scholar
Mack M, Kleinschmidt A, Bruhl H, Klier C, Nelson PJ, Cihak J, Plachy J, Stangassinger M, Erfle V, Schlondorff D . Transfer of the chemokine receptor CCR5 between cells by membrane-derived microparticles: a mechanism for cellular human immunodeficiency virus 1 infection Nat Med 2000 6: 769–775 CASPubMed Google Scholar
Zanjani ED, Flake AW, Almeida-Porada G, Tran N, Papayannopoulou T . Homing of human cells in the fetal sheep model: modulation by antibodies activating or inhibiting very late activation antigen-4-dependent function Blood 1999 94: 2515–2522 CASPubMed Google Scholar
Peled A, Kollet O, Ponomaryov T, Petit I, Franitza S, Grabovsky V, Slav MM, Nagler A, Lider O, Alon R, Zipori D, Lapidot T . The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34(+) cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice Blood 2000 95: 3289–3296 CASPubMed Google Scholar
Peled A, Grabovsky V, Habler L, Sandbank J, Arenzana-Seisdedos F, Petit I, Ben-Hur H, Lapidot T, Alon R . The chemokine SDF-1 stimulates integrin-mediated arrest of CD34(+) cells on vascular endothelium under shear flow J Clin Invest 1999 104: 1199–1211 CASPubMedPubMed Central Google Scholar
Kollet O, Spiegel A, Dar A, Samira S, Chen YQ, Shafritz DA, Suriawinata J, Thung S, Seis-Dedos FA, Nagler A, Revel M, Lapidot T . Involvement of SDF-1/CXCR4 interactions in the migration of immature human CD34+cells into the liver of transplanted NOD/SCID mice Blood 2001 98: 2297 (Abstr.) Google Scholar
Lataillade JJ, Clay D, Dupuy C, Rigal S, Jasmin C, Bourin P, Le Bousse-Kerdiles MC . Chemokine SDF-1 enhances circulating CD34(+) cell proliferation in synergy with cytokines: possible role in progenitor survival Blood 2000 95: 756–768 CASPubMed Google Scholar
Broxmeyer HE, Youn BS, Kim C, Hangoc G, Cooper S, Mantel C . Chemokine regulation of hematopoiesis and the involvement of pertussis toxin-sensitive G alpha i proteins Ann NY Acad Sci 2001 938: 117–127 discussion 127–138 CASPubMed Google Scholar
Cashman J, Clark-Lewis I, Eaves A, Eaves C . Stromal-derived factor 1 inhibits the cycling of very primitive human hematopoietic cells in vitro and in NOD/SCID mice Blood 2002 99: 792–799 CASPubMed Google Scholar
Glimm H, Tang P, Clark-Lewis I, von Kalle C, Eaves C . Ex vivo treatment of proliferating human cord blood stem cells with stroma-derived factor-1 enhances their ability to engraft NOD/SCID mice Blood 2002 99: 3454–3457 CASPubMed Google Scholar
Hernandez-Lopez C, Varas A, Sacedon R, Jimenez E, Munoz JJ, Zapata AG, Vicente A . Stromal cell-derived factor 1/CXCR4 signaling is critical for early human T-cell development Blood 2002 99: 546–554 CASPubMed Google Scholar
Voermans C, Kooi ML, Rodenhuis S, van der Lelie H, van der Schoot CE, Gerritsen WR . In vitro migratory capacity of CD34+ cells is related to hematopoietic recovery after autologous stem cell transplantation Blood 2001 97: 799–804 CASPubMed Google Scholar
Spencer A, Jackson J, Baulch-Brown C . Enumeration of bone marrow ‘homing’ haemopoietic stem cells from G-CSF-mobilised normal donors and influence on engraftment following allogeneic transplantation Bone Marrow Transplant 2001 28: 1019–1022 CASPubMed Google Scholar
Podesta M . Transplantation hematopoiesis Curr Opin Hematol 2001 8: 331–336 CASPubMed Google Scholar