IPEX, FOXP3 and regulatory T-cells: a model for autoimmunity (original) (raw)
Puck JM, Rieux-Laucat F, Le Deist F, Straus SE. Autoimmune lymphoproliferative syndrome. In: Ochs HD, Smith CIE, Puck JM, editors. Primary immunodeficiency diseases, a molecular and genetic approach. 2nd ed. New York: Oxford University Press; 2007. p. 326–341
Peltonen-Palotie L, Halonen M, Perheentupa J. Autoimmune polyendocrinopathy, candidiasis, ectodermal dystrophy. In: Ochs HD, Smith CIE, Puck JM, editors. Primary immunodeficiency diseases, a molecular and genetic approach. 2nd ed. New York: Oxford University Press; 2007. p. 342–354
Chatila TA, Blaeser F, Ho N, et al. JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome. J Clin Invest 2000;106(12):R75–81 ArticlePubMedCAS Google Scholar
Bennett CL, Christie J, Ramsdell F, et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 2001;27(1):20–1 ArticlePubMedCAS Google Scholar
Wildin RS, Ramsdell F, Peake J, et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet 2001;27(1):18–20 ArticlePubMedCAS Google Scholar
Bennett CL, Yoshioka R, Kiyosawa H, et al. X-Linked syndrome of polyendocrinopathy, immune dysfunction, and diarrhea maps to Xp11.23-Xq13.3. Am J Hum Genet 2000;66(2):461–8 ArticlePubMedCAS Google Scholar
Ferguson PJ, Blanton SH, Saulsbury FT, et al. Manifestations and linkage analysis in X-linked autoimmunity-immunodeficiency syndrome. Am J Med Genet 2000;90(5):390–7 ArticlePubMedCAS Google Scholar
Levy-Lahad E, Wildin RS Neonatal diabetes mellitus, enteropathy, thrombocytopenia, and endocrinopathy: Further evidence for an X-linked lethal syndrome. J Pediatr 2001;138(4):577–80 ArticlePubMedCAS Google Scholar
Wildin RS, Smyk-Pearson S, Filipovich AH Clinical and molecular features of the immunodysregulation, polyendocrinopathy, enteropathy, X linked (IPEX) syndrome. J Med Genet 2002;39(8):537–45 ArticlePubMedCAS Google Scholar
Powell BR, Buist NR, Stenzel P An X-linked syndrome of diarrhea, polyendocrinopathy, and fatal infection in infancy. J Pediatr 1982;100(5):731–7 ArticlePubMedCAS Google Scholar
Nieves DS, Phipps RP, Pollock SJ, et al. Dermatologic and immunologic findings in the immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome. Arch Dermatol 2004;140(4):466–72 ArticlePubMed Google Scholar
Savage MO, Mirakian R, Harries JT, Bottazzo GF Could protracted diarrhoea of infancy have an autoimmune pathogenesis? Lancet 1982;1(8278):966–7 ArticlePubMedCAS Google Scholar
Kobayashi I, Imamura K, Yamada M, et al. A 75-kD autoantigen recognized by sera from patients with X-linked autoimmune enteropathy associated with nephropathy. Clin Exp Immunol 1998;111(3):527–31 ArticlePubMedCAS Google Scholar
Gambineri E, Torgerson TR, Ochs HD Immune dysregulation, polyendocrinopathy, enteropathy, and X-linked inheritance (IPEX), a syndrome of systemic autoimmunity caused by mutations of FOXP3, a critical regulator of T-cell homeostasis. Curr Opin Rheumatol 2003;15(4):430–5 ArticlePubMedCAS Google Scholar
McGinness JL, Bivens MM, Greer KE, Patterson JW, Saulsbury FT Immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) associated with pemphigoid nodularis: a case report and review of the literature. J Am Acad Dermatol 2006;55(1):143–8 ArticlePubMed Google Scholar
Baud O, Goulet O, Canioni D, et al. Treatment of the immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) by allogeneic bone marrow transplantation. N Engl J Med 2001;344(23):1758–62 ArticlePubMedCAS Google Scholar
Cilio CM, Bosco S, Moretti C, et al. Congenital autoimmune diabetes mellitus. N Engl J Med 2000;342(20):1529–31 ArticlePubMedCAS Google Scholar
Kobayashi I, Imamura K, Kubota M, et al. Identification of an autoimmune enteropathy-related 75-kilodalton antigen. Gastroenterology 1999;117(4):823–30 ArticlePubMedCAS Google Scholar
Bennett CL, Brunkow ME, Ramsdell F, et al. A rare polyadenylation signal mutation of the FOXP3 gene (AAUAAA–>AAUGAA) leads to the IPEX syndrome. Immunogenetics 2001;53(6):435–9 ArticlePubMedCAS Google Scholar
Roncador G, Brown PJ, Maestre L, et al. Analysis of FOXP3 protein expression in human CD4+CD25+ regulatory T cells at the single-cell level. Eur J Immunol 2005;35(6):1681–91 ArticlePubMedCAS Google Scholar
Carlsson P, Mahlapuu M Forkhead transcription factors: key players in development and metabolism. Dev Biol 2002;250(1):1–23 ArticlePubMedCAS Google Scholar
Lopes JE, Torgerson TR, Schubert LA, et al. Analysis of FOXP3 reveals multiple domains required for its function as a transcriptional repressor. J Immunol 2006;177(5):3133–42 PubMedCAS Google Scholar
Schubert LA, Jeffery E, Zhang Y, Ramsdell F, Ziegler SF Scurfin (FOXP3) acts as a repressor of transcription and regulates T cell activation. J Biol Chem 2001;276(40):37672–9 ArticlePubMedCAS Google Scholar
Wu Y, Borde M, Heissmeyer V, et al. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 2006;126(2):375–87 ArticlePubMedCAS Google Scholar
Bettelli E, Dastrange M, Oukka M Foxp3 interacts with nuclear factor of activated T cells and NF-kappa B to repress cytokine gene expression and effector functions of T helper cells. Proc Natl Acad Sci U S A 2005;102(14):5138–43 ArticlePubMedCAS Google Scholar
Khattri R, Kasprowicz D, Cox T, et al. The amount of scurfin protein determines peripheral T cell number and responsiveness. J Immunol 2001;167(11):6312–20 PubMedCAS Google Scholar
Sakaguchi S, Takahashi T, Yamazaki S, et al. Immunologic self tolerance maintained by T-cell-mediated control of self-reactive T cells: implications for autoimmunity and tumor immunity. Microbes Infect 2001;3(11):911–8 ArticlePubMedCAS Google Scholar
Itoh M, Takahashi T, Sakaguchi N, et al. Thymus and autoimmunity: production of CD25+CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. J Immunol 1999;162(9):5317–26 PubMedCAS Google Scholar
Shevach EM CD4+CD25+ suppressor T cells: more questions than answers. Nat Rev Immunol 2002;2(6):389–400 PubMedCAS Google Scholar
Bacchetta R, Gregori S, Roncarolo MG CD4+ regulatory T cells: mechanisms of induction and effector function. Autoimmun Rev 2005;4(8):491–6 ArticlePubMed Google Scholar
Randolph DA, Fathman CG Cd4+Cd25+ regulatory T cells and their therapeutic potential. Annu Rev Med 2006;57:381–402 ArticlePubMedCAS Google Scholar
Fontenot JD, Gavin MA, Rudensky AY Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 2003;4(4):330–6 ArticlePubMedCAS Google Scholar
Hori S, Nomura T, Sakaguchi S Control of regulatory T cell development by the transcription factor Foxp3. Science 2003;299(5609):1057–61 ArticlePubMedCAS Google Scholar
Khattri R, Cox T, Yasayko SA, Ramsdell F An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol 2003;4(4):337–42 ArticlePubMedCAS Google Scholar
Yagi H, Nomura T, Nakamura K, et al. Crucial role of FOXP3 in the development and function of human CD25+CD4+ regulatory T cells. Int Immunol 2004;16(11):1643–56 ArticlePubMedCAS Google Scholar
Fontenot JD, Rudensky AY A well adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3. Nat Immunol 2005;6(4):331–7 ArticlePubMedCAS Google Scholar
Wood KJ, Sakaguchi S Regulatory T cells in transplantation tolerance. Nat Rev Immunol 2003;3(3):199–210 ArticlePubMedCAS Google Scholar
Zorn E, Kim HT, Lee SJ, et al. Reduced frequency of FOXP3+ CD4+CD25+ regulatory T cells in patients with chronic graft-versus-host disease. Blood 2005;106(8):2903–11 ArticlePubMedCAS Google Scholar
Wei WZ, Morris GP, Kong YC Anti-tumor immunity and autoimmunity: a balancing act of regulatory T cells. Cancer Immunol Immunother 2004;53(2):73–8 ArticlePubMedCAS Google Scholar
Loser K, Hansen W, Apelt J, Balkow S, Buer J, Beissert S In vitro-generated regulatory T cells induced by Foxp3-retrovirus infection control murine contact allergy and systemic autoimmunity. Gene Ther 2005;12(17):1294–304 ArticlePubMedCAS Google Scholar
Marinaki S, Neumann I, Kalsch AI, et al. Abnormalities of CD4 T cell subpopulations in ANCA-associated vasculitis. Clin Exp Immunol 2005;140(1):181–91 ArticlePubMedCAS Google Scholar
Yu P, Gregg RK, Bell JJ, et al. Specific T regulatory cells display broad suppressive functions against experimental allergic encephalomyelitis upon activation with cognate antigen. J Immunol 2005;174(11):6772–80 PubMedCAS Google Scholar
Dubois B, Chapat L, Goubier A, Papiernik M, Nicolas JF, Kaiserlian D Innate CD4+CD25+ regulatory T cells are required for oral tolerance and inhibition of CD8+ T cells mediating skin inflammation. Blood 2003;102(9):3295–301 ArticlePubMedCAS Google Scholar
Thorstenson KM, Khoruts A Generation of anergic and potentially immunoregulatory CD25+CD4 T cells in vivo after induction of peripheral tolerance with intravenous or oral antigen. J Immunol 2001;167(1):188–95 PubMedCAS Google Scholar
Hauet-Broere F, Unger WW, Garssen J, Hoijer MA, Kraal G, Samsom JN Functional CD25- and CD25+ mucosal regulatory T cells are induced in gut-draining lymphoid tissue within 48 h after oral antigen application. Eur J Immunol 2003;33(10):2801–10 ArticlePubMedCAS Google Scholar
Zhang X, Izikson L, Liu L, Weiner HL Activation of CD25(+)CD4(+) regulatory T cells by oral antigen administration. J Immunol 2001;167(8):4245–53 PubMedCAS Google Scholar
Karube K, Ohshima K, Tsuchiya T, et al. Expression of FoxP3, a key molecule in CD4CD25 regulatory T cells, in adult T-cell leukaemia/lymphoma cells. Br J Haematol 2004;126(1):81–4 ArticlePubMedCAS Google Scholar
Viguier M, Lemaitre F, Verola O, et al. Foxp3 expressing CD4+CD25(high) regulatory T cells are overrepresented in human metastatic melanoma lymph nodes and inhibit the function of infiltrating T cells. J Immunol 2004;173(2):1444–53 PubMedCAS Google Scholar
Berger CL, Tigelaar R, Cohen J, et al. Cutaneous T-cell lymphoma: malignant proliferation of T-regulatory cells. Blood 2005;105(4):1640–7 ArticlePubMedCAS Google Scholar
Ormandy LA, Hillemann T, Wedemeyer H, Manns MP, Greten TF, Korangy F Increased populations of regulatory T cells in peripheral blood of patients with hepatocellular carcinoma. Cancer Res 2005;65(6):2457–64 ArticlePubMedCAS Google Scholar
Unitt E, Rushbrook SM, Marshall A, et al. Compromised lymphocytes infiltrate hepatocellular carcinoma: the role of T-regulatory cells. Hepatology 2005;41(4):722–30 ArticlePubMedCAS Google Scholar
Beyer M, Kochanek M, Darabi K, et al. Reduced frequencies and suppressive function of CD4+CD25hi regulatory T cells in patients with chronic lymphocytic leukemia after therapy with fludarabine. Blood 2005;106(6):2018–25 ArticlePubMedCAS Google Scholar
Sharma S, Yang SC, Zhu L, et al. Tumor cyclooxygenase-2/prostaglandin E2-dependent promotion of FOXP3 expression and CD4+ CD25+ T regulatory cell activities in lung cancer. Cancer Res 2005;65(12):5211–20 ArticlePubMedCAS Google Scholar
Brunkow ME, Jeffery EW, Hjerrild KA, et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 2001;27(1):68–73 ArticlePubMedCAS Google Scholar
Bindl L, Torgerson T, Perroni L, et al. Successful use of the new immune-suppressor sirolimus in IPEX (immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome). J Pediatr 2005;147(2):256–9 ArticlePubMed Google Scholar
Mazzolari E, Forino C, Fontana M, et al. A new case of IPEX receiving bone marrow transplantation. Bone Marrow Transplant 2005;35(10):1033–4 ArticlePubMedCAS Google Scholar
Rao A, Kamani N, Filipovich A, et al. Successful bone marrow transplantation for IPEX syndrome after reduced intensity conditioning. Blood 2007;109(1):383–5 ArticlePubMedCAS Google Scholar