Regulatory T cells in transplantation tolerance (original) (raw)
Bach, J. -F. Regulatory T cells under scrutiny. Nature Rev. Immunol.3, 189–198 (2003). ArticleCAS Google Scholar
Wells, A., Li, X., Strom, T. & Turka, L. The role of peripheral T-cell deletion in transplantation tolerance. Philos Trans R Soc Lond B Biol Sci356, 617–623 (2001). ArticleCASPubMedPubMed Central Google Scholar
Wood, K. J., Jones, N., Bushell, A. & Morris, P. J. Alloantigen-induced specific immunological unresponsiveness. Philos Trans R Soc Lond B Biol Sci356, 665–680 (2001). ArticleCASPubMedPubMed Central Google Scholar
Kilshaw, P., Brent, L. & Pinto, M. Suppressor T cells in mice made unresponsive to skin allografts. Nature255, 489–491 (1975). ArticleCASPubMed Google Scholar
Hutchinson, I. V. Suppressor T cells in allogeneic models. Transplantation41, 547–555 (1986). ArticleCASPubMed Google Scholar
Gilliet, M. & Liu, Y. -J. Generation of human CD8 T regulatory cells by CD40 ligand-activated plasmacytoid dendritic cells. J. Exp. Med.195, 695–704 (2002). ArticleCASPubMedPubMed Central Google Scholar
Zhou, J., Carr, R. I., Liwski, R. S., Stadnyk, A. W. & Lee, G. T. D. Oral exposure to alloantigen generates intragraft CD8+ regulatory cells. J. Immunol.167, 107–113 (2001). ArticleCASPubMed Google Scholar
Ciubotariu, R. et al. Specific suppression of human CD4+ TH-cell responses to pig MHC antigens by CD8+CD28− regulatory T cells. J. Immunol.161, 5193–5202 (1998). CASPubMed Google Scholar
Zhang, Z., Yang, L., Young, K., DuTemple, B. & Zhang, L. Identification of a previously unknown antigen-specific regulatory T cell and its mechanism of suppression. Nature Med.6, 782–789 (2000). ArticleCASPubMed Google Scholar
Zeng, D. et al. Bone marrow NK1.1− and NK 1.1+ T cells reciprocally regulate acute graft-versus-host disease. Blood99, 1449–1457 (1999). Article Google Scholar
Seino, K. -I. et al. Requirement for natural killer T (NKT) cells in the induction of allograft tolerance. Proc. Natl Acad. Sci. USA98, 2577–2581 (2001). ArticleCASPubMedPubMed Central Google Scholar
Taylor, P., Noelle, R. J. & Blazar, B. R. CD4+CD25+ immune regulatory cells are required for induction of tolerance to alloantigen via costimulatory blockade. J. Exp. Med.193, 1311–1318 (2001). ArticleCASPubMedPubMed Central Google Scholar
Hoffmann, P., Ermann, J., Edinger, M., Fathman, C. G. & Strober, S. Donor-type CD4+CD25+ regulatory T cells suppress lethal acute graft-versus-host disease after allogeneic bone marrow transplantation. J. Exp. Med.196, 389–399 (2002). ArticleCASPubMedPubMed Central Google Scholar
Cohen, J. L., Trenado, A., Vasey, D., Klatzmann, D. & Salomon, B. L. CD4+CD25+ immunoregulatory T cells: new therapeutics for graft-versus-host disease. J. Exp. Med.196, 401–406 (2002). ArticleCASPubMedPubMed Central Google Scholar
Chambers, C. A. et al. The lymphoproliferative defect in CTLA-4-deficient mice is ameliorated by an inhibitory NK-cell receptor. Blood99, 4509–4516 (2002). ArticleCASPubMed Google Scholar
Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. & Toda, M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol.155, 1151–1164 (1995). This paper showed that the removal of CD4+CD25+ T cells from normal mice results in the spontaneous development of various autoimmune diseases. This indicates that naturally occurring regulatory T (TReg) cells have an important role in the maintenance of self-tolerance. CASPubMed Google Scholar
Hall, B., Pearce, N., Gurley, K. & Dorsch, S. Specific unresponsiveness in rats with prolonged cardiac allograft survival after treatment with cyclosporine. III. Further characterisation of the CD4+ suppressor cell and its mechanism of action. J. Exp. Med.171, 141–157 (1990). ArticleCASPubMed Google Scholar
Hara, M. et al. IL-10 is required for regulatory T cells to mediate tolerance to alloantigens in vivo. J. Immunol.166, 3789–3796 (2001). A demonstration that common mechanisms are used by alloantigen-specific and naturally occurring TRegcells to maintain tolerancein vivo. ArticleCASPubMed Google Scholar
Kingsley, C. I., Karim, M., Bushell, A. R. & Wood, K. J. CD25+CD4+ regulatory T cells prevent graft rejection: CTLA-4- and IL-10-dependent immunoregulation of alloresponses. J. Immunol.168, 1080–1086 (2002). ArticleCASPubMed Google Scholar
Sanchez-Fueyo, A., Weber, M., Domenig, C., Strom, T. & Zheng, X. Tracking immunoregulatory mechanisms during allograft tolerance. J. Immunol.168, 2274–2281 (2002). ArticleCASPubMed Google Scholar
Graca, L. et al. Both CD4+CD25+ and CD4+CD25− regulatory cells mediate dominant transplantation tolerance. J. Immunol.168, 5558–5565 (2002). ArticleCASPubMed Google Scholar
Baecher-Allan, C., Brown, J., Freeman, G. & Hafler, D. CD4+CD25+ high regulatory cells in human peripheral blood. J. Immunol.167, 1245–1253 (2001). ArticleCASPubMed Google Scholar
Levings, M., Sangregorio, R. & Roncarolo, M. -G. Human CD25+CD4+ T regulatory cells suppress naive and memory T-cell proliferation and can be expanded in vitro without loss of function. J. Exp. Med.193, 1295–1301 (2001). ArticleCASPubMedPubMed Central Google Scholar
Jonuleit, H., Schmidtt, E., Stassen, M., Tuettenberg, A., Knop, J. & Enk, A. H. Identification and functional characterisation of human CD4+CD25+ T cells with regulatory properties isolated from peripheral blood. J. Exp. Med.139, 1285–1294 (2001). Article Google Scholar
Ng, W. F. et al. Human CD4+CD25+ cells: a naturally occurring population of regulatory T cells. Blood98, 2736–2744 (2001). ArticleCASPubMed Google Scholar
Stephens, L., Mottet, C., Mason, D. & Powrie, F. Human CD4+CD25+ thymocytes and peripheral T cells have immune suppressive activity in vitro. Eur. J. Immunol.31, 1247–1254 (2001). ArticleCASPubMed Google Scholar
Taams, L. et al. Human anergic/suppressive CD4+CD25+ T cells: a highly differentiated and apoptosis-prone population. Eur. J. Immunol.31, 1122–1131 (2001). ArticleCASPubMed Google Scholar
Waldmann, T. A. Immune receptors: targets for therapy of leukemia/lymphoma, autoimmune diseases and for the prevention of allograft rejection. Annu. Rev. Immunol.10, 675–704 (1992). References 24–30 show that CD4+CD25+ TRegcells are present in humans. ArticleCASPubMed Google Scholar
Vincenti, F. Interleukin-2 receptor monoclonal antibodies in renal transplantation: current use and emerging regimens. Transplant. Proc.33, 3169–3171 (2001). ArticleCASPubMed Google Scholar
Kuniyasu, Y. et al. Naturally anergic and suppressive CD25+CD4+ T cells as a functionally and phenotypically distinct immunoregulatory T-cell subpopulation. Int. Immunol.12, 1145–1155 (2000). ArticleCASPubMed Google Scholar
Stephens, L. & Mason, D. CD25 is a marker for CD4+ thymocytes that prevent autoimmune diabetes in rats, but peripheral T cells with this function are found in both CD25+ and CD25− subpopulations. J. Immunol.165, 3105–3110 (2000). ArticleCASPubMed Google Scholar
Herold, K. et al. Anti-CD3 monoclonal antibody in new onset type 1 diabetes mellitus. N. Engl. J. Med.346, 1740–1742 (2002). A clinical study showing that therapy with CD3-specific monoclonal antibodies has the potential to control the progression of diabetes. Article Google Scholar
Shoskes, D. & Wood, K. Indirect presentation of MHC antigens in transplantation. Immunol. Today15, 1–7 (1994). Article Google Scholar
Lechler, R. I. & Batchelor, J. R. Restoration of immunogenicity to passenger cell-depleted kidney allografts by the addition of donor-strain dendritic cells. J. Exp. Med.155, 31–41 (1982). ArticleCASPubMed Google Scholar
Auchincloss, H. et al. The role of 'indirect' recognition in initiating rejection of skin grafts from major histocompatibility complex class-II-deficient mice. Proc. Natl Acad. Sci. USA90, 3373–3377 (1993). ArticleCASPubMedPubMed Central Google Scholar
Wise, M. P., Bemelman, F., Cobbold, S. P. & Waldmann, H. Linked suppression of skin graft rejection can operate through indirect recognition. J. Immunol.161, 5813–5816 (1998). CASPubMed Google Scholar
Yamada, A. et al. Cutting edge: recipient MHC class II expression is required to achieve long-term survival of murine cardiac allografts after costimulatory blockade. J. Immunol.167, 5522–5526 (2001). An elegant demonstration that the indirect pathway of allorecognition is required for long-term allograft survival. ArticleCASPubMed Google Scholar
Blancho, G. et al. Molecular and cellular events implicated in local tolerance to kidney allografts in miniature swine. Transplantation63, 26–33 (1997). ArticleCASPubMed Google Scholar
Sayegh, M. H., Khoury, S., Hancock, W., Weiner, H. & Carpenter, C. Induction of immunity and oral tolerance with polymorphic class II major histocompatibility complex allopeptides in the rat. Proc. Natl Acad. Sci. USA89, 7762–7766 (1992). ArticleCASPubMedPubMed Central Google Scholar
Niimi, M. et al. Non-depleting anti-CD4 antibody enhances the ability of oral alloantigen delivery to induce indefinite survival of cardiac allografts. Transplantation70, 1524–1548 (2000). ArticleCASPubMed Google Scholar
Lagaaij, E. L. et al. Effect of one-HLA-DR antigen-matched and completely HLA-DR-mismatched blood transfusions on survival of heart and kidney allografts. N. Engl. J. Med.321, 701–705 (1989). ArticleCASPubMed Google Scholar
Claas, F., de Koster, H. & van Rood, J. A molecular mechanism of T-cell downregulation by blood transfusion. Exp. Nephrol.1, 134–138 (1993). CASPubMed Google Scholar
Sakaguchi, S. et al. Immunologic tolerance maintained by CD25+CD4+ regulatory T cells: their common role in controlling autoimmunity, tumour immunity and transplantation tolerance. Immunol. Rev.182, 18–32 (2001). ArticleCASPubMed Google Scholar
van Maurik, A., Wood, K. J. & Jones, N. Impact of both donor and recipient strains on cardiac allograft survival after blockade of the CD40–CD154 costimulatory pathway. Transplantation74, 740–743 (2002). ArticleCASPubMed Google Scholar
Honey, K., Cobbold, S. & Waldmann, H. CD40 ligand blockade induces CD4+ T-cell tolerance and linked suppression. J. Immunol.163, 4805–4810 (1999). CASPubMed Google Scholar
Trambley, J. et al. Asialo GM1+CD8+ T cells play a critical role in costimulation blockade-resistant allograft rejection. J. Clin. Invest.104, 1715–1722 (1999). ArticleCASPubMedPubMed Central Google Scholar
Jones, N. et al. CD40–CD40L-independent activation of CD8+ T cells can trigger allograft rejection. J. Immunol.165, 1111–1118 (2000). ArticleCASPubMed Google Scholar
Ensminger, S. et al. CD8+ T cells contribute to the development of transplant ateriosclerosis despite CD154 blockade. Transplantation69, 2609–2612 (2000). ArticleCASPubMed Google Scholar
van Maurik, A., Wood, K. J. & Jones, N. Cutting edge: CD4+CD25+ alloantigen-specific immunoregulatory cells that can prevent CD8+ T-cell-mediated graft rejection: implications for anti-CD154 immunotherapy. J. Immunol.169, 5401–5404 (2002). ArticleCASPubMed Google Scholar
Lin, C. -Y., Graca, L., Cobbold, S. P. & Waldmann, H. Dominant transplantation tolerance impairs CD8+ T-cell function but not expansion. Nature Immunol.3, 1208–1213 (2002). References 51 and 52 show that CD4+CD25+ TRegcells can prevent graft rejection by impairing the function of CD8+ T cells. ArticleCAS Google Scholar
Piccirillo, C. & Shevach, E. M. Cutting edge: control of CD8+ T-cell activation by CD4+CD25+ immunoregulatory cells. J. Immunol.167, 1137–1140 (2001). ArticleCASPubMed Google Scholar
Cederbom, L., Hall, H. & Ivars, F. CD4+CD25+ regulatory T cells down-regulate costimulatory molecules on antigen-presenting cells. Eur. J. Immunol.30, 1538–1543 (2000). ArticleCASPubMed Google Scholar
Jonuleit, H. et al. Infectious tolerance: human CD25+ regulatory T cells convey suppressor activity to conventional CD4+ T helper cells. J. Exp. Med.196, 255–260 (2002). ArticleCASPubMedPubMed Central Google Scholar
Dieckmann, D., Bruett, C. H., Ploettner, H., Lutz, M. B. & Schuler, G. Human CD4+CD25+ regulatory, contact-dependent T cells induce interleukin-10-producing, contact-independent type 1-like regulatory T cells. J. Exp. Med.196, 247–253 (2002). ArticleCASPubMedPubMed Central Google Scholar
Onodera, K. et al. Type 2 helper T cell-type cytokines and the development of 'infectious' tolerance in rat cardiac allograft recipients. J. Immunol.158, 1572–1581 (1997). CASPubMed Google Scholar
Madsen, J. C., Superina, R. A., Wood, K. J. & Morris, P. J. Immunological unresponsiveness induced by recipient cells transfected with donor MHC genes. Nature332, 161–164 (1988). Exposure to a single donor alloantigen is sufficient to induce specific unresponsiveness to a fully allogeneic graft, which provides evidence for linked unresponsiveness. ArticleCASPubMed Google Scholar
Saitovitch, D., Morris, P. & Wood, K. Recipient cells expressing single donor MHC locus products can substitute for donor-specific transfusions in the induction of transplantation tolerance when pretreatment is combined with anti-CD4 monoclonal antibody: evidence for a vital role of CD4+ T cells in the induction of tolerance to class I molecules. Transplantation61, 1532–1538 (1996). ArticleCASPubMed Google Scholar
Wong, W., Morris, P. & Wood, K. Pretransplant administration of a single donor class I MHC molecule is sufficient for the indefinite survival of fully allogeneic cardiac allografts: evidence for linked epitope suppression. Transplantation63, 1490–1494 (1997). ArticleCASPubMed Google Scholar
Davies, J. D., Leong, L. Y., Mellor, A., Cobbold, S. P. & Waldmann, H. T-cell suppression in transplantation tolerance through linked recognition. J. Immunol.156, 3602–3607 (1996). CASPubMed Google Scholar
Sonntag, K. -C. et al. Tolerance to solid organ transplants through transfer of MHC class II genes. J. Clin. Invest.107, 65–71 (2001). ArticleCASPubMedPubMed Central Google Scholar
Takahashi, T. et al. Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int. Immunol.10, 1969–1980 (1998). ArticleCASPubMed Google Scholar
Thornton, A. & Shevach, E. M. Suppressor effector function of CD4+CD25+ immunoregulatory T cells is antigen non-specific. J. Immunol.164, 183–190 (2000). ArticleCASPubMed Google Scholar
Graca, L., Cobbold, S. P. & Waldmann, H. Identification of regulatory T cells in tolerated allografts. J. Exp. Med.195, 1641–1646 (2002). This study provides evidence for TRegcells in transplants. ArticleCASPubMedPubMed Central Google Scholar
Zelenika, D. et al. Regulatory T cells overexpress a subset of TH2 gene transcripts. J. Immunol.168, 1069–1079 (2002). ArticleCASPubMed Google Scholar
Iellem, A. et al. Unique chemotactic response profile and specific expression of chemokine receptors CCR4 and CCR8 by CD4+CD25+ regulatory T cells. J. Exp. Med.194, 847–854 (2001). ArticleCASPubMedPubMed Central Google Scholar
Annunziato, F. et al. Phenotype, localization and mechanism of suppression of CD4+CD25+ human thymocytes. J. Exp. Med.196, 379–387 (2002). ArticleCASPubMedPubMed Central Google Scholar
Bystry, R., Aluvihare, V., Welch, K., Kallikourdis, M. & Betz, A. B cells and professional APCs recruit regulatory T cells. Nature Immunol.2, 1126–1132 (2001). ArticleCAS Google Scholar
Sawitzki, B. et al. Gene expression associated with tolerance and rejection — expression kinetics in different transplant models. Transplantation74, S244 (2002). Google Scholar
Mason, D. A very high level of crossreactivity is an essential feature of the T-cell receptor. Immunol. Today19, 395–404 (1998). ArticleCASPubMed Google Scholar
Itoh, M. et al. Thymus and autoimmunity: production of CD25+CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self tolerance. J. Immunol.162, 5317–5326 (1999). A demonstration that the normal thymus continuously produces CD4+CD25+ TRegcells that are functionally and phenotypically similar to those in the periphery. These data indicate that thymic production of TRegcells is another important contribution of the thymus to the maintenance of self-tolerance. CASPubMed Google Scholar
Sakaguchi, S. et al. in Novartis Foundation Symposium 252. Generation and Effector Functions of Regulatory Lymphocytes (Wiley, Europe) (in the press).
Mogdigliani, Y. Establishment of tissue-specific tolerance is driven by regulatory T cells selected by thymic epithelium. Eur. J. Immunol.26, 1807–1815 (1996). Article Google Scholar
Apostolou, I., Sarukhan, A., Klein, L. & von Boehmer, H. Origin of regulatory T cells with known specificity for antigen. Nature Immunol.3, 756–763 (2002). ArticleCAS Google Scholar
Taams, L. et al. Antigen-specific T-cell suppression by human CD4+CD25+ regulatory T cells. Eur. J. Immunol.32, 1621–1630 (2002). ArticleCASPubMed Google Scholar
Hamano, K., Rawsthorne, M., Bushell, A., Morris, P. & Wood, K. Evidence that the continued presence of the organ graft and not peripheral donor microchimerism is essential for the maintenance of tolerance to alloantigen in anti-CD4-treated recipients. Transplantation62, 856–860 (1996). ArticleCASPubMed Google Scholar
Karim, M., Steger, U., Bushell, A. & Wood, K. J. The role of the graft in establishing tolerance. Front Biosci7, 129–154 (2002). Article Google Scholar
Konieczny, B. et al. IFN-γ is critical for long-term allograft survival induced by blocking the CD28 and CD40 ligand T-cell costimulation pathways. J. Immunol.160, 2059–2064 (1998). CASPubMed Google Scholar
Papiernik, M., de Moreas, M., Pontoux, C., Vasseur, F. & Penit, C. Regulatory CD4 T cells: expression of IL-2R α-chain, resistance to clonal deletion and IL-2 dependency. Int. Immunol.10, 371–378 (1998). ArticleCASPubMed Google Scholar
Larsen, P. et al. Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways. Nature381, 434–438 (1996). ArticleCASPubMed Google Scholar
Kirk, A. et al. Treatment with humanised monoclonal antibody against CD154 prevents acute renal allograft rejection in nonhuman primates. Nature Med.5, 686–693 (1999). ArticleCASPubMed Google Scholar
Shimizu, J., Yamazaki, S., Takahashi, T., Ishida, Y. & Sakaguchi, S. Stimulation of CD25+CD4+ regulatory T cells through GITR breaks immunological self-tolerance. Nature Immunol.3, 135–142 (2002). Together with reference 101, this study provides the first demonstration that GITR has a crucial role in the function of naturally occurring TRegcells. ArticleCAS Google Scholar
Asseman, C., Mauze, S., Leach, M., Coffman, R. & Powrie, F. An essential role for interleukin-10 in the function of regulatory T cells which inhibit intestinal inflammation. J. Exp. Med.190, 995–1004 (1999). ArticleCASPubMedPubMed Central Google Scholar
Josien, R. et al. A critical role for transforming growth factor-β in donor transfusion-induced allograft tolerance. J. Clin. Invest.102, 1920–1926 (1998). ArticleCASPubMedPubMed Central Google Scholar
Bickerstaff, A., VanBuskirk, A., Wakely, E. & Orosz, G. Transforming growth factor-β and interleukin-10 subvert delayed-type hypersensitivity in cardiac allograft acceptor mice. Transplantation69, 1517–1520 (2000). ArticleCASPubMed Google Scholar
Powrie, F., Carlino, J., Leach, M. W., Mauze, S. & Coffman, R. L. A critical role for transforming growth factor-β but not interleukin-4 in the suppression of T helper type 1-mediated colitis by CD45RBlow CD4+ T cells. J. Exp. Med.183, 2669–2674 (1996). ArticleCASPubMed Google Scholar
Nakamura, K., Kitani, A. & Strober, W. Cell contact-dependent immunosuppression by CD4+CD25+ regulatory T cells is mediated by cell surface-bound transforming growth factor-β. J. Exp. Med.194, 629–644 (2001). ArticleCASPubMedPubMed Central Google Scholar
Thornton, A. & Shevach, E. CD4+CD25+ immunoregulatory T cells suppress polyclonal activation by inhibiting interleukin-2 production. J. Exp. Med.188, 287–296 (1998). ArticleCASPubMedPubMed Central Google Scholar
Piccirillo, C. A. et al. CD4+CD25+ regulatory T cells can mediate suppressor function in the absence of transforming growth factor-β1 production and responsiveness. J. Exp. Med.196, 237–246 (2002). ArticleCASPubMedPubMed Central Google Scholar
Sullivan, T. J. et al. Lack of a role for transforming growth factor-β in cytotoxic T lymphocyte antigen-4-mediated inhibition of T-cell activation. Proc. Natl. Acad. Sci. USA98, 2587–2592 (2001). ArticleCASPubMedPubMed Central Google Scholar
Walunas, T. et al. CTLA-4 can function as a negative regulator of T-cell activation. Immunity1, 405–413 (1994). ArticleCASPubMed Google Scholar
Waterhouse, P. et al. Lymphoproliferative disorders with early lethality in mice deficient in CTLA-4. Science270, 985–988 (1995). ArticleCASPubMed Google Scholar
Takahashi, T. et al. Immunologic self-tolerance is maintained by CD25+CD4+ regulatory T cells constitutively expressing cytotoxic T-lymphocyte-associated antigen 4. J. Exp. Med.192, 303–310 (2000). ArticleCASPubMedPubMed Central Google Scholar
Read, S., Malmstrom, V. & Powrie, F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25+CD4+ regulatory cells that control intestinal inflammation. J. Exp. Med.192, 295–302 (2000). ArticleCASPubMedPubMed Central Google Scholar
Salomon, B. & Bluestone, J. Complexities of CD28/B7: CTLA-4 costimulatory pathways in autoimmunity and transplantation. Annu. Rev. Immunol.19, 225–252 (2001). ArticleCASPubMed Google Scholar
Dieckmann, D., Plottner, H., Berchtold, S., Berger, T. & Schuler, G. Ex vivo isolation and characterisation of CD4+CD25+ T cells with regulatory properties from human blood. J. Exp. Med.139, 1303–1310 (2001). Article Google Scholar
Salomon, B. et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune disease. Immunity12, 431–440 (2000). ArticleCASPubMed Google Scholar
Liu, Z. et al. B7 interactions with CD28 and CTLA-4 control tolerance or induction of mucosal inflammation in chronic experimental colitis. J. Immunol.167, 1830–1838 (2001). ArticleCASPubMed Google Scholar
McHugh, R. S. et al. CD4+CD25+ immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity16, 311–323 (2002). ArticleCASPubMed Google Scholar
Wood, K. J. et al. in Novartis Foundation Symposium 252. Generation and Effector Functions of Regulatory Lymphocytes (Wiley, Europe) (in the press).
Taams, L., Boot, E., van Eden, W. & Wauben, M. 'Anergic' T cells modulate the T-cell-activating capacity of antigen-presenting cells. J. Autoimmun.14, 335–341 (2000). ArticleCASPubMed Google Scholar
Frasca, L., Scotta, C., Lombardi, G. & Piccolella, E. Human anergic CD4+ T cells can act as suppressor cells by affecting autologous dendritic-cell conditioning and survival. J. Immunol.168, 1060–1068 (2002). ArticleCASPubMed Google Scholar
Gregori, S. et al. Regulatory T cells induced by 1α,25-dihydroxyvitamin D3 and mycophenolate mofetil treatment mediate transplantation tolerance. J. Immunol.167, 1945–1953 (2001). ArticleCASPubMed Google Scholar
Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T-cell development by transcription factor FOXP3. Science (in the press).
Ho, I. & Glimcher, L. H. Transcription factors: tantalizing times for T cells. Cell109, S109–S120 (2003). Article Google Scholar
Wildin, R., Smyk-Pearson, S. & Filipovich, H. Clinical and molecular features of the immunodysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome. J. Med. Genet.39, 537–545 (2002). ArticleCASPubMedPubMed Central Google Scholar
Brunkow, M. E. et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nature Genet.27, 68–73 (2001). ArticleCASPubMed Google Scholar
Furtado, G. C., de Lafaille, M. A. C., Kutchukhidze, N. & Lafaille, J. J. Interleukin-2 signaling is required for CD4+ regulatory T-cell function. J. Exp. Med.196, 851–857 (2002). ArticleCASPubMedPubMed Central Google Scholar
Wells, A. et al. Requirement for T-cell apoptosis in the induction of peripheral transplantation tolerance. Nature Med.5, 1303–1307 (1999). ArticleCASPubMed Google Scholar
Li, Y. et al. Blocking both signal 1 and signal 2 of T-cell activation prevents apoptosis of alloreactive T cells and induction of peripheral allograft tolerance. Nature Med.5, 1298–1302 (1999). ArticleCASPubMed Google Scholar
Opelz, G. Efficacy of rejection prophylaxis with OKT3 in renal transplantation. Collaborative transplant study. Transplantation60, 1220–1224 (1995). ArticleCASPubMed Google Scholar
Calne, R. et al. Prope tolerance, perioperative Campath 1H, and low-dose cyclosporin monotherapy in renal allograft recipients. Lancet351, 1701–1702 (1998). ArticleCASPubMed Google Scholar
Takatsuki, M. et al. Weaning of immunosuppression in living donor liver transplant recipients. Transplantation72, 449–454 (2001). ArticleCASPubMed Google Scholar
Kupiec-Weglinski, J. W., Filho, M., Strom, T. & Tilney, N. Sparing of suppressor cells: a critical action of cyclosporine. Transplantation38, 97–101 (1984). ArticleCASPubMed Google Scholar
Jones, T. R. et al. The role of the IL-2 pathway in costimulation blockade-resistant rejection of allografts. J. Immunol.168, 1123–1130 (2002). ArticleCASPubMed Google Scholar
Yamagiwa, S., Gray, J., Hashimoto, S. & Horwitz, D. A role of TGF-β in the generation and expansion of CD4+CD25+ regulatory T cells from human peripheral blood. J. Immunol.166, 7282–7289 (2001). ArticleCASPubMed Google Scholar
Barrat, F. J. et al. In vitro generation of interleukin-10-producing regulatory CD4+ T cells is induced by immunosuppressive drugs and inhibited by T helper type 1 (TH1)- and TH2-inducing cytokines. J. Exp. Med.195, 603–616 (2002). ArticleCASPubMedPubMed Central Google Scholar
Taylor, A. & Namba, K. In vitro induction of CD25+CD4+ regulatory T cells by the neuropeptide α-melanocyte stimulating hormone (α-MSH). Immunol. Cell Biol.79, 358–367 (2001). ArticleCASPubMed Google Scholar
Taylor, P. A., Lees, C. J. & Blazar, B. R. The infusion of _ex vivo_-activated and expanded CD4+CD25+ immune regulatory cells inhibits graft-versus-host disease lethality. Blood99, 3493–3499 (2002). ArticleCASPubMed Google Scholar
Arnold, B., Schonrich, G. & Hammerling, G. J. Multiple levels of peripheral tolerance. Immunol. Today14, 12–14 (1993). ArticleCASPubMed Google Scholar
Scully, R., Qin, S., Cobbold, S. & Waldmann, H. Mechanisms in CD4 antibody-mediated transplantation tolerance: kinetics of induction, antigen dependency and role of regulatory T cells. Eur. J. Immunol.24, 2383–2392 (1994). ArticleCASPubMed Google Scholar
Hamano, K., Fujikura, Y., Fukada, S., Esato, K. & Fukumoto, T. The effect of intrathymic injection of donor blood on the graft-versus-host reaction and cardiac allograft survival in the rat. Immunol. Cell Biol.69, 185–189 (1991). ArticlePubMed Google Scholar
Khan, A., Tomita, Y. & Sykes, M. Thymic dependence of loss of tolerance in mixed allogeneic bone-marrow chimeras after depletion of donor antigen. Transplantation62, 380–387 (1996). ArticleCASPubMed Google Scholar
Manilay, J., Pearson, D., Sergio, J., Swenson, K. & Sykes, M. Intrathymic deletion of alloreactive T cells in mixed bone-marrow chimeras prepared with a nonmyeloablative conditioning regime. Transplantation66, 96–102 (1998). ArticleCASPubMed Google Scholar
Lombardi, G., Sidhu, S., Batchelor, R. & Lechler, R. Anergic T cells as suppressor cells in vitro. Science264, 1587–1589 (1994). ArticleCASPubMed Google Scholar
Bishop, G., Sun, J., Sheil, A. & McCaughan, G. High dose/activation-associated tolerance: a mechanism for allograft tolerance. Transplantation64, 1377–1382 (1997). ArticleCASPubMed Google Scholar
Lee, W. T., Yin, X. M. & Vitetta, E. S. Functional and ontogenetic analysis of murine CD45Rhi and CD45Rlo CD4+ T cells. J. Immunol.144, 3288–3295 (1990). CASPubMed Google Scholar
Powrie, F., Leach, M. W., Mauze, S., Caddle, L. B. & Coffman, R. L. Phenotypically distinct subsets of CD4+ T cells induce or protect from chronic intestinal inflammation in CB-17 scid mice. Int. Immunol.5, 1461–1471 (1993). ArticleCASPubMed Google Scholar
Morrissey, P., Charrier, K., Braddy, S., Liggitt, D. & Watson, J. CD4+ T cells that express high levels of CD45RB induce wasting disease when transferred into congenic severe combined immunodeficient mice. Disease development is prevented by co-transfer of CD4+ T cells. J. Exp. Med.178, 237–244 (1993). ArticleCASPubMed Google Scholar
Davies, J. et al. CD4+CD45RBlow-density cells from untreated mice prevent acute allograft rejection. J. Immunol.163, 5353–5357 (1999). CASPubMed Google Scholar
Linsley, P. S. et al. CTLA-4 is a second receptor for the B-cell activation antigen B7. J. Exp. Med.174, 561–569 (1991). ArticleCASPubMed Google Scholar
Linsley, P. S. & Ledbetter, J. A. The role of the CD28 receptor during T-cell responses to antigen. Annu. Rev. Immunol.11, 191–212 (1993). ArticleCASPubMed Google Scholar
Engen, J. & Allison, J. Cytotoxic T lymphocyte antigen-4 accumulation in the immunological synapse is regulated by TCR signal strength. Immunity16, 23–35 (2002). Article Google Scholar
Nocentini, G. et al. A new member of the tumour-necrosis factor/nerve growth factor receptor family inhibits T-cell receptor-induced apoptosis. Proc. Natl Acad. Sci. USA94, 6216–6221 (1997). ArticleCASPubMedPubMed Central Google Scholar
Gavin, M., Clarke, S., Negrou, E., Gallegos, A. & Rudensky, A. Homeostasis and anergy of CD4+CD25+ suppressor cells in vivo. Nature Immunol.3, 33–41 (2002). ArticleCAS Google Scholar
Lehmann, J. et al. Expression of the integrin αEβ7 identifies unique subsets of CD25+ as well as CD25− regulatory T cells. Proc. Natl Acad. Sci. USA99, 13031–13036 (2002). ArticleCASPubMedPubMed Central Google Scholar