Statins and adhesion molecules: a review of a novel pleiotropic property of statins (original) (raw)
Tvaroška I, Selvaraj C, Koča J. Selectins—the two Dr. Jekyll and Mr. Hyde faces of adhesion molecules—a review. Molecules. 2020;25(12):2835. ArticlePubMedPubMed Central Google Scholar
Mosevoll KA, Johansen S, Wendelbo Ø, Nepstad I, Bruserud Ø, Reikvam H. Cytokines, adhesion molecules, and matrix metalloproteases as predisposing, diagnostic, and prognostic factors in venous thrombosis. Front Med. 2018;5: 147. Article Google Scholar
Harjunpää H, Llort Asens M, Guenther C, Fagerholm SC. Cell adhesion molecules and their roles and regulation in the immune and tumor microenvironment. Front Immunol. 2019;10: 1078. ArticlePubMedPubMed Central Google Scholar
Dehnavi S, Kiani A, Sadeghi M, Biregani AF, Banach M, Atkin SL, et al. Targeting AMPK by statins: a potential therapeutic approach. Drugs. 2021;81(8):923–33.
Koushki K, Shahbaz SK, Mashayekhi K, Sadeghi M, Zayeri ZD, Taba MY, et al. Anti-inflammatory action of statins in cardiovascular disease: the role of inflammasome and toll-like receptor pathways. Clin Rev Allergy Immunol. 2021;60(2):175–99. ArticleCASPubMed Google Scholar
Bedi O, Dhawan V, Sharma P, Kumar P. Pleiotropic effects of statins: new therapeutic targets in drug design. Naunyn Schmiedebergs Arch Pharmacol. 2016;389(7):695–712. ArticleCASPubMed Google Scholar
Liao J, Duan Y, Liu Y, Chen H, An Z, Chen Y, et al. Simvastatin alleviates glymphatic system damage via the VEGF-C/VEGFR3/PI3K-Akt pathway after experimental intracerebral hemorrhage. Brain Res Bull. 2024;216: 111045. ArticleCASPubMed Google Scholar
Dehnavi S, Sohrabi N, Sadeghi M, Lansberg P, Banach M, Al-Rasadi K, et al. Statins and autoimmunity: state-of-the-art. Pharmacol Ther. 2020;214: 107614. ArticleCASPubMed Google Scholar
Kandelouei T, Abbasifard M, Imani D, Aslani S, Razi B, Fasihi M, et al. Effect of statins on serum level of hs-CRP and CRP in patients with cardiovascular diseases: a systematic review and meta-analysis of randomized controlled trials. Mediators Inflamm. 2022;2022:8732360. ArticlePubMedPubMed Central Google Scholar
Weitz-Schmidt G, Welzenbach K, Brinkmann V, Kamata T, Kallen J, Bruns C, et al. Statins selectively inhibit leukocyte function antigen-1 by binding to a novel regulatory integrin site. Nat Med. 2001;7(6):687–92. ArticleCASPubMed Google Scholar
Arefieva T, Filatova AY, Potekhina A, Shchinova A. Immunotropic effects and proposed mechanism of action for 3-hydroxy-3-methylglutaryl-coenzyme a reductase inhibitors (statins). Biochem Mosc. 2018;83(8):874–89. ArticleCAS Google Scholar
Murphy C, Deplazes E, Cranfield CG, Garcia A. The role of structure and biophysical properties in the pleiotropic effects of statins. Int J Mol Sci. 2020;21(22): 8745. ArticleCASPubMedPubMed Central Google Scholar
Istvan ES, Deisenhofer J. Structural mechanism for statin inhibition of HMG-CoA reductase. Science. 2001;292(5519):1160–4. ArticleCASPubMed Google Scholar
Barrios-González J, Miranda RU. Biotechnological production and applications of statins. Appl Microbiol Biotechnol. 2010;85(4):869–83. ArticlePubMed Google Scholar
Gazzerro P, Proto MC, Gangemi G, Malfitano AM, Ciaglia E, Pisanti S, et al. Pharmacological actions of statins: a critical appraisal in the management of cancer. Pharmacol Rev. 2012;64(1):102–46. ArticleCASPubMed Google Scholar
Shahbaz SK, Sadeghi M, Koushki K, Penson PE, Sahebkar A. Regulatory T cells: possible mediators for the anti-inflammatory action of statins. Pharmacol Res. 2019;149: 104469. ArticleCASPubMed Google Scholar
Mohammadkhani N, Gharbi S, Rajani HF, Farzaneh A, Mahjoob G, Hoseinsalari A, et al. Statins: complex outcomes but increasingly helpful treatment options for patients. Eur J Pharmacol. 2019;863: 172704. ArticleCASPubMed Google Scholar
Mollazadeh H, Tavana E, Fanni G, Bo S, Banach M, Pirro M, et al. Effects of statins on mitochondrial pathways. J Cachexia Sarcopenia Muscle. 2021;12(2):237–51. ArticlePubMedPubMed Central Google Scholar
Sahebkar A, Serban C, Mikhailidis DP, Undas A, Lip GYH, Muntner P, et al. Association between statin use and plasma d-dimer levels: a systematic review and meta-analysis of randomised controlled trials. Thromb Haemost. 2015;114(3):546–57. PubMed Google Scholar
Chruściel P, Sahebkar A, Rembek-Wieliczko M, Serban MC, Ursoniu S, Mikhailidis DP, et al. Impact of statin therapy on plasma adiponectin concentrations: a systematic review and meta-analysis of 43 randomized controlled trial arms. Atherosclerosis. 2016;253:194–208. ArticlePubMed Google Scholar
Sahebkar A, Foroutan Z, Katsiki N, Jamialahmadi T, Mantzoros CS. Ferroptosis, a new pathogenetic mechanism in cardiometabolic diseases and cancer: is there a role for statin therapy? Metabolism: Clin Exp. 2023;146:146. Article Google Scholar
Sahebkar A, Serban C, Ursoniu S, Mikhailidis DP, Undas A, Lip GYH, et al. The impact of statin therapy on plasma levels of von Willebrand factor antigen: systematic review and meta-analysis of randomised placebo-controlled trials. Thromb Haemost. 2016;115(3):520–32. ArticlePubMed Google Scholar
Davignon J. Beneficial cardiovascular pleiotropic effects of statins. Circulation. 2004;109(23_suppl_1):III-39–III−43. Article Google Scholar
Bland AR, Payne FM, Ashton JC, Jamialahmadi T, Sahebkar A. The cardioprotective actions of statins in targeting mitochondrial dysfunction associated with myocardial ischaemia-reperfusion injury. Pharmacol Res. 2022;175:105986.
Sahebkar A, Chew GT, Watts GF. Recent advances in pharmacotherapy for hypertriglyceridemia. Prog Lipid Res. 2014;56(1):47–66. ArticleCASPubMed Google Scholar
Serban C, Sahebkar A, Ursoniu S, Mikhailidis DP, Rizzo M, Lip GYH, et al. A systematic review and meta-analysis of the effect of statins on plasma asymmetric dimethylarginine concentrations. Sci Rep. 2015;5:5. Article Google Scholar
Jain MK, Ridker PM. Anti-inflammatory effects of statins: clinical evidence and basic mechanisms. Nat Rev Drug Discov. 2005;4(12):977–87. ArticleCASPubMed Google Scholar
Shishehbor MH, Brennan M-L, Aviles RJ, Fu X, Penn MS, Sprecher DL, et al. Statins promote potent systemic antioxidant effects through specific inflammatory pathways. Circulation. 2003;108(4):426–31. ArticleCASPubMed Google Scholar
Bahrami A, Parsamanesh N, Atkin SL, Banach M, Sahebkar A. Effect of statins on toll-like receptors: a new insight to pleiotropic effects. Pharmacol Res. 2018;135:230–8. ArticleCASPubMed Google Scholar
Parizadeh SMR, Azarpazhooh MR, Moohebati M, Nematy M, Ghayour-Mobarhan M, Tavallaie S, et al. Simvastatin therapy reduces prooxidant-antioxidant balance: results of a placebo-controlled cross-over trial. Lipids. 2011;46(4):333–40. ArticleCASPubMed Google Scholar
Schaafsma D, McNeill KD, Mutawe MM, Ghavami S, Unruh H, Jacques E, et al. Simvastatin inhibits TGFβ1-induced fibronectin in human airway fibroblasts. Respir Res. 2011;12(1):1–10. Article Google Scholar
Vahedian-Azimi A, Mannarino MR, Shojaie S, Rahimibashar F, Galeh HEG, Banach M, et al. The effect of statins on prevalence and mortality of influenza virus infection: a systematic review and meta-analysis. Arch Med Sci. 2022;18(6).https://doi.org/10.5114/aoms/149633
Vahedian-Azimi A, Mohammadi SM, Banach M, Beni FH, Guest PC, Al-Rasadi K, et al. Improved COVID-19 outcomes following statin therapy: an updated systematic review and meta-analysis. BioMed Res Int. 2021.https://doi.org/10.1155/2021/1901772
Ling Q, Tejada-Simon M. Statins and the brain: new perspective for old drugs. Prog Neuropsychopharmacol Biol Psychiatry. 2016;66:80–6. ArticleCASPubMed Google Scholar
Kostapanos MS, Liberopoulos EN, Elisaf MS. Statin pleiotropy against renal injury. J Cardiometab Syndr. 2009;4(1):E4–9. ArticlePubMed Google Scholar
Vahedian-Azimi A, Beni FH, Fras Z, Banach M, Mohammadi SM, Jamialahmadi T, et al. Effects of statins on the incidence and outcomes of acute kidney injury in critically ill patients: a systematic review and meta-analysis. Arch Med Sci. 2023;19(4):952–64. CASPubMedPubMed Central Google Scholar
Laufs U, La Fata V, Plutzky J, Liao JK. Upregulation of endothelial nitric oxide synthase by HMG CoA reductase inhibitors. Circulation. 1998;97(12):1129–35. ArticleCASPubMed Google Scholar
Laufs U, La Fata V, Liao JK. Inhibition of 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase blocks hypoxia-mediated down-regulation of endothelial nitric oxide synthase. J Biol Chem. 1997;272(50):31725–9. ArticleCASPubMed Google Scholar
Essig M, Nguyen G, Prié D, Escoubet B, Sraer J-D, Friedlander G. 3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors increase fibrinolytic activity in rat aortic endothelial cells: role of geranylgeranylation and Rho proteins. Circ Res. 1998;83(7):683–90. ArticleCASPubMed Google Scholar
Hernández-Perera O, Pérez-Sala D, Navarro-Antolín J, Sánchez-Pascuala R, Hernández G, Díaz C, et al. Effects of the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors, atorvastatin and simvastatin, on the expression of endothelin-1 and endothelial nitric oxide synthase in vascular endothelial cells. J Clin Investig. 1998;101(12):2711–9. ArticlePubMedPubMed Central Google Scholar
Parsamanesh N, Karami-Zarandi M, Banach M, Penson PE, Sahebkar A. Effects of statins on myocarditis: a review of underlying molecular mechanisms. Prog Cardiovasc Dis. 2021;67:53-64.
Yudoh K, Karasawa R. Statin prevents chondrocyte aging and degeneration of articular cartilage in osteoarthritis (OA). Aging (Albany NY). 2010;2(12):990. ArticleCASPubMed Google Scholar
Xie P, Dolivo DM, Jia S, Cheng X, Salcido J, Galiano RD, et al. Liposome-encapsulated statins reduce hypertrophic scarring through topical application. Wound Repair Regen. 2020;28(4):460–9. ArticlePubMed Google Scholar
Gong X, Ma Y, Ruan Y, Fu G, Wu S. Long-term atorvastatin improves age-related endothelial dysfunction by ameliorating oxidative stress and normalizing eNOS/iNOS imbalance in rat aorta. Exp Gerontol. 2014;52:9–17. ArticleCASPubMed Google Scholar
Llevadot J, Murasawa S, Kureishi Y, Uchida S, Masuda H, Kawamoto A, et al. HMG-CoA reductase inhibitor mobilizes bone marrow–derived endothelial progenitor cells. J Clin Investig. 2001;108(3):399–405. ArticleCASPubMedPubMed Central Google Scholar
Dimmeler S, Aicher A, Vasa M, Mildner-Rihm C, Adler K, Tiemann M, et al. HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway. J Clin Investig. 2001;108(3):391–7. ArticleCASPubMedPubMed Central Google Scholar
Vaughan CJ, Gotto AM, Basson CT. The evolving role of statins in the management of atherosclerosis. J Am Coll Cardiol. 2000;35(1):1–10. ArticleCASPubMed Google Scholar
Kouhpeikar H, Delbari Z, Sathyapalan T, Simental-Mendía LE, Jamialahmadi T, Sahebkar A. The effect of statins through mast cells in the pathophysiology of atherosclerosis: a review. Curr Atheroscler Rep. 2020;22:1–8. Article Google Scholar
Peng D, Li Z. Effect of simvastatin on monocyte CX3CR1 expression in patients with acute coronary syndrome. J South Med Univ. 2008;28(3):475–7. CAS Google Scholar
Kuznetsova G, Potekhina A, Aref’eva T, Ruleva NY, Filatova AY, Shchinova A, et al. Effect of atorvastatin on the blood T cell subset composition in patients with stable effort angina. Ateroskl Dislipidem. 2016;4:30–9.
Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2:17023.
Chang CH, Hsu YM, Chen YC, Lin FH, Sadhasivam S, Loo ST, et al. Anti-inflammatory effects of hydrophilic and lipophilic statins with hyaluronic acid against LPS-induced inflammation in porcine articular chondrocytes. J Orthop Res. 2014;32(4):557–65. ArticleCASPubMed Google Scholar
Yang SS, Li R, Qu X, Fang W, Quan Z. Atorvastatin decreases toll-like receptor 4 expression and downstream signaling in human monocytic leukemia cells. Cell Immunol. 2012;279(1):96–102. ArticleCASPubMed Google Scholar
Ferro D, Parrotto S, Basili S, Alessandri C, Violi F. Simvastatin inhibits the monocyte expression of proinflammatory cytokines in patients with hypercholesterolemia. J Am Coll Cardiol. 2000;36(2):427–31. ArticleCASPubMed Google Scholar
Krysiak R, Okopien B. The effect of ezetimibe and simvastatin on monocyte cytokine release in patients with isolated hypercholesterolemia. J Cardiovasc Pharmacol. 2011;57(4):505–12. ArticleCASPubMed Google Scholar
Veillard NR, Braunersreuther V, Arnaud C, Burger F, Pelli G, Steffens S, et al. Simvastatin modulates chemokine and chemokine receptor expression by geranylgeranyl isoprenoid pathway in human endothelial cells and macrophages. Atherosclerosis. 2006;188(1):51–8. ArticleCASPubMed Google Scholar
Sahebkar A, Watts GF. New LDL-cholesterol lowering therapies: pharmacology, clinical trials, and relevance to acute coronary syndromes. Clin Ther. 2013;35(8):1082–98. ArticleCASPubMed Google Scholar
Sahebkar A, Watts GF. New therapies targeting apoB metabolism for high-risk patients with inherited dyslipidaemias: what can the clinician expect? Cardiovasc Drugs Ther. 2013;27(6):559–67. ArticleCASPubMed Google Scholar
Kim K, Ginsberg HN, Choi SH. New, novel lipid-lowering agents for reducing cardiovascular risk: beyond statins. Diabetes Metab J. 2022;46(4):517–32. ArticlePubMedPubMed Central Google Scholar
Adu-Gyamfi EA, Czika A, Gorleku PN, Ullah A, Panhwar Z, Ruan L-L, et al. The involvement of cell adhesion molecules, tight junctions, and gap junctions in human placentation. Reprod Sci. 2020;28(2):305–20.
Gahmberg CG, Grönholm M, Madhavan S, Jahan F, Mikkola E, Viazmina L, et al. Regulation of cell adhesion: a collaborative effort of integrins, their ligands, cytoplasmic actors, and phosphorylation. Q Rev Biophys. 2019;52:52. Article Google Scholar
Campbell ID, Humphries MJ. Integrin structure, activation, and interactions. Cold Spring Harb Perspect Biol. 2011;3(3): a004994. ArticlePubMedPubMed Central Google Scholar
Shimaoka M, Takagi J, Springer TA. Conformational regulation of integrin structure and function. Annu Rev Biophys Biomol Struct. 2002;31(1):485–516. ArticleCASPubMed Google Scholar
Fan Z, Ley K. Leukocyte arrest: biomechanics and molecular mechanisms of β2 integrin activation. Biorheology. 2015;52(5–6):353–77. CASPubMedPubMed Central Google Scholar
Kamal AHM, Chakrabarty JK, Udden SN, Zaki MH, Chowdhury SM. Inflammatory proteomic network analysis of statin-treated and lipopolysaccharide-activated macrophages. Sci Rep. 2018;8(1):1–13. Article Google Scholar
Canalli AA, Proença RF, Franco-Penteado CF, Traina F, Sakamoto TM, Saad ST, et al. Participation of Mac-1, LFA-1 and VLA-4 integrins in the in vitro adhesion of sickle cell disease neutrophils to endothelial layers, and reversal of adhesion by simvastatin. Haematologica. 2011;96(4):526. ArticleCASPubMed Google Scholar
Zhang S, Rahman M, Zhang S, Qi Z, Thorlacius H. Simvastatin antagonizes CD40L secretion, CXC chemokine formation, and pulmonary infiltration of neutrophils in abdominal sepsis. J Leukoc Biol. 2011;89(5):735–42. ArticleCASPubMed Google Scholar
Silveira AAA, Dominical VM, Lazarini M, Costa FF, Conran N. Simvastatin abrogates inflamed neutrophil adhesive properties, in association with the inhibition of Mac-1 integrin expression and modulation of Rho kinase activity. Inflamm Res. 2013;62(2):127–32. ArticleCASPubMed Google Scholar
Silveira AAA, Dominical VM, Vital DM, Ferreira WA Jr, Costa FTM, Werneck CC, et al. Attenuation of TNF-induced neutrophil adhesion by simvastatin is associated with the inhibition of Rho-GTPase activity, p50 activity and morphological changes. Int Immunopharmacol. 2018;58:160–5. ArticleCAS Google Scholar
Maher B, Dhonnchu TN, Burke J, Soo A, Wood A, Watson R. Statins alter neutrophil migration by modulating cellular Rho activity—a potential mechanism for statins-mediated pleotropic effects? J Leukoc Biol. 2009;85(1):186–93. ArticleCASPubMed Google Scholar
Cerda A, Rodrigues AC, Alves C, Genvigir FDV, Fajardo CM, Dorea EL, et al. Modulation of adhesion molecules by cholesterol-lowering therapy in mononuclear cells from hypercholesterolemic patients. Cardiovasc Ther. 2015;33(4):168–76. ArticleCASPubMed Google Scholar
Barbosa CP, Bracht L, Ames FQ, de Souza Silva-Comar FM, Tronco RP, Bersani-Amado CA. Effects of ezetimibe, simvastatin, and their combination on inflammatory parameters in a rat model of adjuvant-induced arthritis. Inflammation. 2017;40(2):717–24. ArticleCASPubMed Google Scholar
Hamblin MJ, Eberlein M, Black K, Hallowell R, Collins S, Chan-Li Y, et al. Lovastatin inhibits low molecular weight hyaluronan induced chemokine expression via LFA-1 and decreases bleomycin-induced pulmonary fibrosis. Int J Biomed Sci: IJBS. 2014;10(3):146. ArticlePubMedPubMed Central Google Scholar
Korhonen M, Ylänne J, Laitinen L, Virtanen I. Distribution of beta 1 and beta 3 integrins in human fetal and adult kidney. Lab Investig; J Tech Methods pathol. 1990;62(5):616–25. CAS Google Scholar
Liu J, Zhang B, Chai Y, Xu Y, Xing C, Wang X. Fluvastatin attenuated the effect of expression of β1 integrin in PAN-treated podocytes by inhibiting reactive oxygen species. Mol Cell Biochem. 2015;398(1):207–15. ArticleCASPubMed Google Scholar
Minami T, Satoh K, Nogi M, Kudo S, Miyata S, Tanaka S-i, et al. Statins up-regulate SmgGDS through β1-integrin/Akt1 pathway in endothelial cells. Cardiovasc Resarch. 2016;109(1):151–61. ArticleCAS Google Scholar
Ge G, Hou Y. Statins protect diabetic myocardial microvascular endothelial cells from injury. International Journal of Diabetes in Developing Countries. 2018;38(4):424–36. ArticleCAS Google Scholar
Li S, Cao C, Chen H, Song J, Lee C, Zhang J, et al. Atheroprotective effects of statins in patients with unstable angina by regulating the blood-borne microRNA network. Mol Med Rep. 2017;16(1):817–27. ArticleCASPubMedPubMed Central Google Scholar
deFilippi C, Toribio M, Wong LP, Sadreyev R, Grundberg I, Fitch KV, et al. Differential plasma protein regulation and statin effects in Human Immunodeficiency Virus (HIV)-infected and non-HIV-infected patients utilizing a proteomics approach. J Infect Dis. 2020;222(6):929–39. Article Google Scholar
Alexander RW. Inflammation and coronary artery disease. N Engl J Med. 1994;331(7):468–9.
Walter T, Suselbeck T, Borggrefe M, Swoboda S, Hoffmeister HM, Dempfle C-E. Effect of atorvastatin on cellular adhesion molecules on leukocytes in patients with normocholesterolemic coronary artery disease. In Vivo. 2010;24(2):189–93. CASPubMed Google Scholar
Johnson JL. Emerging regulators of vascular smooth muscle cell function in the development and progression of atherosclerosis. Cardiovasc Res. 2014;103(4):452–60. ArticleCASPubMed Google Scholar
Chistiakov DA, Orekhov AN, Bobryshev YV. LOX-1-mediated effects on vascular cells in atherosclerosis. Cell Physiol Biochem. 2016;38(5):1851–9. ArticleCASPubMed Google Scholar
Sanyour HJ, Li N, Rickel AP, Torres HM, Anderson RH, Miles MR, et al. Statin-mediated cholesterol depletion exerts coordinated effects on the alterations in rat vascular smooth muscle cell biomechanics and migration. J Physiol. 2020;598(8):1505–22. ArticleCASPubMed Google Scholar
Nishida S, Matsuoka H, Tsubaki M, Tanimori Y, Yanae M, Fujii Y, et al. Mevastatin induces apoptosis in HL60 cells dependently on decrease in phosphorylated ERK. Mol Cell Biochem. 2005;269(1):109–14. ArticleCASPubMed Google Scholar
Kidera Y, Tsubaki M, Yamazoe Y, Shoji K, Nakamura H, Ogaki M, et al. Reduction of lung metastasis, cell invasion, and adhesion in mouse melanoma by statin-induced blockade of the Rho/Rho-associated coiled-coil-containing protein kinase pathway. J Exp Clin Cancer Res. 2010;29(1):1–11. Article Google Scholar
Tsubaki M, Takeda T, Kino T, Obata N, Itoh T, Imano M, et al. Statins improve survival by inhibiting spontaneous metastasis and tumor growth in a mouse melanoma model. Am J Cancer Res. 2015;5(10):3186. CASPubMedPubMed Central Google Scholar
Relja B, Meder F, Wang M, Blaheta R, Henrich D, Marzi I, et al. Simvastatin modulates the adhesion and growth of hepatocellular carcinoma cells via decrease of integrin expression and ROCK. Int J Oncol. 2011;38(3):879–85. ArticleCASPubMed Google Scholar
Morandi A, Taddei ML, Chiarugi P, Giannoni E. Targeting the metabolic reprogramming that controls epithelial-to-mesenchymal transition in aggressive tumors. Front Oncol. 2017;7:40. ArticlePubMedPubMed Central Google Scholar
Nurwidya F, Takahashi F, Murakami A, Takahashi K. Epithelial mesenchymal transition in drug resistance and metastasis of lung cancer. Cancer research and treatment: official journal of Korean Cancer Association. 2012;44(3):151. Article Google Scholar
Jin H, He Y, Zhao P, Hu Y, Tao J, Chen J, et al. Targeting lipid metabolism to overcome EMT-associated drug resistance via integrin β3/FAK pathway and tumor-associated macrophage repolarization using legumain-activatable delivery. Theranostics. 2019;9(1):265. ArticleCASPubMedPubMed Central Google Scholar
Yang S-H, Lin H-Y, Changou CA, Chen C-H, Liu Y-R, Wang J, et al. Integrin β3 and LKB1 are independently involved in the inhibition of proliferation by lovastatin in human intrahepatic cholangiocarcinoma. Oncotarget. 2016;7(1):362. ArticlePubMed Google Scholar
Delgado J, Nadeu F, Colomer D, Campo E. Chronic lymphocytic leukemia: from molecular pathogenesis to novel therapeutic strategies. Haematologica. 2020;105(9):2205. ArticleCASPubMedPubMed Central Google Scholar
Burger JA, Gribben JG, editors. The microenvironment in chronic lymphocytic leukemia (CLL) and other B cell malignancies: insight into disease biology and new targeted therapies. Seminars in cancer biology; 2014: Elsevier.
Gimenez N, Tripathi R, Giró A, Rosich L, López-Guerra M, López-Oreja I, et al. Systems biology drug screening identifies statins as enhancers of current therapies in chronic lymphocytic leukemia. Sci Rep. 2020;10(1):1–16. Article Google Scholar
Tsubaki M, Takeda T, Obata N, Kawashima K, Tabata M, Imano M, et al. Combination therapy with dacarbazine and statins improved the survival rate in mice with metastatic melanoma. J Cell Physiol. 2019;234(10):17975–89. ArticleCASPubMed Google Scholar
Shao P-L, Wu S-C, Lin Z-Y, Ho M-L, Chen C-H, Wang C-Z. Alpha-5 integrin mediates simvastatin-induced osteogenesis of bone marrow mesenchymal stem cells. Int J Mol Sci. 2019;20(3): 506. ArticleCASPubMedPubMed Central Google Scholar
Kappelmayer J, Nagy B. The interaction of selectins and PSGL-1 as a key component in thrombus formation and cancer progression. BioMed Res Int. 2017;2017:6138145.
Kansas GS. Selectins and their ligands: current concepts and controversies. Blood. 1996;88(9):3259-87.
Krause T, Turner G. Are selectins involved in metastasis? Clin Exp Metas. 1999;17(3):183–92. ArticleCAS Google Scholar
Schindler U, Baichwal VR. Three NF-kappa B binding sites in the human E-selectin gene required for maximal tumor necrosis factor alpha-induced expression. Mol Cell Biol. 1994;14(9):5820–31. CASPubMedPubMed Central Google Scholar
Gnad R, Aktories K, Kaina B, Fritz G. Inhibition of protein isoprenylation impairs Rho-regulated early cellular response to genotoxic stress. Mol Pharmacol. 2000;58(6):1389–97. ArticleCASPubMed Google Scholar
Nübel T, Dippold W, Kleinert H, Kaina B, Fritz G. Lovastatin inhibits Rho-regulated expression of E-selectin by TNF-α and attenuates tumor cell adhesion. FASEB J. 2004;18(1):140–2. ArticlePubMed Google Scholar
Lötsch F, Königsbrügge O, Posch F, Zielinski C, Pabinger I, Ay C. Statins are associated with low risk of venous thromboembolism in patients with cancer: a prospective and observational cohort study. Thromb Res. 2014;134(5):1008–13. ArticlePubMed Google Scholar
Janata K, Holzer M, Domanovits H, MüLLNER M, Bankier A, Kurtaran A, et al. Mortality of patients with pulmonary embolism. Wien Klin Wochenschr. 2002;114(17–18):766–72. PubMed Google Scholar
Wakefield TW, Myers DD, Henke PK. Mechanisms of venous thrombosis and resolution. Arterioscler Thromb Vasc Biol. 2008;28(3):387–91. ArticleCASPubMed Google Scholar
Wakefield T, Strieter R, Prince M, Downing L, Greenfield L. Pathogenesis of venous thrombosis: a new insight. Cardiovasc Surg. 1997;5(1):6–15. ArticleCASPubMed Google Scholar
Feng Y, Lei B, Zhang F, Niu L, Zhang H, Zhang M. Anti-inflammatory effects of simvastatin during the resolution phase of experimentally formed venous thrombi. J Investig Med. 2017;65(6):999–1007. ArticlePubMed Google Scholar
Maron DJ, Fazio S, Linton MF. Current perspectives on statins. Circulation. 2000;101(2):207–13. ArticleCASPubMed Google Scholar
Bickel C, Rupprecht HJ, Blankenberg S, Espinola-Klein C, Rippin G, Hafner G, et al. Influence of HMG–CoA reductase inhibitors on markers of coagulation, systemic inflammation and soluble cell adhesion. Int J Cardiol. 2002;82(1):25–31. ArticlePubMed Google Scholar
Marschang P, Friedrich GJ, Ditlbacher H, Stoeger A, Zur Nedden D, Kirchmair R, et al. Reduction of soluble P-selectin by statins is inversely correlated with the progression of coronary artery disease. Int J Cardiol. 2006;106(2):183–90. ArticlePubMed Google Scholar
Oka H, Ikeda S, Koga S, Miyahara Y, Kohno S. Atorvastatin induces associated reductions in platelet P-selectin, oxidized low-density lipoprotein, and interleukin-6 in patients with coronary artery diseases. Heart Vessels. 2008;23(4):249–56. ArticlePubMed Google Scholar
An K, Huang R, Tian S, Guo D, Wang J, Lin H, et al. Statins significantly reduce mortality in patients receiving clopidogrel without affecting platelet activation and aggregation: a systematic review and meta-analysis. Lipids Health Dis. 2019;18(1):1–11. ArticleCAS Google Scholar
Kalawski R, Majewski M, Kaszkowiak E, Wysocki H, Siminiak T. Transcardiac release of soluble adhesion molecules during coronary artery bypass grafting: effects of crystalloid and blood cardioplegia. Chest. 2003;123(5):1355–60. ArticleCASPubMed Google Scholar
Berkan O, Katrancioglu N, Ozker E, Ozerdem G, Bakici Z, Yilmaz M. Reduced P-selectin in hearts pretreated with fluvastatin: a novel benefit for patients undergoing open heart surgery. Thorac Cardiovasc Surg. 2009;57(02):91–5. ArticleCASPubMed Google Scholar
Patti G, Chello M, Pasceri V, Colonna D, Nusca A, Miglionico M, et al. Protection from procedural myocardial injury by atorvastatin is associated with lower levels of adhesion molecules after percutaneous coronary intervention: results from the ARMYDA-CAMs (Atorvastatin for Reduction of MYocardial Damage during Angioplasty-Cell Adhesion Molecules) substudy. J Am Coll Cardiol. 2006;48(8):1560–6. ArticleCASPubMed Google Scholar
Patti G, Chello M, Gatto L, Alfano G, Miglionico M, Covino E, et al. Short-term atorvastatin preload reduces levels of adhesion molecules in patients with acute coronary syndrome undergoing percutaneous coronary intervention. Results from the ARMYDA-ACS CAMs (Atorvastatin for Reduction of MYocardial Damage during Angioplasty-Cell Adhesion Molecules) substudy. Journal of Cardiovascular Medicine. 2010;11(11):795–800. ArticlePubMed Google Scholar
Altun I, Oz F, Arkaya SC, Altun I, Bilge AK, Umman B, et al. Effect of statins on endothelial function in patients with acute coronary syndrome: a prospective study using adhesion molecules and flow-mediated dilatation. Journal of clinical medicine research. 2014;6(5):354. PubMedPubMed Central Google Scholar
Levine GN, Bates ER, Blankenship JC, Bailey SR, Bittl JA, Cercek B, et al. 2011 ACCF/AHA/SCAI guideline for percutaneous coronary intervention: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Society for Cardiovascular Angiography and Interventions. J Am Coll Cardiol. 2011;58(24):e44–122. ArticlePubMed Google Scholar
Kling D, Stucki C, Kronenberg S, Tuerck D, Rhéaume E, Tardif J-C, et al. Pharmacological control of platelet-leukocyte interactions by the human anti-P-selectin antibody inclacumab–preclinical and clinical studies. Thromb Res. 2013;131(5):401–10. ArticleCASPubMed Google Scholar
Sexton TR, Wallace EL, Macaulay TE, Charnigo RJ, Evangelista V, Campbell CL, et al. The effect of rosuvastatin on thromboinflammation in the setting of acute coronary syndrome. J Thromb Thrombolysis. 2015;39(2):186–95. ArticleCASPubMed Google Scholar
Ren X, Akiyoshi K, Vandenbark AA, Hurn PD, Offner H. Programmed death-1 pathway limits central nervous system inflammation and neurologic deficits in murine experimental stroke. Stroke. 2011;42(9):2578–83. ArticlePubMed Google Scholar
Miyazaki T, Kimura Y, Ohata H, Hashimoto T, Shibata K, Hasumi K, et al. Distinct effects of tissue-type plasminogen activator and SMTP-7 on cerebrovascular inflammation following thrombolytic reperfusion. Stroke. 2011;42(4):1097–104. ArticleCASPubMed Google Scholar
deVeber G. Arterial ischemic strokes in infants and children: an overview of current approaches. Semin Thromb Hemost. 2003;29(6):567–73.
Ganesan V, Prengler M, McShane MA, Wade AM, Kirkham FJ. Investigation of risk factors in children with arterial ischemic stroke. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society. 2003;53(2):167–73. Article Google Scholar
Tu Q, Cao H, Zhong W, Ding B, Tang X. Atorvastatin protects against cerebral ischemia/reperfusion injury through anti-inflammatory and antioxidant effects. Neural Regen Res. 2014;9(3):268. ArticleCASPubMedPubMed Central Google Scholar
Aisiku IP, Smith WR, McClish DK, Levenson JL, Penberthy LT, Roseff SD, et al. Comparisons of high versus low emergency department utilizers in sickle cell disease. Ann Emerg Med. 2009;53(5):587–93. ArticlePubMed Google Scholar
Owusu-Ansah A, Ihunnah CA, Walker AL, Ofori-Acquah SF. Inflammatory targets of therapy in sickle cell disease. Transl Res. 2016;167(1):281–97. ArticleCASPubMed Google Scholar
Hoppe C, Jacob E, Styles L, Kuypers F, Larkin S, Vichinsky E. Simvastatin reduces vaso-occlusive pain in sickle cell anaemia: a pilot efficacy trial. Br J Haematol. 2017;177(4):620–9. ArticleCASPubMedPubMed Central Google Scholar
Wiewel MA, Scicluna BP, van Vught LA, Hoogendijk AJ, Zwinderman AH, Lutter R, et al. The host response in critically ill sepsis patients on statin therapy: a prospective observational study. Ann Intensive Care. 2018;8(1):1–12. ArticleCAS Google Scholar
de Lorgeril M, Boissonnat P, Mamelle N, Martin J-L, Monjaud I, Guidollet J, et al. Platelet aggregation and HDL cholesterol are predictive of acute coronary events in heart transplant recipients. Circulation. 1994;89(6):2590–4. ArticlePubMed Google Scholar
Aviram M, Hussein O, Rosenblat M, Schlezinger S, Hayek T, Keidar S. Interactions of platelets, macrophages, and lipoproteins in hypercholesterolemia: antiatherogenic effects of HMG-CoA reductase inhibitor therapy. J Cardiovasc Pharmacol. 1998;31(1):39–45. ArticleCASPubMed Google Scholar
Andrews H, Aitken J, Hassall D, Skinner V, Bruckdorfer K. Intracellular mechanisms in the activation of human platelets by low-density lipoproteins. Biochemical Journal. 1987;242(2):559–64. ArticleCASPubMedPubMed Central Google Scholar
Labiós M, Martínez M, Gabriel F, Guiral V, Martínez E, Aznar J. Effect of atorvastatin upon platelet activation in hypercholesterolemia, evaluated by flow cymetry. Thromb Res. 2005;115(4):263–70. ArticlePubMed Google Scholar
Barale C, Frascaroli C, Senkeev R, Cavalot F, Russo I. Simvastatin effects on inflammation and platelet activation markers in hypercholesterolemia. Biomed Res Int. 2018;2018(1):6508709.
Pawelczyk M, Chmielewski H, Kaczorowska B, Przybyła M, Baj Z. The influence of statin therapy on platelet activity markers in hyperlipidemic patients after ischemic stroke. Archives of medical science: AMS. 2015;11(1):115. ArticlePubMedPubMed Central Google Scholar
Kotyla PJ. Short course of simvastatin has no effect on markers of endothelial activation in normolipidemic patients with systemic sclerosis. J Int Med Res. 2018;46(5):1893–901. ArticleCASPubMedPubMed Central Google Scholar
Sommeijer DW, Joop K, Leyte A, Reitsma P, Cate HT. Pravastatin reduces fibrinogen receptor gpIIIa on platelet-derived microparticles in patients with type 2 diabetes. J Thromb Haemost. 2005;3(6):1168–71. ArticleCASPubMed Google Scholar
Lee W-J, Lee W-L, Tang Y-J, Liang K-W, Chien Y-H, Tsou SS, et al. Early Improvements in insulin sensitivity and inflammatory markers are induced by pravastatin in nondiabetic subjects with hypercholesterolemia. Clin Chim Acta. 2008;390(1–2):49–55. ArticleCASPubMed Google Scholar
Mobarrez F, He S, Bröijersen A, Wiklund B, Antovic A, Antovic J, et al. Atorvastatin reduces thrombin generation and expression of tissue factor, P-selectin and GPIIIa on platelet-derived microparticles in patients with peripheral arterial occlusive disease. Thromb Haemost. 2011;106(08):344–52. ArticleCASPubMed Google Scholar
Suades R, Padró T, Alonso R, Mata P, Badimon L. Lipid-lowering therapy with statins reduces microparticle shedding from endothelium, platelets and inflammatory cells. Thromb Haemost. 2013;110(08):366–77. ArticleCASPubMed Google Scholar
Wai Wong C, Dye DE, Coombe DR. The role of immunoglobulin superfamily cell adhesion molecules in cancer metastasis. Int J Cell Biol. 2012;2012(1):340296.
Aricescu AR, Jones EY. Immunoglobulin superfamily cell adhesion molecules: zippers and signals. Curr Opin Cell Biol. 2007;19(5):543–50. ArticleCASPubMed Google Scholar
Cavallaro U, Dejana E. Adhesion molecule signalling: not always a sticky business. Nat Rev Mol Cell Biol. 2011;12(3):189–97. ArticleCASPubMed Google Scholar
Sakai M, Kobori S, Matsumura T, Biwa T, Sato Y, Takemura T, et al. HMG-CoA reductase inhibitors suppress macrophage growth induced by oxidized low density lipoprotein. Atherosclerosis. 1997;133(1):51–9. ArticleCASPubMed Google Scholar
Manka DR, Wiegman P, Din S, Sanders JM, Green SA, Gimple LW, et al. Arterial injury increases expression of inflammatory adhesion molecules in the carotid arteries of Apolipoprotein-E-deficient Mice1. J Vasc Res. 1999;36(5):372–8. ArticleCASPubMed Google Scholar
Seeger H, Wallwiener D, Mueck A. Lipid-independent effects of an estrogen–statin combination: inhibition of expression of adhesion molecules and plasminogen activator inhibitor-1 in human endothelial cell cultures. Climacteric. 2001;4(3):209–14. CASPubMed Google Scholar
Zapolska-Downar D, Siennicka A, Kaczmarczyk M, Kołodziej B, Naruszewicz M. Simvastatin modulates TNFα-induced adhesion molecules expression in human endothelial cells. Life Sci. 2004;75(11):1287–302. ArticleCASPubMed Google Scholar
Yoshida T, Yamashita M, Iwai M, Hayashi M. Endothelial Krüppel-like factor 4 mediates the protective effect of statins against ischemic AKI. J Am Soc Nephrol. 2016;27(5):1379–88. ArticleCASPubMed Google Scholar
Demir B, Onal B, Ozyazgan S, Demir E, Bakuy V, Akkan AG. The effects of pitavastatin on nuclear factor-kappa b and icam-1 in human saphenous vein graft endothelial culture. Cardiovasc Ther. 2019;2019(1):2549432.
Böger RH, Bode-Böger SM, Frölich JC. The l-arginine—nitric oxide pathway: role in atherosclerosis and therapeutic implications. Atherosclerosis. 1996;127(1):1–11. ArticlePubMed Google Scholar
Sardo MA, Castaldo M, Cinquegrani M, Bonaiuto M, Maesano A, Versace A, et al. Effects of atorvastatin treatment on sICAM-1 and plasma nitric oxide levels in hypercholesterolemic subjects. Clin Appl Thromb Hemost. 2002;8(3):257–63. ArticleCASPubMed Google Scholar
Xenos ES, Stevens SL, Freeman MB, Cassada DC, Goldman MH. Nitric oxide mediates the effect of fluvastatin on intercellular adhesion molecule-1 and platelet endothelial cell adhesion molecule-1 expression on human endothelial cells. Ann Vasc Surg. 2005;19(3):386–92. ArticlePubMed Google Scholar
Dymkowska D, Wrzosek A, Zabłocki K. Atorvastatin and pravastatin stimulate nitric oxide and reactive oxygen species generation, affect mitochondrial network architecture and elevate nicotinamide N-methyltransferase level in endothelial cells. J Appl Toxicol. 2021;41(7):1076–88. ArticleCASPubMed Google Scholar
Higashi Y, Noma K, Yoshizumi M, Kihara Y. Endothelial function and oxidative stress in cardiovascular diseases. Circ J. 2009;73(3):411–8. ArticleCASPubMed Google Scholar
Vanhoutte PM, Shimokawa H, Tang EH, Feletou M. Endothelial dysfunction and vascular disease. Acta Physiol. 2009;196(2):193–222. ArticleCAS Google Scholar
Garg N, Krishan P, Syngle A. Rosuvastatin improves endothelial dysfunction in ankylosing spondylitis. Clin Rheumatol. 2015;34(6):1065–71. ArticlePubMed Google Scholar
de Alwis N, Beard S, Mangwiro YT, Binder NK, Tu’uhevaha J, Brownfoot FC, et al. Pravastatin as the statin of choice for reducing pre-eclampsia-associated endothelial dysfunction. Pregnancy hypertension. 2020;20:83–91. ArticlePubMed Google Scholar
Leisegang MS, Bibli S-I, Günther S, Pflüger-Müller B, Oo JA, Höper C, et al. Pleiotropic effects of laminar flow and statins depend on the Krüppel-like factor-induced lncRNA MANTIS. Eur Heart J. 2019;40(30):2523–33. ArticleCASPubMed Google Scholar
Imanparast F, Faramarzi MA, Vatannejad A, Paknejad M, Deiham B, Kobarfard F, et al. mZD7349 peptide-conjugated PLGA nanoparticles directed against VCAM-1 for targeted delivery of simvastatin to restore dysfunctional HUVECs. Microvasc Res. 2017;112:14–9. ArticleCASPubMed Google Scholar
Kwak BR, Mulhaupt F, Mach F. Atherosclerosis: anti-inflammatory and immunomodulatory activities of statins. Autoimmun Rev. 2003;2(6):332–8. ArticleCASPubMed Google Scholar
Montecucco F, Burger F, Pelli G, Poku NK, Berlier C, Steffens S, et al. Statins inhibit C-reactive protein-induced chemokine secretion, ICAM-1 upregulation and chemotaxis in adherent human monocytes. Rheumatology. 2009;48(3):233–42. ArticleCASPubMed Google Scholar
Asai J, Takenaka H, Hirakawa S, Sakabe J-i, Hagura A, Kishimoto S, et al. Topical simvastatin accelerates wound healing in diabetes by enhancing angiogenesis and lymphangiogenesis. The American journal of pathology. 2012;181(6):2217–24. ArticleCASPubMed Google Scholar
Cakmak H, Basar M, Seval-Celik Y, Osteen KG, Duleba AJ, Taylor HS, et al. Statins inhibit monocyte chemotactic protein 1 expression in endometriosis. Reprod Sci. 2012;19(6):572–9. ArticlePubMedPubMed Central Google Scholar
Hu Z, Zhang F, Yang Z, Yang N, Zhang D, Zhang J, et al. Combination of simvastatin administration and EPC transplantation enhances angiogenesis and protects against apoptosis for hindlimb ischemia. J Biomed Sci. 2008;15(4):509–17. ArticleCASPubMed Google Scholar
Urbich C, Dernbach E, Zeiher AM, Dimmeler S. Double-edged role of statins in angiogenesis signaling. Circ Res. 2002;90(6):737–44. ArticleCASPubMed Google Scholar
Dworacka M, Krzyżagórska E, Wesołowska A, Zharmakhanova G, Iskakova S, Dworacki G. Circulating monocyte chemotactic protein 1 (MCP-1), vascular cell adhesion molecule 1 (VCAM-1) and angiogenin in type 2 diabetic patients treated with statins in low doses. Eur J Pharmacol. 2014;740:474–9. ArticleCASPubMed Google Scholar
Guimarães ES, Cerda A, Dorea EL, Bernik MMS, Gusukuma MC, Pinto GA, et al. Effects of short-term add-on ezetimibe to statin treatment on expression of adipokines and inflammatory markers in diabetic and dyslipidemic patients. Cardiovasc Ther. 2017;35(6): e12307. Article Google Scholar
Niedzielski M, Broncel M, Gorzelak-Pabiś P, Woźniak E. A comparison of the effects of monotherapy with rosuvastatin, atorvastatin or ezetimibe versus combination treatment with rosuvastatin-ezetimibe and atorvastatin-ezetimibe on the integrity of vascular endothelial cells damaged by oxidized cholesterol. PLoS ONE. 2021;16(9): e0256996. ArticleCASPubMedPubMed Central Google Scholar
Sun C, Zheng W, Liang L, Liu Z, Sun W, Tang R. Ezetimibe improves rosuvastatin effects on inflammation and vascular endothelial function in acute coronary syndrome patients undergoing PCI. J Interv Cardiol. 2021;2021(1):2995602.
Kim MH, Kim C-E, Kim S-W. Rosuvastatin inhibits high glucose-stimulated upregulation of VCAM-1 via the MAPK-signalling pathway in endothelial cells. Acta Cardiol. 2018;73(1):13–8. ArticlePubMed Google Scholar
Park J, Hwang I, Kim S-J, Youn S-W, Hur J, Kim H-S. Atorvastatin prevents endothelial dysfunction in high glucose condition through Skp2-mediated degradation of FOXO1 and ICAM-1. Biochem Biophys Res Commun. 2018;495(2):2050–7. ArticleCASPubMed Google Scholar
Mason JE, Starke RD, Van Kirk JE. Gamma-Glutamyl transferase: a novel cardiovascular risk BioMarker. Prev Cardiol. 2010;13(1):36–41. ArticleCASPubMed Google Scholar
Lee D-H, Blomhoff R, Jacobs DR. Review is serum gamma glutamyltransferase a marker of oxidative stress? Free Radical Res. 2004;38(6):535–9. ArticleCAS Google Scholar
Paolicchi A, Emdin M, Ghliozeni E, Ciancia E, Passino C, Popoff G, et al. Human atherosclerotic plaques contain gamma-glutamyl transpeptidase enzyme activity. Circulation. 2004;109(11):1440. ArticlePubMed Google Scholar
Li G, Wu X-w, Lu W-h, Ai R, Chen F, Tang Z-z. Effect of atorvastatin on the expression of gamma-glutamyl transferase in aortic atherosclerotic plaques of apolipoprotein E–knockout mice. BMC cardiovascular disorders. 2014;14(1):1–6. Article Google Scholar
Pan X, Hou R, Ma A, Wang T, Wu M, Zhu X, et al. Atorvastatin upregulates the expression of miR-126 in apolipoprotein E-knockout mice with carotid atherosclerotic plaque. Cell Mol Neurobiol. 2017;37(1):29–36. ArticleCASPubMed Google Scholar
Clark MA, Duhay FG, Thompson AK, Keyes MJ, Svensson LG, Bonow RO, et al. Clinical and economic outcomes after surgical aortic valve replacement in Medicare patients. Risk management and healthcare policy. 2012;5:117. ArticlePubMedPubMed Central Google Scholar
Venardos N, Deng X-S, Yao Q, Weyant MJ, Reece TB, Meng X, et al. Simvastatin reduces the TLR4-induced inflammatory response in human aortic valve interstitial cells. J Surg Res. 2018;230:101–9. ArticleCASPubMedPubMed Central Google Scholar
Altorki NK, Markowitz GJ, Gao D, Port JL, Saxena A, Stiles B, et al. The lung microenvironment: an important regulator of tumour growth and metastasis. Nat Rev Cancer. 2019;19(1):9–31. ArticleCASPubMedPubMed Central Google Scholar
Balkwill FR, Capasso M, Hagemann T. The tumor microenvironment at a glance. J Cell Sci. 2012;125(23):5591–6. ArticleCASPubMed Google Scholar
Galland S, Martin P, Fregni G, Letovanec I, Stamenkovic I. Attenuation of the pro-inflammatory signature of lung cancer-derived mesenchymal stromal cells by statins. Cancer Lett. 2020;484:50–64. ArticleCASPubMed Google Scholar
AL‐Husein B, Goc A, Somanath PR. Suppression of interactions between prostate tumor cell‐surface integrin and endothelial ICAM‐1 by simvastatin inhibits micrometastasis. J Cellular physiol. 2013;228(11):2139–48. Article Google Scholar
Dzwonek J, Wilczynski GM. CD44: molecular interactions, signaling and functions in the nervous system. Front Cell Neurosci. 2015;9:175. ArticlePubMedPubMed Central Google Scholar
Mishra MN, Chandavarkar V, Sharma R, Bhargava D. Structure, function and role of CD44 in neoplasia. Journal of Oral and Maxillofacial Pathology: JOMFP. 2019;23(2):267. ArticlePubMedPubMed Central Google Scholar
Guo Q, Yang C, Gao F. The state of CD44 activation in cancer progression and therapeutic targeting. FEBS J. 2022;289(24):7970–86. ArticleCASPubMed Google Scholar
Beckwitt CH, Brufsky A, Oltvai ZN, Wells A. Statin drugs to reduce breast cancer recurrence and mortality. Breast Cancer Res. 2018;20:1–11. Article Google Scholar
Chimento A, Casaburi I, Avena P, Trotta F, De Luca A, Rago V, et al. Cholesterol and its metabolites in tumor growth: therapeutic potential of statins in cancer treatment. Front Endocrinol. 2019;9: 807. Article Google Scholar
Mandal CC, Ghosh-Choudhury N, Yoneda T, Choudhury GG, Ghosh-Choudhury N. Simvastatin prevents skeletal metastasis of breast cancer by an antagonistic interplay between p53 and CD44. J Biol Chem. 2011;286(13):11314–27. ArticleCASPubMedPubMed Central Google Scholar
Murai T, Maruyama Y, Mio K, Nishiyama H, Suga M, Sato C. Low cholesterol triggers membrane microdomain-dependent CD44 shedding and suppresses tumor cell migration. J Biol Chem. 2011;286(3):1999–2007. ArticleCASPubMed Google Scholar
Rentala S, Chintala R, Guda M, Chintala M, Komarraju AL, Mangamoori LN. Atorvastatin inhibited Rho-associated kinase 1 (ROCK1) and focal adhesion kinase (FAK) mediated adhesion and differentiation of CD133+ CD44+ prostate cancer stem cells. Biochem Biophys Res Commun. 2013;441(3):586–92. ArticleCASPubMed Google Scholar
Koohestanimobarhan S, Salami S, Imeni V, Mohammadi Z, Bayat O. Lipophilic statins antagonistically alter the major epithelial-to-mesenchymal transition signaling pathways in breast cancer stem–like cells via inhibition of the mevalonate pathway. J Cell Biochem. 2019;120(2):2515–31. ArticleCASPubMed Google Scholar
Choi YS, Cho HJ, Jung HJ. Atorvastatin inhibits the proliferation of MKN45-derived gastric cancer stem cells in a mevalonate pathway-independent manner. The Korean Journal of Physiology & Pharmacology: Official Journal of the Korean Physiological Society and the Korean Society of Pharmacology. 2022;26(5):367–75. ArticleCAS Google Scholar
Tanaka K, Osada H, Murakami-Tonami Y, Horio Y, Hida T, Sekido Y. Statin suppresses Hippo pathway-inactivated malignant mesothelioma cells and blocks the YAP/CD44 growth stimulatory axis. Cancer Lett. 2017;385:215–24. ArticleCASPubMed Google Scholar
Kato S, Liberona M, Cerda-Infante J, Sánchez M, Henríquez J, Bizama C, et al. Simvastatin interferes with cancer ‘stem-cell’plasticity reducing metastasis in ovarian cancer. Endocr Relat Cancer. 2018;25(10):821–36. ArticleCASPubMed Google Scholar
Aksoy S, Szumlanski CL, Weinshilboum RM. Human liver nicotinamide N-methyltransferase. cDNA cloning, expression, and biochemical characterization. Journal of Biological Chemistry. 1994;269(20):14835–40. ArticleCASPubMed Google Scholar
Wu Y, Siadaty M, Berens M, Hampton G, Theodorescu D. Overlapping gene expression profiles of cell migration and tumor invasion in human bladder cancer identify metallothionein 1E and nicotinamide N-methyltransferase as novel regulators of cell migration. Oncogene. 2008;27(52):6679–89. ArticleCASPubMedPubMed Central Google Scholar
Bach D-H, Kim D, Bae SY, Kim WK, Hong J-Y, Lee H-J, et al. Targeting nicotinamide N-methyltransferase and miR-449a in EGFR-TKI-resistant non-small-cell lung cancer cells. Molecular Therapy-Nucleic Acids. 2018;11:455–67. ArticleCASPubMedPubMed Central Google Scholar
Yu T, Wang Y-T, Chen P, Li Y-H, Chen Y-X, Zeng H, et al. Effects of nicotinamide N-methyltransferase on PANC-1 cells proliferation, metastatic potential and survival under metabolic stress. Cell Physiol Biochem. 2015;35(2):710–21. ArticleCASPubMed Google Scholar
Lim B-H, Cho B-I, Kim YN, Kim JW, Park S-T, Lee C-W. Overexpression of nicotinamide N-methyltransferase in gastric cancer tissues and its potential post-translational modification. Exp Mol Med. 2006;38(5):455–65. ArticleCASPubMed Google Scholar
Li J, You S, Zhang S, Hu Q, Wang F, Chi X, et al. Elevated N-methyltransferase expression induced by hepatic stellate cells contributes to the metastasis of hepatocellular carcinoma via regulation of the CD44v3 isoform. Mol Oncol. 2019;13(9):1993–2009. ArticleCASPubMedPubMed Central Google Scholar
Abela GS, Katkoori VR, Pathak DR, Bumpers HL, Leja M, ul Abideen Z, et al. Cholesterol crystals induce mechanical trauma, inflammation, and neo-vascularization in solid cancers as in atherosclerosis. Am Heart J Plus Cardiol Res Pract, 2023;35:100317
Mu D, Li J, Qi Y, Sun X, Liu Y, Shen S, et al. Novel hyaluronic acid-coated polymeric micelles with ROS scavenging to encapsulate statins for alleviating atherosclerosis. 2020. https://doi.org/10.21203/rs.3.rs-89851/v1.
Nasr SH, Rashidijahanabad Z, Ramadan S, Kauffman N, Parameswaran N, Zinn KR, et al. Effective atherosclerotic plaque inflammation inhibition with targeted drug delivery by hyaluronan conjugated atorvastatin nanoparticles. Nanoscale. 2020;12(17):9541–56. ArticlePubMed Central Google Scholar
Rezaie-Majd A, Prager GW, Bucek RA, Schernthaner GH, Maca T, Kress H-G, et al. Simvastatin reduces the expression of adhesion molecules in circulating monocytes from hypercholesterolemic patients. Arterioscler Thromb Vasc Biol. 2003;23(3):397–403. ArticleCASPubMed Google Scholar
Dimitrova Y, Dunoyer-Geindre S, Reber G, Mach F, Kruithof E, De Moerloose P. Effects of statins on adhesion molecule expression in endothelial cells. J Thromb Haemost. 2003;1(11):2290–9. ArticleCASPubMed Google Scholar
Schmidmaier R, Baumann P, Simsek M, Dayyani F, Emmerich B, Meinhardt G. The HMG-CoA reductase inhibitor simvastatin overcomes cell adhesion–mediated drug resistance in multiple myeloma by geranylgeranylation of Rho protein and activation of Rho kinase. Blood. 2004;104(6):1825–32. ArticleCASPubMed Google Scholar
DeGorter MK, Tirona RG, Schwarz UI, Choi Y-H, Dresser GK, Suskin N, et al. Clinical and pharmacogenetic predictors of circulating atorvastatin and rosuvastatin concentrations in routine clinical care. Circulation: Cardiovascular Genetics. 2013;6(4):400–8. CASPubMed Google Scholar