Neuropeptides as Targets for the Development of Anticonvulsant Drugs (original) (raw)
Weaver DF, Pohlmann-Eden B (2013) Pharmacoresistant epilepsy: unmet needs in solving the puzzle(s). Epilepsia 54(Suppl 2):80–85 PubMedCAS Google Scholar
Dobolyi A, Kekesi KA, Juhasz G, Szekely AD, Lovas G, Kovacs Z (2014) Receptors of peptides as therapeutic targets in epilepsy research. Curr Med Chem 21:764–787 PubMedCAS Google Scholar
Kovac S, Walker MC (2013) Neuropeptides in epilepsy. Neuropeptides 47:467–475 PubMedCAS Google Scholar
Mytinger JR, Joshi S (2012) The current evaluation and treatment of infantile spasms among members of the Child Neurology Society. J Child Neurol 27:1289–1294 PubMed Google Scholar
Matsumoto A, Kumagai T, Takeuchi T, Miyazaki S, Watanabe K (1987) Clinical effects of thyrotropin-releasing hormone for severe epilepsy in childhood: a comparative study with ACTH therapy. Epilepsia 28:49–55 PubMedCAS Google Scholar
Takeuchi Y, Takano T, Abe J, Takikita S, Ohno M (2001) Thyrotropin-releasing hormone: role in the treatment of West syndrome and related epileptic encephalopathies. Brain Dev 23:662–667 PubMedCAS Google Scholar
Furtinger S, Pirker S, Czech T, Baumgartner C, Ransmayr G, Sperk G (2001) Plasticity of Y1 and Y2 receptors and neuropeptide Y fibers in patients with temporal lobe epilepsy. J Neurosci 21:5804–5812 PubMedCAS Google Scholar
Cardoso A, Freitas-da-Costa P, Carvalho LS, Lukoyanov NV (2010) Seizure-induced changes in neuropeptide Y-containing cortical neurons: Potential role for seizure threshold and epileptogenesis. Epilepsy Behav 19:559–567 PubMed Google Scholar
Poulsen FR, Jahnsen H, Blaabjerg M, Zimmer J (2002) Pilocarpine-induced seizure-like activity with increased BNDF and neuropeptide Y expression in organotypic hippocampal slice cultures. Brain Res 950:103–118 PubMedCAS Google Scholar
Vezzani A, Schwarzer C, Lothman EW, Williamson J, Sperk G (1996) Functional changes in somatostatin and neuropeptide Y containing neurons in the rat hippocampus in chronic models of limbic seizures. Epilepsy Res 26:267–279 PubMedCAS Google Scholar
de Lanerolle NC, Kim JH, Robbins RJ, Spencer DD (1989) Hippocampal interneuron loss and plasticity in human temporal lobe epilepsy. Brain Res 495:387–395 PubMed Google Scholar
Gobbi M, Gariboldi M, Piwko C, Hoyer D, Sperk G, Vezzani A (1998) Distinct changes in peptide YY binding to, and mRNA levels of, Y1 and Y2 receptors in the rat hippocampus associated with kindling epileptogenesis. J Neurochem 70:1615–1622 PubMedCAS Google Scholar
Kofler N, Kirchmair E, Schwarzer C, Sperk G (1997) Altered expression of NPY-Y1 receptors in kainic acid induced epilepsy in rats. Neurosci Lett 230:129–132 PubMedCAS Google Scholar
Schwarzer C, Kofler N, Sperk G (1998) Up-regulation of neuropeptide Y-Y2 receptors in an animal model of temporal lobe epilepsy. Mol Pharmacol 53:6–13 PubMedCAS Google Scholar
Erickson JC, Clegg KE, Palmiter RD (1996) Sensitivity to leptin and susceptibility to seizures of mice lacking neuropeptide Y. Nature 381:415–421 PubMedCAS Google Scholar
Vezzani A, Michalkiewicz M, Michalkiewicz T, Moneta D, Ravizza T, Richichi C, Aliprandi M, Mule F, Pirona L, Gobbi M, Schwarzer C, Sperk G (2002) Seizure susceptibility and epileptogenesis are decreased in transgenic rats overexpressing neuropeptide Y. Neuroscience 110:237–243 PubMedCAS Google Scholar
Noé F, Frasca A, Balducci C, Carli M, Sperk G, Ferraguti F, Pitkänen A, Bland R, Fitzsimons H, During M, Vezzani A (2009) Neuropeptide Y overexpression using recombinant adeno-associated viral vectors. Neurotherapeutics 6:300–306 PubMed Google Scholar
Richichi C, Lin EJ, Stefanin D, Colella D, Ravizza T, Grignaschi G, Veglianese P, Sperk G, During MJ, Vezzani A (2004) Anticonvulsant and antiepileptogenic effects mediated by adeno-associated virus vector neuropeptide Y expression in the rat hippocampus. J Neurosci 24:3051–3059 PubMedCAS Google Scholar
Bacci A, Huguenard JR, Prince DA (2002) Differential modulation of synaptic transmission by neuropeptide Y in rat neocortical neurons. Proc Natl Acad Sci U S A 99:17125–17130 PubMedCASPubMed Central Google Scholar
Baraban SC (2004) Neuropeptide Y and epilepsy: recent progress, prospects and controversies. Neuropeptides 38:261–265 PubMedCAS Google Scholar
El Bahh B, Balosso S, Hamilton T, Herzog H, Beck-Sickinger AG, Sperk G, Gehlert DR, Vezzani A, Colmers WF (2005) The anti-epileptic actions of neuropeptide Y in the hippocampus are mediated by Y2 and not Y5 receptors. Eur J Neurosci 22:1417–1430 PubMed Google Scholar
Guo H, Castro PA, Palmiter RD, Baraban SC (2002) Y5 receptors mediate neuropeptide Y actions at excitatory synapses in area CA3 of the mouse hippocampus. J Neurophysiol 87:558–566 PubMedCAS Google Scholar
Kopp J, Xu ZQ, Zhang X, Pedrazzini T, Herzog H, Kresse A, Wong H, Walsh JH, Hokfelt T (2002) Expression of the neuropeptide Y Y1 receptor in the CNS of rat and of wild-type and Y1 receptor knock-out mice. Focus on immunohistochemical localization. Neuroscience 111:443–532 PubMedCAS Google Scholar
Meurs A, Clinckers R, Ebinger G, Michotte Y, Smolders I (2007) Sigma 1 receptor-mediated increase in hippocampal extracellular dopamine contributes to the mechanism of the anticonvulsant action of neuropeptide Y. Eur J Neurosci 26:3079–3092 PubMed Google Scholar
Clinckers R, Smolders I, Meurs A, Ebinger G, Michotte Y (2004) Anticonvulsant action of hippocampal dopamine and serotonin is independently mediated by D and 5-HT receptors. J Neurochem 89:834–843 PubMedCAS Google Scholar
Woldbye DP, Kokaia M (2004) Neuropeptide Y and seizures: effects of exogenously applied ligands. Neuropeptides 38:253–260 PubMedCAS Google Scholar
Meurs A, Clinckers R, Ebinger G, Michotte Y, Smolders I (2007) Clinical potential of neuropeptide Y receptor ligands in the treatment of epilepsy. Curr Top Med Chem 7:1660–1674 PubMedCAS Google Scholar
Dubé C, Brunson KL, Eghbal-Ahmadi M, Gonzalez-Vega R, Baram TZ (2005) Endogenous neuropeptide Y prevents recurrence of experimental febrile seizures by increasing seizure threshold. J Mol Neurosci 25:275–284 PubMedPubMed Central Google Scholar
French JA, Williamson PD, Thadani VM, Darcey TM, Mattson RH, Spencer SS, Spencer DD (1993) Characteristics of medial temporal lobe epilepsy: I. Results of history and physical examination. Ann Neurol 34:774–780 PubMedCAS Google Scholar
Cendes F, Andermann F, Dubeau F, Gloor P, Evans A, Jones-Gotman M, Olivier A, Andermann E, Robitaille Y, Lopes-Cendes I (1993) Early childhood prolonged febrile convulsions, atrophy and sclerosis of mesial structures, and temporal lobe epilepsy: an MRI volumetric study. Neurology 43:1083–1087 PubMedCAS Google Scholar
Lin LC, Lee WT, Chen IJ, Yang RC (2010) Lower plasma neuropeptide Y level in patients with atypical febrile convulsions. Kaohsiung J Med Sci 26:8–12 PubMed Google Scholar
Mahyar A, Ayazi P, Nazari M, Sarokhani HR, Daneshi-Kohan MM, Javadi A (2013) Lack of correlation between plasma neuropeptide Y and typical and atypical febrile seizures. Acta Med Iran 51:246–249 PubMed Google Scholar
Howell OW, Silva S, Scharfman HE, Sosunov AA, Zaben M, Shatya A, McKhann G, Herzog H, Laskowski A, Gray WP (2007) Neuropeptide Y is important for basal and seizure-induced precursor cell proliferation in the hippocampus. Neurobiol Dis 26:174–188 PubMedCAS Google Scholar
Kokaia M (2011) Seizure-induced neurogenesis in the adult brain. Eur J Neurosci 33:1133–1138 PubMed Google Scholar
Lerner JT, Sankar R, Mazarati AM (2008) Galanin and epilepsy. Cell Mol Life Sci 65:1864–1871 PubMedCAS Google Scholar
Mazarati AM (2004) Galanin and galanin receptors in epilepsy. Neuropeptides 38:331–343 PubMedCAS Google Scholar
Mazarati AM, Liu H, Soomets U, Sankar R, Shin D, Katsumori H, Langel U, Wasterlain CG (1998) Galanin modulation of seizures and seizure modulation of hippocampal galanin in animal models of status epilepticus. J Neurosci 18:10070–10077 PubMedCAS Google Scholar
Mazarati AM, Halaszi E, Telegdy G (1992) Anticonvulsive effects of galanin administered into the central nervous system upon the picrotoxin-kindled seizure syndrome in rats. Brain Res 589:164–166 PubMedCAS Google Scholar
Mazarati AM, Hohmann JG, Bacon A, Liu H, Sankar R, Steiner RA, Wynick D, Wasterlain CG (2000) Modulation of hippocampal excitability and seizures by galanin. J Neurosci 20:6276–6281 PubMedCAS Google Scholar
Chepurnov SA, Chepurnova NE, Abbasova KR, Smirnova MP (1997) The neuropeptide galanin and the seizure reactions of the developing brain. Usp Fiziol Nauk 28:3–20 CAS Google Scholar
Jacoby AS, Hort YJ, Constantinescu G, Shine J, Iismaa TP (2002) Critical role for GALR1 galanin receptor in galanin regulation of neuroendocrine function and seizure activity. Brain Res Mol Brain Res 107:195–200 PubMedCAS Google Scholar
McColl CD, Jacoby AS, Shine J, Iismaa TP, Bekkers JM (2006) Galanin receptor-1 knockout mice exhibit spontaneous epilepsy, abnormal EEGs and altered inhibition in the hippocampus. Neuropharmacology 50:209–218 PubMedCAS Google Scholar
Mazarati A, Lu X, Kilk K, Langel U, Wasterlain C, Bartfai T (2004) Galanin type 2 receptors regulate neuronal survival, susceptibility to seizures and seizure-induced neurogenesis in the dentate gyrus. Eur J Neurosci 19:3235–3244 PubMed Google Scholar
Zini S, Roisin MP, Langel U, Bartfai T, Ben-Ari Y (1993) Galanin reduces release of endogenous excitatory amino acids in the rat hippocampus. Eur J Pharmacol 245:1–7 PubMedCAS Google Scholar
Zini S, Roisin MP, Armengaud C, Ben-Ari Y (1993) Effect of potassium channel modulators on the release of glutamate induced by ischaemic-like conditions in rat hippocampal slices. Neurosci Lett 153:202–205 PubMedCAS Google Scholar
Palazzi E, Felinska S, Zambelli M, Fisone G, Bartfai T, Consolo S (1991) Galanin reduces carbachol stimulation of phosphoinositide turnover in rat ventral hippocampus by lowering Ca2+ influx through voltage-sensitive Ca2+ channels. J Neurochem 56:739–747 PubMedCAS Google Scholar
Mazarati AM, Baldwin RA, Shinmei S, Sankar R (2005) In vivo interaction between serotonin and galanin receptors types 1 and 2 in the dorsal raphe: implication for limbic seizures. J Neurochem 95:1495–1503 PubMedCASPubMed Central Google Scholar
Lin EJ, Richichi C, Young D, Baer K, Vezzani A, During MJ (2003) Recombinant AAV-mediated expression of galanin in rat hippocampus suppresses seizure development. Eur J Neurosci 18:2087–2092 PubMed Google Scholar
McCown TJ (2009) Adeno-associated virus vector-mediated expression and constitutive secretion of galanin suppresses limbic seizure activity. Neurotherapeutics 6:307–311 PubMedCASPubMed Central Google Scholar
Guan XM, Yu H, Palyha OC, McKee KK, Feighner SD, Sirinathsinghji DJ, Smith RG, Van der Ploeg LH, Howard AD (1997) Distribution of mRNA encoding the growth hormone secretagogue receptor in brain and peripheral tissues. Brain Res Mol Brain Res 48:23–29 PubMedCAS Google Scholar
Portelli J, Michotte Y, Smolders I (2012) Ghrelin: an emerging new anticonvulsant neuropeptide. Epilepsia 53:585–595 PubMedCAS Google Scholar
Ataie Z, Golzar MG, Babri S, Ebrahimi H, Mohaddes G (2011) Does ghrelin level change after epileptic seizure in rats? Seizure 20:347–349 PubMedCAS Google Scholar
Gahete MD, Cordoba-Chacon J, Salvatori R, Castano JP, Kineman RD, Luque RM (2010) Metabolic regulation of ghrelin O-acyl transferase (GOAT) expression in the mouse hypothalamus, pituitary, and stomach. Mol Cell Endocrinol 317:154–160 PubMedCASPubMed Central Google Scholar
Bhatt R, Bhatt S, Rameshwar P, Siegel A (2005) Long-term kindled seizures induce alterations in hematopoietic functions: role of serum leptin. Epilepsy Res 65:169–178 PubMedCAS Google Scholar
Asakawa A, Inui A, Kaga T, Yuzuriha H, Nagata T, Ueno N, Makino S, Fujimiya M, Niijima A, Fujino MA, Kasuga M (2001) Ghrelin is an appetite-stimulatory signal from stomach with structural resemblance to motilin. Gastroenterology 120:337–345 PubMedCAS Google Scholar
Obay BD, Tasdemir E, Tumer C, Bilgin HM, Sermet A (2007) Antiepileptic effects of ghrelin on pentylenetetrazole-induced seizures in rats. Peptides 28:1214–1219 PubMedCAS Google Scholar
Biagini G, Torsello A, Marinelli C, Gualtieri F, Vezzali R, Coco S, Bresciani E, Locatelli V (2011) Beneficial effects of desacyl-ghrelin, hexarelin and EP-80317 in models of status epilepticus. Eur J Pharmacol 670:130–136 PubMedCAS Google Scholar
Portelli J, Thielemans L, Ver Donck L, Loyens E, Coppens J, Aourz N, Aerssens J, Vermoesen K, Clinckers R, Schallier A, Michotte Y, Moechars D, Collingridge GL, Bortolotto ZA, Smolders I (2012) Inactivation of the constitutively active ghrelin receptor attenuates limbic seizure activity in rodents. Neurotherapeutics 9:658–672 PubMedCASPubMed Central Google Scholar
Cowley MA, Smith RG, Diano S, Tschop M, Pronchuk N, Grove KL, Strasburger CJ, Bidlingmaier M, Esterman M, Heiman ML, Garcia-Segura LM, Nillni EA, Mendez P, Low MJ, Sotonyi P, Friedman JM, Liu H, Pinto S, Colmers WF, Cone RD, Horvath TL (2003) The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron 37:649–661 PubMedCAS Google Scholar
Moon M, Kim S, Hwang L, Park S (2009) Ghrelin regulates hippocampal neurogenesis in adult mice. Endocr J 56:525–531 PubMedCAS Google Scholar
Xu J, Wang S, Lin Y, Cao L, Wang R, Chi Z (2009) Ghrelin protects against cell death of hippocampal neurons in pilocarpine-induced seizures in rats. Neurosci Lett 453:58–61 PubMedCAS Google Scholar
Lee J, Lim E, Kim Y, Li E, Park S (2010) Ghrelin attenuates kainic acid-induced neuronal cell death in the mouse hippocampus. J Endocrinol 205:263–270 PubMedCAS Google Scholar
Zhang R, Yang G, Wang Q, Guo F, Wang H (2013) Acylated ghrelin protects hippocampal neurons in pilocarpine-induced seizures of immature rats by inhibiting cell apoptosis. Mol Biol Rep 40:51–58 PubMed Google Scholar
Vezzani A, Hoyer D (1999) Brain somatostatin: a candidate inhibitory role in seizures and epileptogenesis. Eur J Neurosci 11:3767–3776 PubMedCAS Google Scholar
De Bundel D, Aourz N, Kiagiadaki F, Clinckers R, Hoyer D, Kastellakis A, Michotte Y, Thermos K, Smolders I (2010) Hippocampal sst(1) receptors are autoreceptors and do not affect seizures in rats. Neuroreport 21:254–258 PubMed Google Scholar
Choi YS, Lin SL, Lee B, Kurup P, Cho HY, Naegele JR, Lombroso PJ, Obrietan K (2007) Status epilepticus-induced somatostatinergic hilar interneuron degeneration is regulated by striatal enriched protein tyrosine phosphatase. J Neurosci 27:2999–3009 PubMedCASPubMed Central Google Scholar
Buckmaster PS, Dudek FE (1997) Neuron loss, granule cell axon reorganization, and functional changes in the dentate gyrus of epileptic kainate-treated rats. J Comp Neurol 385:385–404 PubMedCAS Google Scholar
Sun C, Mtchedlishvili Z, Bertram EH, Erisir A, Kapur J (2007) Selective loss of dentate hilar interneurons contributes to reduced synaptic inhibition of granule cells in an electrical stimulation-based animal model of temporal lobe epilepsy. J Comp Neurol 500:876–893 PubMedPubMed Central Google Scholar
Halabisky B, Parada I, Buckmaster PS, Prince DA (2010) Excitatory input onto hilar somatostatin interneurons is increased in a chronic model of epilepsy. J Neurophysiol 104:2214–2223 PubMedPubMed Central Google Scholar
Zhang W, Yamawaki R, Wen X, Uhl J, Diaz J, Prince DA, Buckmaster PS (2009) Surviving hilar somatostatin interneurons enlarge, sprout axons, and form new synapses with granule cells in a mouse model of temporal lobe epilepsy. J Neurosci 29:14247–14256 PubMedCASPubMed Central Google Scholar
Nagaki S, Nagaki S, Minatogawa Y, Sadamatsu M, Kato N, Osawa M, Fukuyama Y (1996) The role of vasopressin, somatostatin and GABA in febrile convulsion in rat pups. Life Sci 58:2233–2242 PubMedCAS Google Scholar
Schwarzer C, Sperk G, Samanin R, Rizzi M, Gariboldi M, Vezzani A (1996) Neuropeptides-immunoreactivity and their mRNA expression in kindling: functional implications for limbic epileptogenesis. Brain Res Brain Res Rev 22:27–50 PubMedCAS Google Scholar
Hashimoto T, Obata K (1991) Induction of somatostatin by kainic acid in pyramidal and granule cells of the rat hippocampus. Neurosci Res 12:514–527 PubMedCAS Google Scholar
Vezzani A, Monno A, Rizzi M, Galli A, Barrios M, Samanin R (1992) Somatostatin release is enhanced in the hippocampus of partially and fully kindled rats. Neuroscience 51:41–46 PubMedCAS Google Scholar
Marti M, Bregola G, Morari M, Gemignani A, Simonato M (2000) Somatostatin release in the hippocampus in the kindling model of epilepsy: a microdialysis study. J Neurochem 74:2497–2503 PubMedCAS Google Scholar
Hirai K, Seki T (2000) Cerebrospinal fluid somatostatin levels in febrile seizures and epilepsy in children. Neuropeptides 34:18–24 PubMedCAS Google Scholar
Csaba Z, Richichi C, Bernard V, Epelbaum J, Vezzani A, Dournaud P (2004) Plasticity of somatostatin and somatostatin sst2A receptors in the rat dentate gyrus during kindling epileptogenesis. Eur J Neurosci 19:2531–2538 PubMed Google Scholar
Perez J, Vezzani A, Civenni G, Tutka P, Rizzi M, Schupbach E, Hoyer D (1995) Functional effects of D-Phe-c[Cys-Tyr-D-Trp-Lys-Val-Cys]-Trp-NH2 and differential changes in somatostatin receptor messenger RNAs, binding sites and somatostatin release in kainic acid-treated rats. Neuroscience 65:1087–1097 PubMedCAS Google Scholar
Vezzani A, Serafini R, Stasi MA, Vigano G, Rizzi M, Samanin R (1991) A peptidase-resistant cyclic octapeptide analogue of somatostatin (SMS 201-995) modulates seizures induced by quinolinic and kainic acids differently in the rat hippocampus. Neuropharmacology 30:345–352 PubMedCAS Google Scholar
Monno A, Rizzi M, Samanin R, Vezzani A (1993) Anti-somatostatin antibody enhances the rate of hippocampal kindling in rats. Brain Res 602:148–152 PubMedCAS Google Scholar
Mazarati AM, Telegdy G (1992) Effects of somatostatin and anti-somatostatin serum on picrotoxin-kindled seizures. Neuropharmacology 31:793–797 PubMedCAS Google Scholar
Tallent MK, Siggins GR (1997) Somatostatin depresses excitatory but not inhibitory neurotransmission in rat CA1 hippocampus. J Neurophysiol 78:3008–3018 PubMedCAS Google Scholar
Kozhemyakin M, Rajasekaran K, Todorovic MS, Kowalski SL, Balint C, Kapur J (2013) Somatostatin type-2 receptor activation inhibits glutamate release and prevents status epilepticus. Neurobiol Dis 54:94–104 PubMedCASPubMed Central Google Scholar
Aourz N, De Bundel D, Stragier B, Clinckers R, Portelli J, Michotte Y, Smolders I (2011) Rat hippocampal somatostatin sst3 and sst4 receptors mediate anticonvulsive effects in vivo: indications of functional interactions with sst2 receptors. Neuropharmacology 61:1327–1333 PubMedCAS Google Scholar
Moneta D, Richichi C, Aliprandi M, Dournaud P, Dutar P, Billard JM, Carlo AS, Viollet C, Hannon JP, Fehlmann D, Nunn C, Hoyer D, Epelbaum J, Vezzani A (2002) Somatostatin receptor subtypes 2 and 4 affect seizure susceptibility and hippocampal excitatory neurotransmission in mice. Eur J Neurosci 16:843–849 PubMedCAS Google Scholar
Qiu C, Zeyda T, Johnson B, Hochgeschwender U, de Lecea L, Tallent MK (2008) Somatostatin receptor subtype 4 couples to the M-current to regulate seizures. J Neurosci 28:3567–3576 PubMedCAS Google Scholar
Calbet M, Guadano-Ferraz A, Spier AD, Maj M, Sutcliffe JG, Przewlocki R, de Lecea L (1999) Cortistatin and somatostatin mRNAs are differentially regulated in response to kainate. Brain Res Mol Brain Res 72:55–64 PubMedCAS Google Scholar
Wilson DN, Chung H, Elliott RC, Bremer E, George D, Koh S (2005) Microarray analysis of postictal transcriptional regulation of neuropeptides. J Mol Neurosci 25:285–298 PubMedCAS Google Scholar
Braun H, Schulz S, Becker A, Schroder H, Hollt V (1998) Protective effects of cortistatin (CST-14) against kainate-induced neurotoxicity in rat brain. Brain Res 803:54–60 PubMedCAS Google Scholar
Arganaraz GA, Konno AC, Perosa SR, Santiago JF, Boim MA, Vidotti DB, Varella PP, Costa LG, Canzian M, Porcionatto MA, Yacubian EM, Sakamoto AC, Jr Carrete H, Centeno RS, Amado D, Cavalheiro EA, Junior JA, Mazzacoratti MG (2008) The renin–angiotensin system is upregulated in the cortex and hippocampus of patients with temporal lobe epilepsy related to mesial temporal sclerosis. Epilepsia 49:1348–1357 PubMedCAS Google Scholar
Pereira MG, Becari C, Oliveira JA, Salgado MC, Garcia-Cairasco N, Costa-Neto CM (2010) Inhibition of the renin–angiotensin system prevents seizures in a rat model of epilepsy. Clin Sci (Lond) 119:477–482 CAS Google Scholar
Sarro GD, Paola ED, Gratteri S, Gareri P, Rispoli V, Siniscalchi A, Tripepi G, Gallelli L, Citraro R, Russo E (2012) Fosinopril and zofenopril, two angiotensin-converting enzyme (ACE) inhibitors, potentiate the anticonvulsant activity of antiepileptic drugs against audiogenic seizures in DBA/2 mice. Pharmacol Res 65:285–296 PubMed Google Scholar
Gouveia TL, Frangiotti MI, de Brito JM, de Castro Neto EF, Sakata MM, Febba AC, Casarini DE, Amado D, Cavalheiro EA, Almeida SS, Manchini MT, Araujo RC, Jr Silva JA, Naffah-Mazzacoratti MG (2012) The levels of renin–angiotensin related components are modified in the hippocampus of rats submitted to pilocarpine model of epilepsy. Neurochem Int 61:54–62 PubMedCAS Google Scholar
Tchekalarova J, Kambourova T, Georgiev V (2001) Effects of angiotensin III and angiotensin IV on pentylenetetrazol seizure susceptibility (threshold and kindling): interaction with adenosine A(1) receptors. Brain Res Bull 56:87–91 PubMedCAS Google Scholar
De Bundel D, Smolders I, Vanderheyden P, Michotte Y (2008) Ang II and Ang IV: unraveling the mechanism of action on synaptic plasticity, memory, and epilepsy. CNS Neurosci Ther 14:315–339 PubMed Google Scholar
Tchekalarova J, Georgiev V (2005) Angiotensin peptides modulatory system: how is it implicated in the control of seizure susceptibility? Life Sci 76:955–970 PubMedCAS Google Scholar
Georgiev VP, Lazarova MB, Petkov VD, Kambourova TS (1986) Interactions between angiotensin II, GABA and diazepam in convulsive seizures. Neuropeptides 7:329–336 PubMedCAS Google Scholar
Georgiev VP, Lazarova MB, Kambourova TS (1995) Further evidence for the interactions between angiotensin II and GABAergic transmission in pentylenetetrazol kindling seizures in mice. Neuropeptides 28:29–34 PubMedCAS Google Scholar
Georgiev VP, Lazarova MB, Kambourova TS (1996) Effects of non-peptide angiotensin II-receptor antagonists on pentylenetetrazol kindling in mice. Neuropeptides 30:401–404 PubMedCAS Google Scholar
Oz M, Yang KH, O'donovan MJ, Renaud LP (2005) Presynaptic angiotensin II AT1 receptors enhance inhibitory and excitatory synaptic neurotransmission to motoneurons and other ventral horn neurons in neonatal rat spinal cord. J Neurophysiol 94:1405–1412 PubMedCAS Google Scholar
Loyens E, Schallier A, Chai SY, De Bundel D, Vanderheyden P, Michotte Y, Smolders I (2011) Deletion of insulin-regulated aminopeptidase in mice decreases susceptibility to pentylenetetrazol-induced generalized seizures. Seizure 20:602–605 PubMedCAS Google Scholar
Stragier B, Clinckers R, Meurs A, De Bundel D, Sarre S, Ebinger G, Michotte Y, Smolders I (2006) Involvement of the somatostatin-2 receptor in the anti-convulsant effect of angiotensin IV against pilocarpine-induced limbic seizures in rats. J Neurochem 98:1100–1113 PubMedCAS Google Scholar
Georgiev V, Gyorgy L, Getova D, Markovska V (1985) Some central effects of angiotensin II. Interactions with dopaminergic transmission. Acta Physiol Pharmacol Bulg 11:19–26 PubMedCAS Google Scholar
Tchekalarova J, Sotiriou E, Georgiev V, Kostopoulos G, Angelatou F (2005) Up-regulation of adenosine A1 receptor binding in pentylenetetrazol kindling in mice: effects of angiotensin IV. Brain Res 1032:94–103 PubMedCAS Google Scholar
Gall CM (1988) Localization and seizure-induced alterations of opioid peptides and CCK in the hippocampus. NIDA Res Monogr 82:12–32 PubMedCAS Google Scholar
Wyeth MS, Zhang N, Mody I, Houser CR (2010) Selective reduction of cholecystokinin-positive basket cell innervation in a model of temporal lobe epilepsy. J Neurosci 30:8993–9006 PubMedCASPubMed Central Google Scholar
Wyeth MS, Zhang N, Houser CR (2012) Increased cholecystokinin labeling in the hippocampus of a mouse model of epilepsy maps to spines and glutamatergic terminals. Neuroscience 202:371–383 PubMedCASPubMed Central Google Scholar
Iadarola MJ, Sherwin AL (1991) Alterations in cholecystokinin peptide and mRNA in actively epileptic human temporal cortical foci. Epilepsy Res 8:58–63 PubMedCAS Google Scholar
Zetler G (1980) Anticonvulsant effects of careulein and cholecystokinin octapeptide, compared with those of diazepam. Eur J Pharmacol 65:297–300 PubMedCAS Google Scholar
Kadar T, Pesti A, Penke B, Telegdy G (1984) Inhibition of seizures induced by picrotoxin and electroshock by cholecystokinin octapeptides and their fragments in rats after intracerebroventricular administration. Neuropharmacology 23:955–961 PubMedCAS Google Scholar
Deng PY, Xiao Z, Jha A, Ramonet D, Matsui T, Leitges M, Shin HS, Porter JE, Geiger JD, Lei S (2010) Cholecystokinin facilitates glutamate release by increasing the number of readily releasable vesicles and releasing probability. J Neurosci 30:5136–5148 PubMedCASPubMed Central Google Scholar
Deng PY, Lei S (2006) Bidirectional modulation of GABAergic transmission by cholecystokinin in hippocampal dentate gyrus granule cells of juvenile rats. J Physiol 572:425–442 PubMedCASPubMed Central Google Scholar
Gall C, Lauterborn J, Isackson P, White J (1990) Seizures, neuropeptide regulation, and mRNA expression in the hippocampus. Prog Brain Res 83:371–390 PubMedCAS Google Scholar
Gall C (1988) Seizures induce dramatic and distinctly different changes in enkephalin, dynorphin, and CCK immunoreactivities in mouse hippocampal mossy fibers. J Neurosci 8:1852–1862 PubMedCAS Google Scholar
Sperk G, Wieser R, Widmann R, Singer EA (1986) Kainic acid induced seizures: changes in somatostatin, substance P and neurotensin. Neuroscience 17:1117–1126 PubMedCAS Google Scholar
Sperk G, Lassmann H, Baran H, Seitelberger F, Hornykiewicz O (1985) Kainic acid-induced seizures: dose-relationship of behavioural, neurochemical and histopathological changes. Brain Res 338:289–295 PubMedCAS Google Scholar
Shulkes A, Harris QL, Lewis SJ, Vajda JE, Jarrott B (1988) Regional brain concentrations of neurotensin following amygdaloid kindled and cortical suprathreshold stimulation-induced seizures in the rat. Neuropeptides 11:77–81 PubMedCAS Google Scholar
Lee HK, Zhang L, Smith MD, White HS, Bulaj G (2009) Glycosylated neurotensin analogues exhibit sub-picomolar anticonvulsant potency in a pharmacoresistant model of epilepsy. ChemMedChem 4:400–405 PubMed Google Scholar
Robertson CR, Flynn SP, White HS, Bulaj G (2011) Anticonvulsant neuropeptides as drug leads for neurological diseases. Nat Prod Rep 28:741–762 PubMedCAS Google Scholar
Li S, Geiger JD, Lei S (2008) Neurotensin enhances GABAergic activity in rat hippocampus CA1 region by modulating L-type calcium channels. J Neurophysiol 99:2134–2143 PubMedCAS Google Scholar
Green BR, White KL, McDougle DR, Zhang L, Klein B, Scholl EA, Pruess TH, White HS, Bulaj G (2010) Introduction of lipidization-cationization motifs affords systemically bioavailable neuropeptide Y and neurotensin analogs with anticonvulsant activities. J Pept Sci 16:486–495 PubMedCAS Google Scholar
Koneru A, Satyanarayana S, Rizwan S (2009) Endogenous opioids: their physiological role and receptors. Glob J Pharmacol 3:149–153 Google Scholar
Kanamatsu T, Obie J, Grimes L, McGinty JF, Yoshikawa K, Sabol S, Hong JS (1986) Kainic acid alters the metabolism of Met5-enkephalin and the level of dynorphin A in the rat hippocampus. J Neurosci 6:3094–3102 PubMedCAS Google Scholar
McGinty JF, Kanamatsu T, Obie J, Dyer RS, Mitchell CL, Hong JS (1986) Amygdaloid kindling increases enkephalin-like immunoreactivity but decreases dynorphin-A-like immunoreactivity in rat hippocampus. Neurosci Lett 71:31–36 PubMedCAS Google Scholar
Rocha LL, Evans CJ, Maidment NT (1997) Amygdala kindling modifies extracellular opioid peptide content in rat hippocampus measured by microdialysis. J Neurochem 68:616–624 PubMedCAS Google Scholar
Mazarati A, Liu H, Wasterlain C (1999) Opioid peptide pharmacology and immunocytochemistry in an animal model of self-sustaining status epilepticus. Neuroscience 89:167–173 PubMedCAS Google Scholar
Pirker S, Gasser E, Czech T, Baumgartner C, Schuh E, Feucht M, Novak K, Zimprich F, Sperk G (2009) Dynamic up-regulation of prodynorphin transcription in temporal lobe epilepsy. Hippocampus 19:1051–1054 PubMedCASPubMed Central Google Scholar
Hammers A, Asselin MC, Hinz R, Kitchen I, Brooks DJ, Duncan JS, Koepp MJ (2007) Upregulation of opioid receptor binding following spontaneous epileptic seizures. Brain 130:1009–1016 PubMed Google Scholar
McDermott CM, Schrader LA (2011) Activation of kappa opioid receptors increases intrinsic excitability of dentate gyrus granule cells. J Physiol 589:3517–3532 PubMedCASPubMed Central Google Scholar
Loacker S, Sayyah M, Wittmann W, Herzog H, Schwarzer C (2007) Endogenous dynorphin in epileptogenesis and epilepsy: anticonvulsant net effect via kappa opioid receptors. Brain 130:1017–1028 PubMed Google Scholar
Simmons ML, Chavkin C (1996) Endogenous opioid regulation of hippocampal function. Int Rev Neurobiol 39:145–196 PubMedCAS Google Scholar
Wheless JW, Gibson PA, Rosbeck KL, Hardin M, O'Dell C, Whittemore V, Pellock JM (2012) Infantile spasms (West syndrome): update and resources for pediatricians and providers to share with parents. BMC Pediatr 12:108 PubMedPubMed Central Google Scholar
Brunson KL, Eghbal-Ahmadi M, Baram TZ (2001) How do the many etiologies of West syndrome lead to excitability and seizures? The corticotropin releasing hormone excess hypothesis. Brain Dev 23:533–538 PubMedCASPubMed Central Google Scholar
Baram TZ, Hirsch E, Snead OC III, Schultz L (1992) Corticotropin-releasing hormone-induced seizures in infant rats originate in the amygdala. Ann Neurol 31:488–494 PubMedCASPubMed Central Google Scholar
Baram TZ, Chalmers DT, Chen C, Koutsoukos Y, De Souza EB (1997) The CRF1 receptor mediates the excitatory actions of corticotropin releasing factor (CRF) in the developing rat brain: in vivo evidence using a novel, selective, non-peptide CRF receptor antagonist. Brain Res 770:89–95 PubMedCASPubMed Central Google Scholar
Wang W, Dow KE, Fraser DD (2001) Elevated corticotropin releasing hormone/corticotropin releasing hormone-R1 expression in postmortem brain obtained from children with generalized epilepsy. Ann Neurol 50:404–409 PubMedCAS Google Scholar
Aldenhoff JB, Gruol DL, Rivier J, Vale W, Siggins GR (1983) Corticotropin releasing factor decreases postburst hyperpolarizations and excites hippocampal neurons. Science 221:875–877 PubMedCAS Google Scholar
Hollrigel GS, Chen K, Baram TZ, Soltesz I (1998) The pro-convulsant actions of corticotropin-releasing hormone in the hippocampus of infant rats. Neuroscience 84:71–79 PubMedCASPubMed Central Google Scholar
Avishai-Eliner S, Yi SJ, Baram TZ (1996) Developmental profile of messenger RNA for the corticotropin-releasing hormone receptor in the rat limbic system. Brain Res Dev Brain Res 91:159–163 PubMedCASPubMed Central Google Scholar
Baram TZ, Schultz L (1991) Corticotropin-releasing hormone is a rapid and potent convulsant in the infant rat. Brain Res Dev Brain Res 61:97–101 PubMedCASPubMed Central Google Scholar
Wang W, Murphy B, Dow KE, David AR, Fraser DD (2004) Systemic adrenocorticotropic hormone administration down-regulates the expression of corticotropin-releasing hormone (CRH) and CRH-binding protein in infant rat hippocampus. Pediatr Res 55:604–610 PubMedCAS Google Scholar
Jaseja H, Jaseja B, Badaya S, Tonpay P (2012) Superior therapeutic efficacy of adrenocorticotrophic hormone (ACTH) in infantile spasms: emerging evidence. Epilepsy Behav 25:250 PubMed Google Scholar
Brunson KL, Khan N, Eghbal-Ahmadi M, Baram TZ (2001) Corticotropin (ACTH) acts directly on amygdala neurons to down-regulate corticotropin-releasing hormone gene expression. Ann Neurol 49:304–312 PubMedCASPubMed Central Google Scholar
Nagamitsu S, Matsuishi T, Yamashita Y, Shimizu T, Iwanaga R, Murakami Y, Miyazaki M, Hashimoto T, Kato H (2001) Decreased cerebrospinal fluid levels of beta-endorphin and ACTH in children with infantile spasms. J Neural Transm 108:363–371 PubMedCAS Google Scholar
Baram TZ, Mitchell WG, III Snead OC, Horton EJ, Saito M (1992) Brain-adrenal axis hormones are altered in the CSF of infants with massive infantile spasms. Neurology 42:1171–1175 PubMedCASPubMed Central Google Scholar
Nalin A, Facchinetti F, Galli V, Petraglia F, Storchi R, Genazzani AR (1985) Reduced ACTH content in cerebrospinal fluid of children affected by cryptogenic infantile spasms with hypsarrhythmia. Epilepsia 26:446–449 PubMedCAS Google Scholar
Hauger RL, Irwin MR, Lorang M, Aguilera G, Brown MR (1993) High intracerebral levels of CRH result in CRH receptor downregulation in the amygdala and neuroimmune desensitization. Brain Res 616:283–292 PubMedCAS Google Scholar
Shumiloff NA, Lam WM, Manasco KB (2013) Adrenocorticotropic hormone for the treatment of West syndrome in children. Ann Pharmacother 47:744–754 PubMed Google Scholar
O'Dowd BF, Lee DK, Huang W, Nguyen T, Cheng R, Liu Y, Wang B, Gershengorn MC, George SR (2000) TRH-R2 exhibits similar binding and acute signaling but distinct regulation and anatomic distribution compared with TRH-R1. Mol Endocrinol 14:183–193 PubMed Google Scholar
Knoblach SM, Kubek MJ (1997) Changes in thyrotropin-releasing hormone levels in hippocampal subregions induced by a model of human temporal lobe epilepsy: effect of partial and complete kindling. Neuroscience 76:97–104 PubMedCAS Google Scholar
Knoblach SM, Kubek MJ (1997) Increases in thyrotropin-releasing hormone messenger RNA expression induced by a model of human temporal lobe epilepsy: effect of partial and complete kindling. Neuroscience 76:85–95 PubMedCAS Google Scholar
Kubek MJ, Meyerhoff JL, Hill TG, Norton JA, Sattin A (1985) Effects of subconvulsive and repeated electroconvulsive shock on thyrotropin-releasing hormone in rat brain. Life Sci 36:315–320 PubMedCAS Google Scholar
Takeuchi Y, Matsushita H, Kawano H, Sakai H, Yoshimoto K, Sawada T (1999) TRH increases cerebrospinal fluid concentration of kynurenine. Neuroreport 10:3601–3603 PubMedCAS Google Scholar
Deng PY, Porter JE, Shin HS, Lei S (2006) Thyrotropin-releasing hormone increases GABA release in rat hippocampus. J Physiol 577:497–511 PubMedCASPubMed Central Google Scholar
Khomane KS, Meena CL, Jain R, Bansal AK (2011) Novel thyrotropin-releasing hormone analogs: a patent review. Expert Opin Ther Pat 21:1673–1691 PubMedCAS Google Scholar
Facchinetti F, Nalin A, Petraglia F, Galli V, Genazzani AR (1985) Reduced ACTH, while normal beta-endorphin CSF levels in early epileptic encephalopathies. Peptides 6:31–33 PubMedCAS Google Scholar
Henriksen SJ, Bloom FE, McCoy F, Ling N, Guillemin R (1978) Beta-endorphin induces nonconvulsive limbic seizures. Proc Natl Acad Sci U S A 75:5221–5225 PubMedCASPubMed Central Google Scholar
Cain DP, Boon F, Corcoran ME (1990) Involvement of multiple opiate receptors in opioid kindling. Brain Res 517:236–244 PubMedCAS Google Scholar
Bing G, Wilson B, Hudson P, Jin L, Feng Z, Zhang W, Bing R, Hong JS (1997) A single dose of kainic acid elevates the levels of enkephalins and activator protein-1 transcription factors in the hippocampus for up to 1 year. Proc Natl Acad Sci U S A 94:9422–9427 PubMedCASPubMed Central Google Scholar
Rees H, Ang LC, Shul DD, George DH, Begley H, McConnell T (1994) Increase in enkephalin-like immunoreactivity in hippocampi of adults with generalized epilepsy. Brain Res 652:113–119 PubMedCAS Google Scholar
Carrillo E, Fuente T, Laorden ML (1992) Hyperthermia-induced seizures alter the levels of methionine-enkephalin in immature rat brain. Neuropeptides 21:139–142 PubMedCAS Google Scholar
Laorden ML, Olaso MJ, Miralles FS, Puig MM (1985) Cerebrospinal fluid leucine-enkephalin-like levels in febrile convulsions. Methods Find Exp Clin Pharmacol 7:75–77 PubMedCAS Google Scholar
Tanaka T, Takeshita H, Kawahara R, Hazama H (1989) Chemical kindling with Met-enkephalin and transfer between chemical and electrical kindling. Epilepsy Res 3:214–221 PubMedCAS Google Scholar
Comer SD, Hoenicke EM, Sable AI, McNutt RW, Chang KJ, De Costa BR, Mosberg HI, Woods JH (1993) Convulsive effects of systemic administration of the delta opioid agonist BW373U86 in mice. J Pharmacol Exp Ther 267:888–895 PubMedCAS Google Scholar
Yajima Y, Narita M, Takahashi-Nakano Y, Misawa M, Nagase H, Mizoguchi H, Tseng LF, Suzuki T (2000) Effects of differential modulation of mu-, delta- and kappa-opioid systems on bicuculline-induced convulsions in the mouse. Brain Res 862:120–126 PubMedCAS Google Scholar
Grecksch G, Becker A, Schroeder H, Hollt V (1999) Involvement of delta-opioid receptors in pentylenetetrazol kindling development and kindling-related processes in rats. Naunyn Schmiedebergs Arch Pharmacol 360:151–156 PubMedCAS Google Scholar
Schroeder H, Becker A, Grecksch G, Schroeder U, Hoellt V (1998) The effect of pentylenetetrazol kindling on synaptic mechanisms of interacting glutamatergic and opioid system in the hippocampus of rats. Brain Res 811:40–46 PubMedCAS Google Scholar
Lupica CR (1995) Delta and mu enkephalins inhibit spontaneous GABA-mediated IPSCs via a cyclic AMP-independent mechanism in the rat hippocampus. J Neurosci 15:737–749 PubMedCAS Google Scholar
Sperk G, Marksteiner J, Saria A, Humpel C (1990) Differential changes in tachykinins after kainic acid-induced seizures in the rat. Neuroscience 34:219–224 PubMedCAS Google Scholar
Liu H, Cao Y, Basbaum AI, Mazarati AM, Sankar R, Wasterlain CG (1999) Resistance to excitotoxin-induced seizures and neuronal death in mice lacking the preprotachykinin A gene. Proc Natl Acad Sci U S A 96:12096–12101 PubMedCASPubMed Central Google Scholar
Zachrisson O, Lindefors N, Brene S (1998) A tachykinin NK1 receptor antagonist, CP-122,721-1, attenuates kainic acid-induced seizure activity. Brain Res Mol Brain Res 60:291–295 PubMedCAS Google Scholar
Liu H, Mazarati AM, Katsumori H, Sankar R, Wasterlain CG (1999) Substance P is expressed in hippocampal principal neurons during status epilepticus and plays a critical role in the maintenance of status epilepticus. Proc Natl Acad Sci U S A 96:5286–5291 PubMedCASPubMed Central Google Scholar
Kato Y, Igarashi N, Hirasawa A, Tsujimoto G, Kobayashi M (1995) Distribution and developmental changes in vasopressin V2 receptor mRNA in rat brain. Differentiation 59:163–169 PubMedCAS Google Scholar
Richmond CA (2003) The role of arginine vasopressin in thermoregulation during fever. J Neurosci Nurs 35:281–286 PubMed Google Scholar
Kasting NW, Veale WL, Cooper KE, Lederis K (1981) Vasopressin may mediate febrile convulsions. Brain Res 213:327–333 PubMedCAS Google Scholar
Sun Q, Pretel S, Applegate CD, Piekut DT (1996) Oxytocin and vasopressin mRNA expression in rat hypothalamus following kainic acid-induced seizures. Neuroscience 71:543–554 PubMedCAS Google Scholar
Iwanaga M, Ohno M, Katoh A, Ohbuchi T, Ishikura T, Fujihara H, Nomura M, Hachisuka K, Ueta Y (2011) Upregulation of arginine vasopressin synthesis in the rat hypothalamus after kainic acid-induced seizures. Brain Res 1424:1–8 PubMedCAS Google Scholar
Kruse H, Van Wimersma Greidanus TB, De Wied D (1977) Barrel rotation induced by vasopressin and related peptides in rats. Pharmacol Biochem Behav 7:311–313 PubMedCAS Google Scholar
Abood LG, Knapp R, Mitchell T, Booth H, Schwab L (1980) Chemical requirements of vasopressins for barrel rotation convulsions and reversal by oxytocin. J Neurosci Res 5:191–199 PubMedCAS Google Scholar
Croiset G, De Wied D (1997) Proconvulsive effect of vasopressin; mediation by a putative V2 receptor subtype in the central nervous system. Brain Res 759:18–23 PubMedCAS Google Scholar
Gulec G, Noyan B (2002) Arginine vasopressin in the pathogenesis of febrile convulsion and temporal lobe epilepsy. Neuroreport 13:2045–2048 PubMedCAS Google Scholar
Murase T, Kondo K, Otake K, Oiso Y (1993) Pituitary adenylate cyclase-activating polypeptide stimulates arginine vasopressin release in conscious rats. Neuroendocrinology 57:1092–1096 PubMedCAS Google Scholar
Chepurnova NE, Ponomarenko AA, Chepurnov SA (2002) Peptidergic mechanisms of hyperthermia-evoked convulsions in rats in early postnatal ontogenesis. Neurosci Behav Physiol 32:505–511 PubMedCAS Google Scholar
Nomura M, Ueta Y, Hannibal J, Serino R, Yamamoto Y, Shibuya I, Matsumoto T, Yamashita H (2000) Induction of pituitary adenylate cyclase-activating polypeptide mRNA in the medial parvocellular part of the paraventricular nucleus of rats following kainic-acid-induced seizure. Neuroendocrinology 71:318–326 PubMedCAS Google Scholar
Meierkord H, Shorvon S, Lightman SL (1994) Plasma concentrations of prolactin, noradrenaline, vasopressin and oxytocin during and after a prolonged epileptic seizure. Acta Neurol Scand 90:73–77 PubMedCAS Google Scholar
Mens WB, Van Wimersma Greidanus TB (1982) Hypophyseal hormone levels in blood and cerebrospinal fluid in response to histamine and pentylenetetrazol. Neuroendocrinology 35:418–423 PubMedCAS Google Scholar
Piekut DT, Pretel S, Applegate CD (1996) Activation of oxytocin-containing neurons of the paraventricular nucleus (PVN) following generalized seizures. Synapse 23:312–320 PubMedCAS Google Scholar
Greenwood RS, Fan Z, Meeker R (1997) Persistent elevation of corticotrophin releasing factor and vasopressin but not oxytocin mRNA in the rat after kindled seizures. Neurosci Lett 224:66–70 PubMedCAS Google Scholar
Carter DA, Murphy D (1993) Acute down-regulation of oxytocin and vasopressin mRNA levels following metrazole-induced seizure in the rat. Neurosci Lett 160:135–138 PubMedCAS Google Scholar
Kaplan E (1978) A generalized epileptiform convulsion after intra-amniotic prostaglandin with intravenous oxytocin infusion: a case report. S Afr Med J 53:27–29 PubMedCAS Google Scholar
Loyens E, Vermoesen K, Schallier A, Michotte Y, Smolders I (2012) Proconvulsive effects of oxytocin in the generalized pentylenetetrazol mouse model are mediated by vasopressin 1a receptors. Brain Res 1436:43–50 PubMedCAS Google Scholar
Erbas O, Yilmaz M, Korkmaz HA, Bora S, Evren V, Peker G (2013) Oxytocin inhibits pentylentetrazol-induced seizures in the rat. Peptides 40:141–144 PubMedCAS Google Scholar
Braida D, Donzelli A, Martucci R, Ponzoni L, Pauletti A, Sala M (2012) Neurohypophyseal hormones protect against pentylenetetrazole-induced seizures in zebrafish: role of oxytocin-like and V1a-like receptor. Peptides 37:327–333 PubMedCAS Google Scholar
Sala M, Braida D, Lentini D, Busnelli M, Bulgheroni E, Capurro V, Finardi A, Donzelli A, Pattini L, Rubino T, Parolaro D, Nishimori K, Parenti M, Chini B (2011) Pharmacologic rescue of impaired cognitive flexibility, social deficits, increased aggression, and seizure susceptibility in oxytocin receptor null mice: a neurobehavioral model of autism. Biol Psychiatry 69:875–882 PubMedCAS Google Scholar
Knigge KM, Wagner JE (1997) Melanin-concentrating hormone (MCH) involvement in pentylenetetrazole (PTZ)-induced seizure in rat and guinea pig. Peptides 18:1095–1097 PubMedCAS Google Scholar
Parks GS, Okumura SM, Gohil K, Civelli O (2010) Mice lacking melanin concentrating hormone 1 receptor are resistant to seizures. Neurosci Lett 484:104–107 PubMedCASPubMed Central Google Scholar
Palasz A, Krzystanek M, Worthington J, Czajkowska B, Kostro K, Wiaderkiewicz R, Bajor G (2012) Nesfatin-1, a unique regulatory neuropeptide of the brain. Neuropeptides 46:105–112 PubMedCAS Google Scholar
Aydin S, Dag E, Ozkan Y, Erman F, Dagli AF, Kilic N, Sahin I, Karatas F, Yoldas T, Barim AO, Kendir Y (2009) Nesfatin-1 and ghrelin levels in serum and saliva of epileptic patients: hormonal changes can have a major effect on seizure disorders. Mol Cell Biochem 328:49–56 PubMedCAS Google Scholar
Aydin S, Dag E, Ozkan Y, Arslan O, Koc G, Bek S, Kirbas S, Kasikci T, Abasli D, Gokcil Z, Odabasi Z, Catak Z (2011) Time-dependent changes in the serum levels of prolactin, nesfatin-1 and ghrelin as a marker of epileptic attacks young male patients. Peptides 32:1276–1280 PubMedCAS Google Scholar
Liu Z, Wang F, Li ZZ, Qi JH, Xu WZ, Zhang PS, Sun T (2011) Expression of neuropeptides ghrelin and nesfatin-1 in kainic acid kindling rats. Zhonghua Yi Xue Za Zhi 91:496–500 PubMedCAS Google Scholar
Romualdi P, Lesa G, Donatini A, Balboni G, Tomatis R, Ferri S (1992) Alterations in vasoactive intestinal polypeptide-related peptides after pentylenetetrazole-induced seizures in rat brain. Eur J Pharmacol 229:149–153 PubMedCAS Google Scholar
Marksteiner J, Sperk G, Maas D (1989) Differential increases in brain levels of neuropeptide Y and vasoactive intestinal polypeptide after kainic acid-induced seizures in the rat. Naunyn Schmiedebergs Arch Pharmacol 339:173–177 PubMedCAS Google Scholar
Ko FJ, Chiang CH, Liu WJ, Chiang W (1991) Somatostatin, substance P, prolactin and vasoactive intestinal peptide levels in serum and cerebrospinal fluid of children with seizure disorders. Gaoxiong Yi Xue Ke Xue Za Zhi 7:391–397 PubMedCAS Google Scholar
de Lanerolle NC, Gunel M, Sundaresan S, Shen MY, Brines ML, Spencer DD (1995) Vasoactive intestinal polypeptide and its receptor changes in human temporal lobe epilepsy. Brain Res 686:182–193 PubMed Google Scholar
Bulaj G, Green BR, Lee HK, Robertson CR, White K, Zhang L, Sochanska M, Flynn SP, Scholl EA, Pruess TH, Smith MD, White HS (2008) Design, synthesis, and characterization of high-affinity, systemically-active galanin analogues with potent anticonvulsant activities. J Med Chem 51:8038–8047 PubMedCAS Google Scholar
Veronesi MC, Kubek DJ, Kubek MJ (2007) Intranasal delivery of a thyrotropin-releasing hormone analog attenuates seizures in the amygdala-kindled rat. Epilepsia 48:2280–2286 PubMedCAS Google Scholar
Kubek MJ, Domb AJ, Veronesi MC (2009) Attenuation of kindled seizures by intranasal delivery of neuropeptide-loaded nanoparticles. Neurotherapeutics 6:359–371 PubMedCAS Google Scholar
Noé F, Vaghi V, Balducci C, Fitzsimons H, Bland R, Zardoni D, Sperk G, Carli M, During MJ, Vezzani A (2010) Anticonvulsant effects and behavioural outcomes of rAAV serotype 1 vector-mediated neuropeptide Y overexpression in rat hippocampus. Gene Ther 17:643–652 PubMed Google Scholar
Sorensen AT, Kokaia M (2013) Novel approaches to epilepsy treatment. Epilepsia 54:1–10 PubMed Google Scholar
McCown TJ (2010) The future of epilepsy treatment: focus on adeno-associated virus vector gene therapy. Drug News Perspect 23:281–286 PubMedCAS Google Scholar
Foti SB, Samulski RJ, McCown TJ (2009) Delivering multiple gene products in the brain from a single adeno-associated virus vector. Gene Ther 16:1314–1319 PubMedCASPubMed Central Google Scholar
Pitkänen A, Schwartzkroin PA, Moshé SL (2006) Models of seizures and epilepsy. Elsevier Academic Press, Burlington Google Scholar
Wan RQ, Noguera EC, Weiss SR (1998) Anticonvulsant effects of intra-hippocampal injection of TRH in amygdala kindled rats. Neuroreport 9:677–682 PubMedCAS Google Scholar