Cholangiocarcinoma: Classification, Histopathology and Molecular Carcinogenesis (original) (raw)

References

  1. Bridgewater J, Galle PR, Khan SA, Llovet JM, Park JW, Patel T, Pawlik TM, Gores GJ (2014) Guidelines for the diagnosis and management of intrahepatic cholangiocarcinoma. J Hepatol 60(6):1268–1289
    Article PubMed Google Scholar
  2. Dodson RM, Weiss MJ, Cosgrove D, Herman JM, Kamel I, Anders R, Geschwind JF, Pawlik TM (2013) Intrahepatic cholangiocarcinoma: management options and emerging therapies. J Am Coll Surg 217(4):736–750 e734
    Article PubMed Google Scholar
  3. Rizvi S, Gores GJ (2013) Pathogenesis, diagnosis, and management of cholangiocarcinoma. Gastroenterology 145(6):1215–1229
    Article CAS PubMed Google Scholar
  4. Javle M, Bekaii-Saab T, Jain A, Wang Y, Kelley RK, Wang K, Kang HC, Catenacci D, Ali S, Krishnan S, Ahn D, Bocobo AG, Zuo M, Kaseb A, Miller V, Stephens PJ, Meric-Bernstam F, Shroff R, Ross J (2016) Biliary cancer: utility of next-generation sequencing for clinical management. Cancer 122(24):3838–3847
    Article CAS PubMed Google Scholar
  5. Nakanuma Y, Sato Y, Harada K, Sasaki M, Xu J, Ikeda H (2010) Pathological classification of intrahepatic cholangiocarcinoma based on a new concept. World J Hepatol 2(12):419–427
    Article PubMed PubMed Central Google Scholar
  6. Nakanuma Y, Tsutsui A, Ren XS, Harada K, Sato Y, Sasaki M (2014) What are the precursor and early lesions of peripheral intrahepatic cholangiocarcinoma? Int J Hepatol 2014:805973
    Article PubMed PubMed Central Google Scholar
  7. Maemura K, Natsugoe S, Takao S (2014) Molecular mechanism of cholangiocarcinoma carcinogenesis. J Hepatobiliary Pancreat Sci 21(10):754–760
    Article PubMed Google Scholar
  8. Cai Y, Cheng N, Ye H, Li F, Song P, Tang W (2016) The current management of cholangiocarcinoma: a comparison of current guidelines. Biosci Trends 10(2):92–102
    Article PubMed Google Scholar
  9. Marcano-Bonilla L, Mohamed EA, Mounajjed T, Roberts LR (2016) Biliary tract cancers: epidemiology, molecular pathogenesis and genetic risk associations. Chin Clin Oncol 5(5):61
    Article PubMed Google Scholar
  10. Razumilava N, Gores GJ (2014) Cholangiocarcinoma. Lancet 383(9935):2168–2179
    Article PubMed PubMed Central Google Scholar
  11. Nakanuma Y, Harada K, Sasaki M, Sato Y (2014) Proposal of a new disease concept "biliary diseases with pancreatic counterparts". Anatomical and pathological bases. Histol Histopathol 29(1):1–10
    PubMed Google Scholar
  12. Simbolo M, Fassan M, Mafficini A, Lawlor RT, Ruzzenente A, Scarpa A (2016) New genomic landscapes and therapeutic targets for biliary tract cancers. Front Biosci (Landmark Ed) 21:707–718
    Article CAS Google Scholar
  13. Serafini FM, Radvinsky D (2016) The pathways of genetic transformation in cholangiocarcinogenesis. Cancer Genet 209(12):554–558
    Article CAS PubMed Google Scholar
  14. Jain A, Kwong LN, Javle M (2016) Genomic profiling of biliary tract cancers and implications for clinical practice. Curr Treat Options in Oncol 17(11):58
    Article Google Scholar
  15. Edge SB, Byrd DR, Compton CC (2010) AJCC Cancer staging manual, 7th edn. Springer, New York
    Google Scholar
  16. Sobin LH, Gospodarowicz MK, Wittekind C (2009) TNM classification of malignant tumors, 7th edn. Wiley-Blackwell, Oxford
    Google Scholar
  17. Gandou C, Harada K, Sato Y, Igarashi S, Sasaki M, Ikeda H, Nakanuma Y (2013) Hilar cholangiocarcinoma and pancreatic ductal adenocarcinoma share similar histopathologies, immunophenotypes, and development-related molecules. Hum Pathol 44(5):811–821
    Article CAS PubMed Google Scholar
  18. Nemeth Z, Szasz AM, Somoracz A, Tatrai P, Nemeth J, Gyorffy H, Szijarto A, Kupcsulik P, Kiss A, Schaff Z (2009) Zonula occludens-1, occludin, and E-cadherin protein expression in biliary tract cancers. Pathol Oncol Res 15(3):533–539
    Article CAS PubMed Google Scholar
  19. Nemeth Z, Szasz AM, Tatrai P, Nemeth J, Gyorffy H, Somoracz A, Szijarto A, Kupcsulik P, Kiss A, Schaff Z (2009) Claudin-1, −2, −3, −4, −7, −8, and −10 protein expression in biliary tract cancers. J Histochem Cytochem 57(2):113–121
    Article CAS PubMed PubMed Central Google Scholar
  20. Zhou Y, Zhao Y, Li B, Huang J, Wu L, Xu D, Yang J, He J (2012) Hepatitis viruses infection and risk of intrahepatic cholangiocarcinoma: evidence from a meta-analysis. BMC Cancer 12:289
    Article PubMed PubMed Central Google Scholar
  21. Hu J, Yin B (2016) Advances in biomarkers of biliary tract cancers. Biomed Pharmacother 81:128–135
    Article CAS PubMed Google Scholar
  22. Rizvi S, Khan SA, Hallemeier CL, Kelley RK, Gores GJ (2018) Cholangiocarcinoma - evolving concepts and therapeutic strategies. Nat Rev Clin Oncol 15(2):95–111
    Article CAS PubMed Google Scholar
  23. Dong LQ, Shi Y, Ma LJ, Yang LX, Wang XY, Zhang S, Wang ZC, Duan M, Zhang Z, Liu LZ, Zheng BH, Ding ZB, Ke AW, Gao DM, Yuan K, Zhou J, Fan J, Xi R, Gao Q (2018) Spatial and temporal clonal evolution of intrahepatic cholangiocarcinoma. J Hepatol 69(1):89–98
    Article CAS PubMed Google Scholar
  24. Palmer WC, Patel T (2012) Are common factors involved in the pathogenesis of primary liver cancers? A meta-analysis of risk factors for intrahepatic cholangiocarcinoma. J Hepatol 57(1):69–76
    Article PubMed PubMed Central Google Scholar
  25. Wei M, Lu L, Lin P, Chen Z, Quan Z, Tang Z (2016) Multiple cellular origins and molecular evolution of intrahepatic cholangiocarcinoma. Cancer Lett 379(2):253–261
    Article CAS PubMed Google Scholar
  26. Raggi C, Invernizzi P, Andersen JB (2015) Impact of microenvironment and stem-like plasticity in cholangiocarcinoma: molecular networks and biological concepts. J Hepatol 62(1):198–207
    Article CAS PubMed Google Scholar
  27. Moeini A, Sia D, Zhang Z, Camprecios G, Stueck A, Dong H, Montal R, Torrens L, Martinez-Quetglas I, Fiel MI, Hao K, Villanueva A, Thung SN, Schwartz ME, Llovet JM (2017) Mixed hepatocellular cholangiocarcinoma tumors: Cholangiolocellular carcinoma is a distinct molecular entity. J Hepatol 66(5):952–961
    Article CAS PubMed Google Scholar
  28. Mertens JC, Rizvi S, Gores GJ (2018) Targeting cholangiocarcinoma. Biochim Biophys Acta 1864(4 Pt B):1454–1460
    Article CAS Google Scholar
  29. Aishima S, Oda Y (2015) Pathogenesis and classification of intrahepatic cholangiocarcinoma: different characters of perihilar large duct type versus peripheral small duct type. J Hepatobiliary Pancreat Sci 22(2):94–100
    Article PubMed Google Scholar
  30. Carpino G, Cardinale V, Onori P, Franchitto A, Berloco PB, Rossi M, Wang Y, Semeraro R, Anceschi M, Brunelli R, Alvaro D, Reid LM, Gaudio E (2012) Biliary tree stem/progenitor cells in glands of extrahepatic and intraheptic bile ducts: an anatomical in situ study yielding evidence of maturational lineages. J Anat 220(2):186–199
    Article PubMed Google Scholar
  31. Nakanuma Y, Crurado MP, Franceschi S, Gores GJ, Paradis V, Sripa B, Tsui WMS, Wee A (2010) Intrahepatic cholangiocarcinoma. In: Bosman FT, Carneiro F, Hruban RH, Theise ND (eds) WHO classification of tumors of the digestive system, 4th edn. IARC, Lyon, pp 217–224
    Google Scholar
  32. Fernandez Moro C, Fernandez-Woodbridge A, Alistair D'souza M, Zhang Q, Bozoky B, Kandaswamy SV, Catalano P, Heuchel R, Shtembari S, Del Chiaro M, Danielsson O, Bjornstedt M, Lohr JM, Isaksson B, Verbeke C, Bozoky B (2016) Immunohistochemical typing of adenocarcinomas of the Pancreatobiliary system improves diagnosis and prognostic stratification. PLoS One 11(11):e0166067
    Article PubMed PubMed Central CAS Google Scholar
  33. Lagana S, Hsiao S, Bao F, Sepulveda A, Moreira R, Lefkowitch J, Remotti H (2015) HepPar-1 and Arginase-1 immunohistochemistry in adenocarcinoma of the small intestine and Ampullary region. Arch Pathol Lab Med 139(6):791–795
    Article PubMed Google Scholar
  34. Lodi C, Szabo E, Holczbauer A, Batmunkh E, Szijarto A, Kupcsulik P, Kovalszky I, Paku S, Illyes G, Kiss A, Schaff Z (2006) Claudin-4 differentiates biliary tract cancers from hepatocellular carcinomas. Mod Pathol 19(3):460–469
    Article CAS PubMed Google Scholar
  35. Borka K, Kaliszky P, Szabo E, Lotz G, Kupcsulik P, Schaff Z, Kiss A (2007) Claudin expression in pancreatic endocrine tumors as compared with ductal adenocarcinomas. Virchows Arch 450(5):549–557
    Article CAS PubMed Google Scholar
  36. Kloppel G, Adsay V, Konukiewitz B, Kleeff J, Schlitter AM, Esposito I (2013) Precancerous lesions of the biliary tree. Best Pract Res Clin Gastroenterol 27(2):285–297
    Article PubMed Google Scholar
  37. Sato Y, Sasaki M, Harada K, Aishima S, Fukusato T, Ojima H, Kanai Y, Kage M, Nakanuma Y, Tsubouchi H, Hepatolithiasis Subdivision of Intractable Hepatobiliary Diseases Study Group of J (2014) Pathological diagnosis of flat epithelial lesions of the biliary tract with emphasis on biliary intraepithelial neoplasia. J Gastroenterol 49(1):64–72
    Article PubMed Google Scholar
  38. Sato Y, Harada K, Sasaki M, Nakanuma Y (2013) Histological characteristics of biliary intraepithelial neoplasia-3 and intraepithelial spread of cholangiocarcinoma. Virchows Arch 462(4):421–427
    Article CAS PubMed Google Scholar
  39. Bosman FT, Carneiro F, Hruban RH, Theise ND (2010) WHO classification of tumors of the digestive system, 4th edn. IARC, Lyon
    Google Scholar
  40. Ohtsuka M, Shimizu H, Kato A, Yoshitomi H, Furukawa K, Tsuyuguchi T, Sakai Y, Yokosuka O, Miyazaki M (2014) Intraductal papillary neoplasms of the bile duct. Int J Hepatol 2014(459091):1–10
    Article Google Scholar
  41. Nakanuma Y, Uesaka K, Miyayama S, Yamaguchi H, Ohtsuka M (2017) Intraductal neoplasms of the bile duct. A new challenge to biliary tract tumor pathology. Histol Histopathol 32(10):1001–1015
    PubMed Google Scholar
  42. Zen Y, Adsay NV, Bardadin K, Colombari R, Ferrell L, Haga H, Hong SM, Hytiroglou P, Kloppel G, Lauwers GY, van Leeuwen DJ, Notohara K, Oshima K, Quaglia A, Sasaki M, Sessa F, Suriawinata A, Tsui W, Atomi Y, Nakanuma Y (2007) Biliary intraepithelial neoplasia: an international interobserver agreement study and proposal for diagnostic criteria. Mod Pathol 20(6):701–709
    Article PubMed Google Scholar
  43. Hajosi-Kalcakosz S, Dezso K, Bugyik E, Bodor C, Paku S, Pavai Z, Halasz J, Schlachter K, Schaff Z, Nagy P (2012) Enhancer of zeste homologue 2 (EZH2) is a reliable immunohistochemical marker to differentiate malignant and benign hepatic tumors. Diagn Pathol 7:86
    Article PubMed PubMed Central Google Scholar
  44. Sasaki M, Matsubara T, Kakuda Y, Sato Y, Nakanuma Y (2014) Immunostaining for polycomb group protein EZH2 and senescent marker p16INK4a may be useful to differentiate cholangiolocellular carcinoma from ductular reaction and bile duct adenoma. Am J Surg Pathol 38(3):364–369
    Article PubMed Google Scholar
  45. Fukumura Y, Nakanuma Y, Kakuda Y, Takase M, Yao T (2017) Clinicopathological features of intraductal papillary neoplasms of the bile duct: a comparison with intraductal papillary mucinous neoplasm of the pancreas with reference to subtypes. Virchows Arch 471(1):65–76
    Article PubMed Google Scholar
  46. Wan XS, Xu YY, Qian JY, Yang XB, Wang AQ, He L, Zhao HT, Sang XT (2013) Intraductal papillary neoplasm of the bile duct. World J Gastroenterol 19(46):8595–8604
    Article PubMed PubMed Central Google Scholar
  47. Nakanuma Y, Sato Y, Ojima H, Kanai Y, Aishima S, Yamamoto M, Ariizumi S, Furukawa T, Hayashi H, Unno M, Ohta T, Hepatolithiasis Subdivision of Intractable Hepatobiliary Diseases Study Group of J (2014) Clinicopathological characterization of so-called "cholangiocarcinoma with intraductal papillary growth" with respect to "intraductal papillary neoplasm of bile duct (IPNB)". Int J Clin Exp Pathol 7(6):3112–3122
    PubMed PubMed Central Google Scholar
  48. Zen Y, Fujii T, Itatsu K, Nakamura K, Minato H, Kasashima S, Kurumaya H, Katayanagi K, Kawashima A, Masuda S, Niwa H, Mitsui T, Asada Y, Miura S, Ohta T, Nakanuma Y (2006) Biliary papillary tumors share pathological features with intraductal papillary mucinous neoplasm of the pancreas. Hepatology 44(5):1333–1343
    Article CAS PubMed Google Scholar
  49. Nakanuma Y, Kakuda Y, Uesaka K, Miyata T, Yamamoto Y, Fukumura Y, Sato Y, Sasaki M, Harada K, Takase M (2016) Characterization of intraductal papillary neoplasm of bile duct with respect to histopathologic similarities to pancreatic intraductal papillary mucinous neoplasm. Hum Pathol 51:103–113
    Article PubMed Google Scholar
  50. Fujikura K, Fukumoto T, Ajiki T, Otani K, Kanzawa M, Akita M, Kido M, Ku Y, Itoh T, Zen Y (2016) Comparative clinicopathological study of biliary intraductal papillary neoplasms and papillary cholangiocarcinomas. Histopathology 69(6):950–961
    Article PubMed Google Scholar
  51. Aishima S, Tanaka Y, Kubo Y, Shirabe K, Maehara Y, Oda Y (2014) Bile duct adenoma and von Meyenburg complex-like duct arising in hepatitis and cirrhosis: pathogenesis and histological characteristics. Pathol Int 64(11):551–559
    Article CAS PubMed Google Scholar
  52. Zimmermann A (2017) Tumors and tumor-like lesions of the hepatobiliary tract. General and surgical pathology. Vol. 1. Springer, Switzerland
    Book Google Scholar
  53. Bertram S, Padden J, Kalsch J, Ahrens M, Pott L, Canbay A, Weber F, Fingas C, Hoffmann AC, Vietor A, Schlaak JF, Eisenacher M, Reis H, Sitek B, Baba HA (2016) Novel immunohistochemical markers differentiate intrahepatic cholangiocarcinoma from benign bile duct lesions. J Clin Pathol 69(7):619–626
    Article CAS PubMed Google Scholar
  54. Tsokos CG, Krings G, Yilmaz F, Ferrell LD, Gill RM (2016) Proliferative index facilitates distinction between benign biliary lesions and intrahepatic cholangiocarcinoma. Hum Pathol 57:61–67
    Article PubMed PubMed Central Google Scholar
  55. Song JS, Lee YJ, Kim KW, Huh J, Jang SJ, Yu E (2008) Cholangiocarcinoma arising in von Meyenburg complexes: report of four cases. Pathol Int 58(8):503–512
    Article PubMed Google Scholar
  56. Orii T, Ohkohchi N, Sasaki K, Satomi S, Watanabe M, Moriya T (2003) Cholangiocarcinoma arising from preexisting biliary hamartoma of liver--report of a case. Hepatogastroenterology 50(50):333–336
    PubMed Google Scholar
  57. O'Dell MR, Huang JL, Whitney-Miller CL, Deshpande V, Rothberg P, Grose V, Rossi RM, Zhu AX, Land H, Bardeesy N, Hezel AF (2012) Kras(G12D) and p53 mutation cause primary intrahepatic cholangiocarcinoma. Cancer Res 72(6):1557–1567
    Article CAS PubMed PubMed Central Google Scholar
  58. Sato Y, Harada K, Sasaki M, Nakanuma Y (2014) Cystic and micropapillary epithelial changes of peribiliary glands might represent a precursor lesion of biliary epithelial neoplasms. Virchows Arch 464(2):157–163
    Article CAS PubMed Google Scholar
  59. Cardinale V, Wang Y, Carpino G, Mendel G, Alpini G, Gaudio E, Reid LM, Alvaro D (2012) The biliary tree--a reservoir of multipotent stem cells. Nat Rev Gastroenterol Hepatol 9(4):231–240
    Article CAS PubMed Google Scholar
  60. Sutton ME, op den Dries S, Koster MH, Lisman T, Gouw AS, Porte RJ (2012) Regeneration of human extrahepatic biliary epithelium: the peribiliary glands as progenitor cell compartment. Liver Int 32(4):554–559
    Article PubMed Google Scholar
  61. Gibiino G, Fabbri C, Fagiuoli S, Ianiro G, Fornelli A, Cennamo V (2017) Defining the biology of intrahepatic cholangiocarcinoma: molecular pathways and early detection of precursor lesions. Eur Rev Med Pharmacol Sci 21(4):730–741
    CAS PubMed Google Scholar
  62. Walter D, Hartmann S, Waidmann O (2017) Update on cholangiocarcinoma: potential impact of genomic studies on clinical management. Z Gastroenterol 55(6):575–581
    Article PubMed Google Scholar
  63. Valle JW, Lamarca A, Goyal L, Barriuso J, Zhu AX (2017) New horizons for precision medicine in biliary tract cancers. Cancer Discov 7(9):943–962
    Article CAS PubMed PubMed Central Google Scholar
  64. Wise C, Pilanthananond M, Perry BF, Alpini G, McNeal M, Glaser SS (2008) Mechanisms of biliary carcinogenesis and growth. World J Gastroenterol 14(19):2986–2989
    Article CAS PubMed PubMed Central Google Scholar
  65. Xie D, Ren Z, Fan J, Gao Q (2016) Genetic profiling of intrahepatic cholangiocarcinoma and its clinical implication in targeted therapy. Am J Cancer Res 6(3):577–586
    CAS PubMed PubMed Central Google Scholar
  66. Tshering G, Dorji PW, Chaijaroenkul W, Na-Bangchang K (2018) Biomarkers for the diagnosis of cholangiocarcinoma: a systematic review. Am J Trop Med Hyg 98(6):1788–1797
    Article CAS PubMed PubMed Central Google Scholar
  67. Nakanuma Y, Sasaki M, Sato Y, Ren X, Ikeda H, Harada K (2009) Multistep carcinogenesis of perihilar cholangiocarcinoma arising in the intrahepatic large bile ducts. World J Hepatol 1(1):35–42
    Article PubMed PubMed Central Google Scholar
  68. Marks EI, Yee NS (2016) Molecular genetics and targeted therapeutics in biliary tract carcinoma. World J Gastroenterol 22(4):1335–1347
    Article CAS PubMed PubMed Central Google Scholar
  69. Sasaki M, Matsubara T, Nitta T, Sato Y, Nakanuma Y (2013) GNAS and KRAS mutations are common in intraductal papillary neoplasms of the bile duct. PLoS One 8(12):e81706
    Article PubMed PubMed Central CAS Google Scholar
  70. Hsu M, Sasaki M, Igarashi S, Sato Y, Nakanuma Y (2013) KRAS and GNAS mutations and p53 overexpression in biliary intraepithelial neoplasia and intrahepatic cholangiocarcinomas. Cancer 119(9):1669–1674
    Article CAS PubMed Google Scholar
  71. Churi CR, Shroff R, Wang Y, Rashid A, Kang HC, Weatherly J, Zuo M, Zinner R, Hong D, Meric-Bernstam F, Janku F, Crane CH, Mishra L, Vauthey JN, Wolff RA, Mills G, Javle M (2014) Mutation profiling in cholangiocarcinoma: prognostic and therapeutic implications. PLoS One 9(12):e115383
    Article PubMed PubMed Central CAS Google Scholar
  72. Nakaoka T, Saito Y, Saito H (2017) Aberrant DNA methylation as a biomarker and a therapeutic target of cholangiocarcinoma. Int J Mol Sci 18(6):1111
    Article PubMed Central CAS Google Scholar
  73. Udali S, Guarini P, Moruzzi S, Ruzzenente A, Tammen SA, Guglielmi A, Conci S, Pattini P, Olivieri O, Corrocher R, Choi SW, Friso S (2015) Global DNA methylation and hydroxymethylation differ in hepatocellular carcinoma and cholangiocarcinoma and relate to survival rate. Hepatology 62(2):496–504
    Article CAS PubMed Google Scholar
  74. Chiang NJ, Shan YS, Hung WC, Chen LT (2015) Epigenetic regulation in the carcinogenesis of cholangiocarcinoma. Int J Biochem Cell Biol 67:110–114
    Article CAS PubMed Google Scholar
  75. Lee H, Wang K, Johnson A, Jones DM, Ali SM, Elvin JA, Yelensky R, Lipson D, Miller VA, Stephens PJ, Javle M, Ross JS (2016) Comprehensive genomic profiling of extrahepatic cholangiocarcinoma reveals a long tail of therapeutic targets. J Clin Pathol 69(5):403–408
    Article CAS PubMed Google Scholar
  76. Yoo KH, Kim NK, Kwon WI, Lee C, Kim SY, Jang J, Ahn J, Kang M, Jang H, Kim ST, Ahn S, Jang KT, Park YS, Park WY, Lee J, Heo JS, Park JO (2016) Genomic alterations in biliary tract Cancer using targeted sequencing. Transl Oncol 9(3):173–178
    Article PubMed PubMed Central Google Scholar
  77. Simbolo M, Fassan M, Ruzzenente A, Mafficini A, Wood LD, Corbo V, Melisi D, Malleo G, Vicentini C, Malpeli G, Antonello D, Sperandio N, Capelli P, Tomezzoli A, Iacono C, Lawlor RT, Bassi C, Hruban RH, Guglielmi A, Tortora G, de Braud F, Scarpa A (2014) Multigene mutational profiling of cholangiocarcinomas identifies actionable molecular subgroups. Oncotarget 5(9):2839–2852
    Article PubMed PubMed Central Google Scholar
  78. Ross JS, Wang K, Gay L, Al-Rohil R, Rand JV, Jones DM, Lee HJ, Sheehan CE, Otto GA, Palmer G, Yelensky R, Lipson D, Morosini D, Hawryluk M, Catenacci DV, Miller VA, Churi C, Ali S, Stephens PJ (2014) New routes to targeted therapy of intrahepatic cholangiocarcinomas revealed by next-generation sequencing. Oncologist 19(3):235–242
    Article CAS PubMed PubMed Central Google Scholar
  79. Ruzzenente A, Fassan M, Conci S, Simbolo M, Lawlor RT, Pedrazzani C, Capelli P, D'Onofrio M, Iacono C, Scarpa A, Guglielmi A (2016) Cholangiocarcinoma heterogeneity revealed by multigene mutational profiling: clinical and prognostic relevance in surgically resected patients. Ann Surg Oncol 23(5):1699–1707
    Article PubMed Google Scholar
  80. Farshidfar F, Zheng S, Gingras MC, Newton Y, Shih J (2017) Integrative genomic analysis of cholangiocarcinoma identifies distinct IDH-mutant molecular profiles. Cell Rep 18(11):2780–2794
    Article CAS PubMed PubMed Central Google Scholar
  81. Jiao Y, Pawlik TM, Anders RA, Selaru FM, Streppel MM (2013) Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangiocarcinomas. Nat Genet 45(12):1470–1473
    Article CAS PubMed PubMed Central Google Scholar
  82. Putra J, de Abreu FB, Peterson JD, Pipas JM, Mody K (2015) Molecular profiling of intrahepatic and extrahepatic cholangiocarcinoma using next generation sequencing. Exp Mol Pathol 99(2):240–244
    Article CAS PubMed PubMed Central Google Scholar
  83. Zou S, Li J, Zhou H, Frech C, Jiang X (2014) Mutational landscape of intrahepatic cholangiocarcinoma. Nat Commun 5:5696
    Article CAS PubMed Google Scholar
  84. Nakamura H, Arai Y, Totoki Y, Shirota T, Elzawahry A, Kato M, Hama N, Hosoda F, Urushidate T, Ohashi S, Hiraoka N, Ojima H, Shimada K, Okusaka T, Kosuge T, Miyagawa S, Shibata T (2015) Genomic spectra of biliary tract cancer. Nat Genet 47(9):1003–1010
    Article CAS PubMed Google Scholar
  85. Sia D, Losic B, Moeini A, Cabellos L, Hao K (2015) Massive parallel sequencing uncovers actionable FGFR2-PPHLN1 fusion and ARAF mutations in intrahepatic cholangiocarcinoma. Nat Commun 6:6087
    Article CAS PubMed Google Scholar
  86. Fujimoto A, Furuta M, Shiraishi Y, Gotoh K, Kawakami Y (2015) Whole-genome mutational landscape of liver cancers displaying biliary phenotype reveals hepatitis impact and molecular diversity. Nat Commun 6:6120
    Article CAS PubMed Google Scholar
  87. Rizvi S, Gores GJ (2017) Emerging molecular therapeutic targets for cholangiocarcinoma. J Hepatol 67(3):632–644
    Article CAS PubMed PubMed Central Google Scholar
  88. Lee H, Ross JS (2017) The potential role of comprehensive genomic profiling to guide targeted therapy for patients with biliary cancer. Ther Adv Gastroenterol 10(6):507–520
    Article CAS Google Scholar
  89. Moeini A, Sia D, Bardeesy N, Mazzaferro V, Llovet JM (2016) Molecular pathogenesis and targeted therapies for intrahepatic cholangiocarcinoma. Clin Cancer Res 22(2):291–300
    Article PubMed Google Scholar
  90. Chong DQ, Zhu AX (2016) The landscape of targeted therapies for cholangiocarcinoma: current status and emerging targets. Oncotarget 7(29):46750–46767
    Article PubMed PubMed Central Google Scholar
  91. Maroni L, Pierantonelli I, Banales JM, Benedetti A, Marzioni M (2013) The significance of genetics for cholangiocarcinoma development. Ann Transl Med 1(3):28
    PubMed PubMed Central Google Scholar
  92. Dalmasso C, Carpentier W, Guettier C, Camilleri-Broet S, Borelli WV, Campos Dos Santos CR, Castaing D, Duclos-Vallee JC, Broet P (2015) Patterns of chromosomal copy-number alterations in intrahepatic cholangiocarcinoma. BMC Cancer 15:126
    Article PubMed PubMed Central Google Scholar
  93. Arnold A, Bahra M, Lenze D, Bradtmoller M, Guse K, Gehlhaar C, Blaker H, Heppner FL, Koch A (2015) Genome wide DNA copy number analysis in cholangiocarcinoma using high resolution molecular inversion probe single nucleotide polymorphism assay. Exp Mol Pathol 99(2):344–353
    Article CAS PubMed Google Scholar
  94. Oliveira IS, Kilcoyne A, Everett JM, Mino-Kenudson M, Harisinghani MG, Ganesan K (2017) Cholangiocarcinoma: classification, diagnosis, staging, imaging features, and management. Abdom Radiol (NY) 42(6):1637–1649
    Article Google Scholar
  95. Andersen JB, Spee B, Blechacz BR, Avital I, Komuta M, Barbour A, Conner EA, Gillen MC, Roskams T, Roberts LR, Factor VM, Thorgeirsson SS (2012) Genomic and genetic characterization of cholangiocarcinoma identifies therapeutic targets for tyrosine kinase inhibitors. Gastroenterology 142(4):1021–1031 e1015
    Article CAS PubMed Google Scholar
  96. Sia D, Hoshida Y, Villanueva A, Roayaie S, Ferrer J, Tabak B, Peix J, Sole M, Tovar V, Alsinet C, Cornella H, Klotzle B, Fan JB, Cotsoglou C, Thung SN, Fuster J, Waxman S, Garcia-Valdecasas JC, Bruix J, Schwartz ME, Beroukhim R, Mazzaferro V, Llovet JM (2013) Integrative molecular analysis of intrahepatic cholangiocarcinoma reveals 2 classes that have different outcomes. Gastroenterology 144(4):829–840
    Article CAS PubMed Google Scholar
  97. Guest RV, Boulter L, Kendall TJ, Minnis-Lyons SE, Walker R, Wigmore SJ, Sansom OJ, Forbes SJ (2014) Cell lineage tracing reveals a biliary origin of intrahepatic cholangiocarcinoma. Cancer Res 74(4):1005–1010
    Article CAS PubMed Google Scholar
  98. Kongpetch S, Jusakul A, Ong CK, Lim WK, Rozen SG, Tan P, Teh BT (2015) Pathogenesis of cholangiocarcinoma: from genetics to signalling pathways. Best Pract Res Clin Gastroenterol 29(2):233–244
    Article CAS PubMed Google Scholar
  99. Oikawa T (2016) Cancer stem cells and their cellular origins in primary liver and biliary tract cancers. Hepatology 64(2):645–651
    Article PubMed Google Scholar
  100. Vijgen S, Terris B, Rubbia-Brandt L (2017) Pathology of intrahepatic cholangiocarcinoma. Hepatobiliary Surg Nutr 6(1):22–34
    Article PubMed PubMed Central Google Scholar
  101. Terada M, Horisawa K, Miura S, Takashima Y, Ohkawa Y, Sekiya S, Matsuda-Ito K, Suzuki A (2016) Kupffer cells induce notch-mediated hepatocyte conversion in a common mouse model of intrahepatic cholangiocarcinoma. Sci Rep 6:34691
    Article CAS PubMed PubMed Central Google Scholar
  102. Shibata M, Shen MM (2013) The roots of cancer: stem cells and the basis for tumor heterogeneity. Bioessays 35(3):253–260
    Article CAS PubMed Google Scholar
  103. Brandi G, Farioli A, Astolfi A, Biasco G, Tavolari S (2015) Genetic heterogeneity in cholangiocarcinoma: a major challenge for targeted therapies. Oncotarget 6(17):14744–14753
    Article PubMed PubMed Central Google Scholar
  104. Walter D, Doring C, Feldhahn M, Battke F, Hartmann S, Winkelmann R, Schneider M, Bankov K, Schnitzbauer A, Zeuzem S, Hansmann ML, Peveling-Oberhag J (2017) Intratumoral heterogeneity of intrahepatic cholangiocarcinoma. Oncotarget 8(9):14957–14968
    Article PubMed PubMed Central Google Scholar
  105. Chan-On W, Nairismagi ML, Ong CK, Lim WK, Dima S, Pairojkul C, Lim KH, McPherson JR, Cutcutache I, Heng HL, Ooi L, Chung A, Chow P, Cheow PC, Lee SY, Choo SP, Tan IB, Duda D, Nastase A, Myint SS, Wong BH, Gan A, Rajasegaran V, Ng CC, Nagarajan S, Jusakul A, Zhang S, Vohra P, Yu W, Huang D, Sithithaworn P, Yongvanit P, Wongkham S, Khuntikeo N, Bhudhisawasdi V, Popescu I, Rozen SG, Tan P, Teh BT (2013) Exome sequencing identifies distinct mutational patterns in liver fluke-related and non-infection-related bile duct cancers. Nat Genet 45(12):1474–1478
    Article CAS PubMed Google Scholar
  106. Cardinale V, Carpino G, Reid L, Gaudio E, Alvaro D (2012) Multiple cells of origin in cholangiocarcinoma underlie biological, epidemiological and clinical heterogeneity. World J Gastrointest Oncol 4(5):94–102
    Article PubMed PubMed Central Google Scholar
  107. Li Z, Shen J, Chan MT, Wu WK (2017) The role of microRNAs in intrahepatic cholangiocarcinoma. J Cell Mol Med 21(1):177–184
    Article CAS PubMed Google Scholar
  108. Wang N, Xia S, Chen K, Xiang X, Zhu A (2015) Genetic alteration regulated by microRNAs in biliary tract cancers. Crit Rev Oncol Hematol 96(2):262–273
    Article PubMed Google Scholar
  109. Esparza-Baquer A, Labiano I, Bujanda L, Perugorria MJ, Banales JM (2016) MicroRNAs in cholangiopathies: potential diagnostic and therapeutic tools. Clin Res Hepatol Gastroenterol 40(1):15–27
    Article CAS PubMed Google Scholar
  110. Olaizola P, Lee-Law PY, Arbelaiz A, Lapitz A, Perugorria MJ, Bujanda L, Banales JM (2018) MicroRNAs and extracellular vesicles in cholangiopathies. Biochim Biophys Acta 1864(4 Pt B):1293–1307
    Article CAS Google Scholar
  111. Loosen SH, Schueller F, Trautwein C, Roy S, Roderburg C (2017) Role of circulating microRNAs in liver diseases. World J Hepatol 9(12):586–594
    Article PubMed PubMed Central Google Scholar
  112. Mazzocca A, Ferraro G, Misciagna G, Carr BI (2016) A systemic evolutionary approach to cancer: Hepatocarcinogenesis as a paradigm. Med Hypotheses 93:132–137
    Article CAS PubMed Google Scholar

Download references