The Paradoxical Role of Inflammation in Cardiac Repair and Regeneration (original) (raw)
References
Lloyd-Jones, D., Adams, R., Carnethon, M., De Simone, G., Ferguson, T. B., Flegal, K., et al. (2009). Heart disease and stroke statistics—2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation, 119, 480–486. ArticlePubMed Google Scholar
Kajstura, J., Leri, A., Finato, N., Di Loreto, C., Beltrami, C. A., & Anversa, P. (1998). Myocyte proliferation in end-stage cardiac failure in humans. Proceedings of the National Academy of Sciences of the United States of America, 95, 8801–8805. ArticlePubMedCAS Google Scholar
Laugwitz, K. L., Moretti, A., Lam, J., Gruber, P., Chen, Y., Woodard, S., et al. (2005). Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature, 433, 647–653. ArticlePubMedCAS Google Scholar
Moretti, A., Caron, L., Nakano, A., Lam, J. T., Bernshausen, A., Chen, Y., et al. (2006). Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell, 127, 1151–1165. ArticlePubMedCAS Google Scholar
Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131, 861–872. ArticlePubMedCAS Google Scholar
Hsieh, P. C., Segers, V. F., Davis, M. E., MacGillivray, C., Gannon, J., Molkentin, J. D., et al. (2007). Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Natural Medicines, 13, 970–974. ArticleCAS Google Scholar
Zhang, J., Wilson, G. F., Soerens, A. G., Koonce, C. H., Yu, J., Palecek, S. P., et al. (2009). Functional cardiomyocytes derived from human induced pluripotent stem cells. Circulation Research, 104, e30–e41. ArticlePubMedCAS Google Scholar
Bergmann, O., Bhardwaj, R. D., Bernard, S., Zdunek, S., Barnabe-Heider, F., Walsh, S., et al. (2009). Evidence for cardiomyocyte renewal in humans. Science, 324, 98–102. ArticlePubMedCAS Google Scholar
Leibovich, S. J., & Ross, R. (1976). A macrophage-dependent factor that stimulates the proliferation of fibroblasts in vitro. The American Journal of Pathology, 84, 501–514. PubMedCAS Google Scholar
Eming, S. A., Hammerschmidt, M., Krieg, T., & Roers, A. (2009). Interrelation of immunity and tissue repair or regeneration. Seminars in Cell & Developmental Biology, 20, 517–527. ArticleCAS Google Scholar
Jennings, R. B., Steenbergen, C., Jr., & Reimer, K. A. (1995). Myocardial ischemia and reperfusion. Monographs in Pathology, 37, 47–80. PubMedCAS Google Scholar
Matzinger, P. (1994). Tolerance, danger, and the extended family. Annual Review of Immunology, 12, 991–1045. PubMedCAS Google Scholar
Chao, W. (2009). Toll-like receptor signaling: a critical modulator of cell survival and ischemic injury in the heart. American Journal of Physiology. Heart and Circulatory Physiology, 296, H1–H12. ArticlePubMedCAS Google Scholar
Chen, C. J., Kono, H., Golenbock, D., Reed, G., Akira, S., & Rock, K. L. (2007). Identification of a key pathway required for the sterile inflammatory response triggered by dying cells. Natural Medicines, 13, 851–856. ArticleCAS Google Scholar
Petrilli, V., Papin, S., Dostert, C., Mayor, A., Martinon, F., & Tschopp, J. (2007). Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death and Differentiation, 14, 1583–1589. ArticlePubMedCAS Google Scholar
Willingham, S. B., Allen, I. C., Bergstralh, D. T., Brickey, W. J., Huang, M. T., Taxman, D. J., et al. (2009). NLRP3 (NALP3, Cryopyrin) facilitates in vivo caspase-1 activation, necrosis, and HMGB1 release via inflammasome-dependent and -independent pathways. Journal of Immunology, 183, 2008–2015. ArticleCAS Google Scholar
Bergsbaken, T., Fink, S. L., & Cookson, B. T. (2009). Pyroptosis: host cell death and inflammation. Nature Reviews. Microbiology, 7, 99–109. ArticlePubMedCAS Google Scholar
Franchi, L., Eigenbrod, T., Munoz-Planillo, R., & Nunez, G. (2009). The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nature Immunology, 10, 241–247. ArticlePubMedCAS Google Scholar
Li, H., Ambade, A., & Re, F. (2009). Cutting edge: necrosis activates the NLRP3 inflammasome. Journal of Immunology, 183, 1528–1532. ArticleCAS Google Scholar
Yamasaki, K., Muto, J., Taylor, K. R., Cogen, A. L., Audish, D., Bertin, J., et al. (2009). NLRP3/cryopyrin is necessary for interleukin-1beta (IL-1beta) release in response to hyaluronan, an endogenous trigger of inflammation in response to injury. The Journal of Biological Chemistry, 284, 12762–12771. ArticlePubMedCAS Google Scholar
Tsung, A., Sahai, R., Tanaka, H., Nakao, A., Fink, M. P., Lotze, M. T., et al. (2005). The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia–reperfusion. The Journal of Experimental Medicine, 201, 1135–1143. ArticlePubMedCAS Google Scholar
Wu, H., Chen, G., Wyburn, K. R., Yin, J., Bertolino, P., Eris, J. M., et al. (2007). TLR4 activation mediates kidney ischemia/reperfusion injury. Journal of Clinical Investigation, 117, 2847–2859. ArticlePubMedCAS Google Scholar
Mollen, K. P., Anand, R. J., Tsung, A., Prince, J. M., Levy, R. M., & Billiar, T. R. (2006). Emerging paradigm: toll-like receptor 4-sentinel for the detection of tissue damage. Shock, 26, 430–437. ArticlePubMedCAS Google Scholar
Takeishi, Y., & Kubota, I. (2009). Role of Toll-like receptor mediated signaling pathway in ischemic heart. Frontiers in Bioscience, 14, 2553–2558. ArticlePubMedCAS Google Scholar
Rovere-Querini, P., Capobianco, A., Scaffidi, P., Valentinis, B., Catalanotti, F., Giazzon, M., et al. (2004). HMGB1 is an endogenous immune adjuvant released by necrotic cells. EMBO Reports, 5, 825–830. ArticlePubMedCAS Google Scholar
Kaczorowski, D. J., Nakao, A., Vallabhaneni, R., Mollen, K. P., Sugimoto, R., Kohmoto, J., et al. (2009). Mechanisms of Toll-like receptor 4 (TLR4)-mediated inflammation after cold ischemia/reperfusion in the heart. Transplantation, 87, 1455–1463. ArticlePubMedCAS Google Scholar
Oozawa, S., Mori, S., Kanke, T., Takahashi, H., Liu, K., Tomono, Y., et al. (2008). Effects of HMGB1 on ischemia–reperfusion injury in the rat heart. Circulation Journal, 72, 1178–1184. ArticlePubMedCAS Google Scholar
Andrassy, M., Volz, H. C., Igwe, J. C., Funke, B., Eichberger, S. N., Kaya, Z., et al. (2008). High-mobility group box-1 in ischemia–reperfusion injury of the heart. Circulation, 117, 3216–3226. ArticlePubMedCAS Google Scholar
Decleves, A. E., Caron, N., Nonclercq, D., Legrand, A., Toubeau, G., Kramp, R., et al. (2006). Dynamics of hyaluronan, CD44, and inflammatory cells in the rat kidney after ischemia/reperfusion injury. International Journal of Molecular Medicine, 18, 83–94. PubMedCAS Google Scholar
Taylor, K. R., Trowbridge, J. M., Rudisill, J. A., Termeer, C. C., Simon, J. C., & Gallo, R. L. (2004). Hyaluronan fragments stimulate endothelial recognition of injury through TLR4. The Journal of Biological Chemistry, 279, 17079–17084. ArticlePubMedCAS Google Scholar
Taylor, K. R., Yamasaki, K., Radek, K. A., Di Nardo, A., Goodarzi, H., Golenbock, D., et al. (2007). Recognition of hyaluronan released in sterile injury involves a unique receptor complex dependent on Toll-like receptor 4, CD44, and MD-2. The Journal of Biological Chemistry, 282, 18265–18275. ArticlePubMedCAS Google Scholar
Johnson, G. B., Brunn, G. J., Kodaira, Y., & Platt, J. L. (2002). Receptor-mediated monitoring of tissue well-being via detection of soluble heparan sulfate by Toll-like receptor 4. Journal of Immunology, 168, 5233–5239. CAS Google Scholar
Celie, J. W., Rutjes, N. W., Keuning, E. D., Soininen, R., Heljasvaara, R., Pihlajaniemi, T., et al. (2007). Subendothelial heparan sulfate proteoglycans become major L-selectin and monocyte chemoattractant protein-1 ligands upon renal ischemia/reperfusion. The American Journal of Pathology, 170, 1865–1878. ArticlePubMedCAS Google Scholar
Mills, K. H., & Dunne, A. (2009). Immune modulation: IL-1, master mediator or initiator of inflammation. Natural Medicines, 15, 1363–1364. ArticleCAS Google Scholar
Martinon, F., Hofmann, K., & Tschopp, J. (2001). The pyrin domain: a possible member of the death domain-fold family implicated in apoptosis and inflammation. Current Biology, 11, R118–R120. ArticlePubMedCAS Google Scholar
Fairbrother, W. J., Gordon, N. C., Humke, E. W., O'Rourke, K. M., Starovasnik, M. A., Yin, J. P., et al. (2001). The PYRIN domain: a member of the death domain-fold superfamily. Protein Science, 10, 1911–1918. ArticlePubMedCAS Google Scholar
Fernandes-Alnemri, T., Wu, J., Yu, J. W., Datta, P., Miller, B., Jankowski, W., et al. (2007). The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death and Differentiation, 14, 1590–1604. ArticlePubMedCAS Google Scholar
Kubota, T., McTiernan, C. F., Frye, C. S., Demetris, A. J., & Feldman, A. M. (1997). Cardiac-specific overexpression of tumor necrosis factor-alpha causes lethal myocarditis in transgenic mice. Journal of Cardiac Failure, 3, 117–124. ArticlePubMedCAS Google Scholar
Bozkurt, B., Kribbs, S. B., Clubb, F. J., Jr., Michael, L. H., Didenko, V. V., Hornsby, P. J., et al. (1998). Pathophysiologically relevant concentrations of tumor necrosis factor-alpha promote progressive left ventricular dysfunction and remodeling in rats. Circulation, 97, 1382–1391. PubMedCAS Google Scholar
Yokoyama, T., Vaca, L., Rossen, R. D., Durante, W., Hazarika, P., & Mann, D. L. (1993). Cellular basis for the negative inotropic effects of tumor necrosis factor-alpha in the adult mammalian heart. Journal of Clinical Investigation, 92, 2303–2312. ArticlePubMedCAS Google Scholar
Dunlay, S. M., Weston, S. A., Redfield, M. M., Killian, J. M., & Roger, V. L. (2008). Tumor necrosis factor-alpha and mortality in heart failure: a community study. Circulation, 118, 625–631. ArticlePubMedCAS Google Scholar
Tanno, M., Gorog, D. A., Bellahcene, M., Cao, X., Quinlan, R. A., & Marber, M. S. (2003). Tumor necrosis factor-induced protection of the murine heart is independent of p38-MAPK activation. Journal of Molecular and Cellular Cardiology, 35, 1523–1527. ArticlePubMedCAS Google Scholar
Yamashita, N., Hoshida, S., Otsu, K., Taniguchi, N., Kuzuya, T., & Hori, M. (2000). The involvement of cytokines in the second window of ischaemic preconditioning. British Journal of Pharmacology, 131, 415–422. ArticlePubMedCAS Google Scholar
Dawn, B., Guo, Y., Rezazadeh, A., Wang, O. L., Stein, A. B., Hunt, G., et al. (2004). Tumor necrosis factor-alpha does not modulate ischemia/reperfusion injury in naive myocardium but is essential for the development of late preconditioning. Journal of Molecular and Cellular Cardiology, 37, 51–61. ArticlePubMedCAS Google Scholar
Higuchi, Y., McTiernan, C. F., Frye, C. B., McGowan, B. S., Chan, T. O., & Feldman, A. M. (2004). Tumor necrosis factor receptors 1 and 2 differentially regulate survival, cardiac dysfunction, and remodeling in transgenic mice with tumor necrosis factor-alpha-induced cardiomyopathy. Circulation, 109, 1892–1897. ArticlePubMedCAS Google Scholar
Al-Lamki, R. S., Brookes, A. P., Wang, J., Reid, M. J., Parameshwar, J., Goddard, M. J., et al. (2009). TNF receptors differentially signal and are differentially expressed and regulated in the human heart. American Journal of Transplantation, 9, 2679–2696. ArticlePubMedCAS Google Scholar
Declercq, W., Vanden Berghe, T., & Vandenabeele, P. (2009). RIP kinases at the crossroads of cell death and survival. Cell, 138, 229–232. ArticlePubMedCAS Google Scholar
Whelan, R. S., Kaplinskiy, V., & Kitsis, R. N. Cell death in the pathogenesis of heart disease: mechanisms and significance. Annu Rev Physiol, 72, 19-44.
He, S., Wang, L., Miao, L., Wang, T., Du, F., Zhao, L., et al. (2009). Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell, 137, 1100–1111. ArticlePubMedCAS Google Scholar
Cho, Y. S., Challa, S., Moquin, D., Genga, R., Ray, T. D., Guildford, M., et al. (2009). Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell, 137, 1112–1123. ArticlePubMedCAS Google Scholar
Mahoney, D. J., Cheung, H. H., Mrad, R. L., Plenchette, S., Simard, C., Enwere, E., et al. (2008). Both cIAP1 and cIAP2 regulate TNFalpha-mediated NF-kappaB activation. Proceedings of the National Academy of Sciences of the United States of America, 105, 11778–11783. ArticlePubMed Google Scholar
Varfolomeev, E., Goncharov, T., Fedorova, A. V., Dynek, J. N., Zobel, K., Deshayes, K., et al. (2008). c-IAP1 and c-IAP2 are critical mediators of tumor necrosis factor alpha (TNFalpha)-induced NF-kappaB activation. The Journal of Biological Chemistry, 283, 24295–24299. ArticlePubMedCAS Google Scholar
Shembade, N., Ma, A., & Harhaj, E. W. Inhibition of NF-kappaB signaling by A20 through disruption of ubiquitin enzyme complexes. Science, 327, 1135-1139.
Wilson, N. S., Dixit, V., & Ashkenazi, A. (2009). Death receptor signal transducers: nodes of coordination in immune signaling networks. Nature Immunology, 10, 348–355. ArticlePubMedCAS Google Scholar
Wang, L., Du, F., & Wang, X. (2008). TNF-alpha induces two distinct caspase-8 activation pathways. Cell, 133, 693–703. ArticlePubMedCAS Google Scholar
Wertz, I. E., O'Rourke, K. M., Zhou, H., Eby, M., Aravind, L., Seshagiri, S., et al. (2004). De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature, 430, 694–699. ArticlePubMedCAS Google Scholar
Dinarello, C. A. (2009). Immunological and inflammatory functions of the interleukin-1 family. Annual Review of Immunology, 27, 519–550. ArticlePubMedCAS Google Scholar
Chen, C. J., Shi, Y., Hearn, A., Fitzgerald, K., Golenbock, D., Reed, G., et al. (2006). MyD88-dependent IL-1 receptor signaling is essential for gouty inflammation stimulated by monosodium urate crystals. Journal of Clinical Investigation, 116, 2262–2271. ArticlePubMedCAS Google Scholar
Mitchell, M. D., Laird, R. E., Brown, R. D., & Long, C. S. (2007). IL-1beta stimulates rat cardiac fibroblast migration via MAP kinase pathways. American Journal of Physiology. Heart and Circulatory Physiology, 292, H1139–H1147. ArticlePubMedCAS Google Scholar
Bujak, M., & Frangogiannis, N. G. (2009). The role of IL-1 in the pathogenesis of heart disease. Archivum Immunologiae et Therapiae Experimentalis (Warsz), 57, 165–176. ArticleCAS Google Scholar
Tamaru, M., Tomura, K., Sakamoto, S., Tezuka, K., Tamatani, T., & Narumi, S. (1998). Interleukin-1beta induces tissue- and cell type-specific expression of adhesion molecules in vivo. Arteriosclerosis, Thrombosis, and Vascular Biology, 18, 1292–1303. PubMedCAS Google Scholar
Frangogiannis, N. G. (2008). The immune system and cardiac repair. Pharmacological Research, 58, 88–111. ArticlePubMedCAS Google Scholar
Gurtner, G. C., Werner, S., Barrandon, Y., & Longaker, M. T. (2008). Wound repair and regeneration. Nature, 453, 314–321. ArticlePubMedCAS Google Scholar
Frangogiannis, N. G., Youker, K. A., & Entman, M. L. (1996). The role of the neutrophil in myocardial ischemia and reperfusion. EXS, 76, 263–284. PubMedCAS Google Scholar
Blyszczuk, P., Kania, G., Dieterle, T., Marty, R. R., Valaperti, A., Berthonneche, C., et al. (2009). Myeloid differentiation factor-88/interleukin-1 signaling controls cardiac fibrosis and heart failure progression in inflammatory dilated cardiomyopathy. Circulation Research, 105, 912–920. ArticlePubMedCAS Google Scholar
Bonetti, A., Marchini, M., & Ortolani, F. (2008). Immunolocalization of interleukin-1 receptor antagonist in healthy and infarcted myocardium. Histology and Histopathology, 23, 1093–1102. PubMedCAS Google Scholar
Abbate, A., Salloum, F. N., Vecile, E., Das, A., Hoke, N. N., Straino, S., et al. (2008). Anakinra, a recombinant human interleukin-1 receptor antagonist, inhibits apoptosis in experimental acute myocardial infarction. Circulation, 117, 2670–2683. ArticlePubMedCAS Google Scholar
Suzuki, K., Murtuza, B., Smolenski, R. T., Sammut, I. A., Suzuki, N., Kaneda, Y., et al. (2001). Overexpression of interleukin-1 receptor antagonist provides cardioprotection against ischemia–reperfusion injury associated with reduction in apoptosis. Circulation, 104, I308–I303. ArticlePubMedCAS Google Scholar
Kamimura, D., Ishihara, K., & Hirano, T. (2003). IL-6 signal transduction and its physiological roles: the signal orchestration model. Reviews of Physiology Biochemistry and Pharmacology, 149, 1–38. ArticleCAS Google Scholar
Banerjee, I., Fuseler, J. W., Intwala, A. R., & Baudino, T. A. (2009). IL-6 loss causes ventricular dysfunction, fibrosis, reduced capillary density, and dramatically alters the cell populations of the developing and adult heart. American Journal of Physiology. Heart and Circulatory Physiology, 296, H1694–H1704. ArticlePubMedCAS Google Scholar
Dawn, B., Xuan, Y. T., Guo, Y., Rezazadeh, A., Stein, A. B., Hunt, G., et al. (2004). IL-6 plays an obligatory role in late preconditioning via JAK-STAT signaling and upregulation of iNOS and COX-2. Cardiovascular Research, 64, 61–71. ArticlePubMedCAS Google Scholar
Novoyatleva, T., Diehl, F., van Amerongen, M. J., Patra, C., Ferrazzi, F., Bellazzi, R., et al. (2009). TWEAK is a positive regulator of cardiomyocyte proliferation. Cardiovasc Res.
Jain, M., Jakubowski, A., Cui, L., Shi, J., Su, L., Bauer, M., et al. (2009). A novel role for tumor necrosis factor-like weak inducer of apoptosis (TWEAK) in the development of cardiac dysfunction and failure. Circulation, 119, 2058–2068. ArticlePubMedCAS Google Scholar
Mitola, S., Belleri, M., Urbinati, C., Coltrini, D., Sparatore, B., Pedrazzi, M., et al. (2006). Cutting edge: extracellular high mobility group box-1 protein is a proangiogenic cytokine. Journal of Immunology, 176, 12–15. CAS Google Scholar
Limana, F., Germani, A., Zacheo, A., Kajstura, J., Di Carlo, A., Borsellino, G., et al. (2005). Exogenous high-mobility group box 1 protein induces myocardial regeneration after infarction via enhanced cardiac C-kit+ cell proliferation and differentiation. Circulation Research, 97, e73–e83. ArticlePubMedCAS Google Scholar
Germani, A., Limana, F., & Capogrossi, M. C. (2007). Pivotal advances: high-mobility group box 1 protein—a cytokine with a role in cardiac repair. Journal of Leukocyte Biology, 81, 41–45. ArticlePubMedCAS Google Scholar
Rossini, A., Zacheo, A., Mocini, D., Totta, P., Facchiano, A., Castoldi, R., et al. (2008). HMGB1-stimulated human primary cardiac fibroblasts exert a paracrine action on human and murine cardiac stem cells. Journal of Molecular and Cellular Cardiology, 44, 683–693. ArticlePubMedCAS Google Scholar
Border, W. A., & Noble, N. A. (1994). Transforming growth factor beta in tissue fibrosis. The New England Journal of Medicine, 331, 1286–1292. ArticlePubMedCAS Google Scholar
Rosenkranz, S. (2004). TGF-beta1 and angiotensin networking in cardiac remodeling. Cardiovascular Research, 63, 423–432. ArticlePubMedCAS Google Scholar
Briest, W., Homagk, L., Rassler, B., Ziegelhoffer-Mihalovicova, B., Meier, H., Tannapfel, A., et al. (2004). Norepinephrine-induced changes in cardiac transforming growth factor-beta isoform expression pattern of female and male rats. Hypertension, 44, 410–418. ArticlePubMedCAS Google Scholar
Jain, R., Shaul, P. W., Borok, Z., & Willis, B. C. (2007). Endothelin-1 induces alveolar epithelial–mesenchymal transition through endothelin type A receptor-mediated production of TGF-beta1. American Journal of Respiratory Cell and Molecular Biology, 37, 38–47. ArticlePubMedCAS Google Scholar
Lee, A. A., Dillmann, W. H., McCulloch, A. D., & Villarreal, F. J. (1995). Angiotensin II stimulates the autocrine production of transforming growth factor-beta 1 in adult rat cardiac fibroblasts. Journal of Molecular and Cellular Cardiology, 27, 2347–2357. ArticlePubMedCAS Google Scholar
Engel, F. B., Hsieh, P. C., Lee, R. T., & Keating, M. T. (2006). FGF1/p38 MAP kinase inhibitor therapy induces cardiomyocyte mitosis, reduces scarring, and rescues function after myocardial infarction. Proceedings of the National Academy of Sciences of the United States of America, 103, 15546–15551. ArticlePubMedCAS Google Scholar
Engel, F. B., Schebesta, M., Duong, M. T., Lu, G., Ren, S., Madwed, J. B., et al. (2005). p38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes. Genes & Development, 19, 1175–1187. ArticleCAS Google Scholar
Lips, D. J., deWindt, L. J., van Kraaij, D. J., & Doevendans, P. A. (2003). Molecular determinants of myocardial hypertrophy and failure: alternative pathways for beneficial and maladaptive hypertrophy. European Heart Journal, 24, 883–896. ArticlePubMedCAS Google Scholar
De Angelis, N., Fiordaliso, F., Latini, R., Calvillo, L., Funicello, M., Gobbi, M., et al. (2002). Appraisal of the role of angiotensin II and aldosterone in ventricular myocyte apoptosis in adult normotensive rat. Journal of Molecular and Cellular Cardiology, 34, 1655–1665. ArticlePubMed Google Scholar
Jessup, M., Abraham, W. T., Casey, D. E., Feldman, A. M., Francis, G. S., Ganiats, T. G., et al. (2009). 2009 focused update: ACCF/AHA Guidelines for the diagnosis and management of heart failure in adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation. Circulation, 119, 1977–2016. ArticlePubMed Google Scholar
Remme, W. J. (2007). Beta blockers or angiotensin-converting-enzyme inhibitor/angiotensin receptor blocker: what should be first? Cardiol Clin, 25, 581–594. vii. ArticlePubMed Google Scholar
Ford, C. M., Li, S., & Pickering, J. G. (1999). Angiotensin II stimulates collagen synthesis in human vascular smooth muscle cells. Involvement of the AT(1) receptor, transforming growth factor-beta, and tyrosine phosphorylation. Arteriosclerosis, Thrombosis, and Vascular Biology, 19, 1843–1851. PubMedCAS Google Scholar
Jiang, B., Xu, S., Hou, X., Pimentel, D. R., & Cohen, R. A. (2004). Angiotensin II differentially regulates interleukin-1-beta-inducible NO synthase (iNOS) and vascular cell adhesion molecule-1 (VCAM-1) expression: role of p38 MAPK. The Journal of Biological Chemistry, 279, 20363–20368. ArticlePubMedCAS Google Scholar
Chen, X. L., Tummala, P. E., Olbrych, M. T., Alexander, R. W., & Medford, R. M. (1998). Angiotensin II induces monocyte chemoattractant protein-1 gene expression in rat vascular smooth muscle cells. Circulation Research, 83, 952–959. PubMedCAS Google Scholar
Tummala, P. E., Chen, X. L., Sundell, C. L., Laursen, J. B., Hammes, C. P., Alexander, R. W., et al. (1999). Angiotensin II induces vascular cell adhesion molecule-1 expression in rat vasculature: a potential link between the renin–angiotensin system and atherosclerosis. Circulation, 100, 1223–1229. PubMedCAS Google Scholar
Nakayama, I., Kawahara, Y., Tsuda, T., Okuda, M., & Yokoyama, M. (1994). Angiotensin II inhibits cytokine-stimulated inducible nitric oxide synthase expression in vascular smooth muscle cells. The Journal of Biological Chemistry, 269, 11628–11633. PubMedCAS Google Scholar
Jiang, B., Xu, S., Hou, X., Pimentel, D. R., Brecher, P., & Cohen, R. A. (2004). Temporal control of NF-kappaB activation by ERK differentially regulates interleukin-1beta-induced gene expression. The Journal of Biological Chemistry, 279, 1323–1329. ArticlePubMedCAS Google Scholar
Jiang, B., Brecher, P., & Cohen, R. A. (2001). Persistent activation of nuclear factor-kappaB by interleukin-1beta and subsequent inducible NO synthase expression requires extracellular signal-regulated kinase. Arteriosclerosis, Thrombosis, and Vascular Biology, 21, 1915–1920. ArticlePubMedCAS Google Scholar
Jiang, B., Xu, S., Brecher, P., & Cohen, R. A. (2002). Growth factors enhance interleukin-1 beta-induced persistent activation of nuclear factor-kappa B in rat vascular smooth muscle cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 22, 1811–1816. ArticlePubMedCAS Google Scholar