Intracellular Pharmacokinetics of Antibacterials and Their Clinical Implications (original) (raw)
Pea F, Viale P, Furlanut M. Antimicrobial therapy in critically ill patients: a review of pathophysiological conditions responsible for altered disposition and pharmacokinetic variability. Clin Pharmacokinet. 2005;44(10):1009–34. ArticleCASPubMed Google Scholar
Pea F, Viale P. The antimicrobial therapy puzzle: could pharmacokinetic-pharmacodynamic relationships be helpful in addressing the issue of appropriate pneumonia treatment in critically ill patients? Clin Infect Dis. 2006;42(12):1764–71. ArticleCASPubMed Google Scholar
Van Bambeke F, Barcia-Macay M, Lemaire S, Tulkens PM. Cellular pharmacodynamics and pharmacokinetics of antibiotics: current views and perspectives. Curr Opin Drug Discov Devel. 2006;9(2):218–30. PubMed Google Scholar
Prayle A, Watson A, Fortnum H, Smyth A. Side effects of aminoglycosides on the kidney, ear and balance in cystic fibrosis. Thorax. 2010;65(7):654–8. ArticlePubMedPubMed Central Google Scholar
Carryn S, Chanteux H, Seral C, Mingeot-Leclercq MP, Van Bambeke F, Tulkens PM. Intracellular pharmacodynamics of antibiotics. Infect Dis Clin N Am. 2003;17(3):615–34. Article Google Scholar
Pea F. Plasma pharmacokinetics of antimicrobial agents in critically ill patients. Curr Clin Pharmacol. 2013;8(1):5–12. CASPubMed Google Scholar
Rodvold KA, Danziger LH, Gotfried MH. Steady-state plasma and bronchopulmonary concentrations of intravenous levofloxacin and azithromycin in healthy adults. Antimicrob Agents Chemother. 2003;47(8):2450–7. ArticleCASPubMedPubMed Central Google Scholar
Capitano B, Mattoes HM, Shore E, O’Brien A, Braman S, Sutherland C, et al. Steady-state intrapulmonary concentrations of moxifloxacin, levofloxacin, and azithromycin in older adults. Chest. 2004;125(3):965–73. ArticleCASPubMed Google Scholar
Conte JE Jr, Golden JA, McIver M, Zurlinden E. Intrapulmonary pharmacokinetics and pharmacodynamics of high-dose levofloxacin in healthy volunteer subjects. Int J Antimicrob Agents. 2006;28(2):114–21. ArticleCASPubMed Google Scholar
Nicolau DP, Sutherland C, Winget D, Baughman RP. Bronchopulmonary pharmacokinetic and pharmacodynamic profiles of levofloxacin 750 mg once daily in adults undergoing treatment for acute exacerbation of chronic bronchitis. Pulm Pharmacol Ther. 2012;25(1):94–8. ArticleCASPubMed Google Scholar
Schuler P, Zemper K, Borner K, Koeppe P, Schaberg T, Lode H. Penetration of sparfloxacin and ciprofloxacin into alveolar macrophages, epithelial lining fluid, and polymorphonuclear leucocytes. Eur Respir J. 1997;10(5):1130–6. ArticleCASPubMed Google Scholar
Rodvold KA, Gotfried MH, Danziger LH, Servi RJ. Intrapulmonary steady-state concentrations of clarithromycin and azithromycin in healthy adult volunteers. Antimicrob Agents Chemother. 1997;41(6):1399–402. CASPubMedPubMed Central Google Scholar
Olsen KM, San Pedro G, Gann LP, Gubbins PO, Halinski DM, Campbell GD Jr. Intrapulmonary pharmacokinetics of azithromycin in healthy volunteers given five oral doses. Antimicrob Agents Chemother. 1996;40(11):2582–5. CASPubMedPubMed Central Google Scholar
Conte JE Jr, Golden JA, Duncan S, McKenna E, Zurlinden E. Intrapulmonary pharmacokinetics of clarithromycin and of erythromycin. Antimicrob Agents Chemother. 1995;39(2):334–8. ArticleCASPubMedPubMed Central Google Scholar
Conte JE Jr, Golden J, Duncan S, McKenna E, Lin E, Zurlinden E. Single-dose intrapulmonary pharmacokinetics of azithromycin, clarithromycin, ciprofloxacin, and cefuroxime in volunteer subjects. Antimicrob Agents Chemother. 1996;40(7):1617–22. CASPubMedPubMed Central Google Scholar
Muller-Serieys C, Soler P, Cantalloube C, Lemaitre F, Gia HP, Brunner F, et al. Bronchopulmonary disposition of the ketolide telithromycin (HMR 3647). Antimicrob Agents Chemother. 2001;45(11):3104–8. ArticleCASPubMedPubMed Central Google Scholar
Ong CT, Dandekar PK, Sutherland C, Nightingale CH, Nicolau DP. Intrapulmonary concentrations of telithromycin: clinical implications for respiratory tract infections due to Streptococcus pneumoniae. Chemotherapy. 2005;51(6):339–46. ArticleCASPubMed Google Scholar
Housman ST, Pope JS, Russomanno J, Salerno E, Shore E, Kuti JL, et al. Pulmonary disposition of tedizolid following administration of once-daily oral 200-milligram tedizolid phosphate in healthy adult volunteers. Antimicrob Agents Chemother. 2012;56(5):2627–34. ArticleCASPubMedPubMed Central Google Scholar
Conte JE Jr, Golden JA, Kipps J, Zurlinden E. Intrapulmonary pharmacokinetics of linezolid. Antimicrob Agents Chemother. 2002;46(5):1475–80. ArticleCASPubMedPubMed Central Google Scholar
Honeybourne D, Tobin C, Jevons G, Andrews J, Wise R. Intrapulmonary penetration of linezolid. J Antimicrob Chemother. 2003;51(6):1431–4. ArticleCASPubMed Google Scholar
Ziglam HM, Baldwin DR, Daniels I, Andrew JM, Finch RG. Rifampicin concentrations in bronchial mucosa, epithelial lining fluid, alveolar macrophages and serum following a single 600 mg oral dose in patients undergoing fibre-optic bronchoscopy. J Antimicrob Chemother. 2002;50(6):1011–5. ArticleCASPubMed Google Scholar
Conte JE Jr, Golden JA, Kelly MG, Zurlinden E. Steady-state serum and intrapulmonary pharmacokinetics and pharmacodynamics of tigecycline. Int J Antimicrob Agents. 2005;25(6):523–9. ArticleCASPubMed Google Scholar
Connors KP, Housman ST, Pope JS, Russomanno J, Salerno E, Shore E, et al. Phase I, open-label, safety and pharmacokinetic study to assess bronchopulmonary disposition of intravenous eravacycline in healthy men and women. Antimicrob Agents Chemother. 2014;58(4):2113–8. ArticlePubMedPubMed CentralCAS Google Scholar
Proctor RA, Kriegeskorte A, Kahl BC, Becker K, Loffler B, Peters G. Staphylococcus aureus small colony variants (SCVs): a road map for the metabolic pathways involved in persistent infections. Front Cell Infect Microbiol. 2014;4:99. ArticlePubMedPubMed CentralCAS Google Scholar
Hand WL, Hand DL. Characteristics and mechanisms of azithromycin accumulation and efflux in human polymorphonuclear leukocytes. Int J Antimicrob Agents. 2001;18(5):419–25. ArticleCASPubMed Google Scholar
Matzneller P, Krasniqi S, Kinzig M, Sorgel F, Huttner S, Lackner E, et al. Blood, tissue, and intracellular concentrations of azithromycin during and after end of therapy. Antimicrob Agents Chemother. 2013;57(4):1736–42. ArticleCASPubMedPubMed Central Google Scholar
Cunha BA. The atypical pneumonias: clinical diagnosis and importance. Clin Microbiol Infect. 2006;12(Suppl. 3):12–24. ArticlePubMed Google Scholar
Mykietiuk A, Carratala J, Fernandez-Sabe N, Dorca J, Verdaguer R, Manresa F, et al. Clinical outcomes for hospitalized patients with Legionella pneumonia in the antigenuria era: the influence of levofloxacin therapy. Clin Infect Dis. 2005;40(6):794–9. ArticleCASPubMed Google Scholar
Blazquez Garrido RM, Espinosa Parra FJ, Alemany Frances L, Ramos Guevara RM, Sanchez-Nieto JM, Segovia Hernandez M, et al. Antimicrobial chemotherapy for Legionnaires disease: levofloxacin versus macrolides. Clin Infect Dis. 2005;40(6):800–6. ArticlePubMed Google Scholar
Sabria M, Pedro-Botet ML, Gomez J, Roig J, Vilaseca B, Sopena N, et al. Fluoroquinolones vs macrolides in the treatment of Legionnaires disease. Chest. 2005;128(3):1401–5. ArticleCASPubMed Google Scholar
Viasus D, Di Yacovo S, Garcia-Vidal C, Verdaguer R, Manresa F, Dorca J, et al. Community-acquired Legionella pneumophila pneumonia: a single-center experience with 214 hospitalized sporadic cases over 15 years. Medicine (Baltimore). 2013;92(1):51–60. ArticlePubMedPubMed Central Google Scholar
Haranaga S, Tateyama M, Higa F, Miyagi K, Akamine M, Azuma M, et al. Intravenous ciprofloxacin versus erythromycin in the treatment of Legionella pneumonia. Intern Med. 2007;46(7):353–7. ArticlePubMed Google Scholar
Baltch AL, Bopp LH, Smith RP, Michelsen PB, Ritz WJ. Antibacterial activities of gemifloxacin, levofloxacin, gatifloxacin, moxifloxacin and erythromycin against intracellular Legionella pneumophila and Legionella micdadei in human monocytes. J Antimicrob Chemother. 2005;56(1):104–9. ArticleCASPubMed Google Scholar
Griffin AT, Peyrani P, Wiemken T, Arnold F. Macrolides versus quinolones in Legionella pneumonia: results from the Community-Acquired Pneumonia Organization international study. Int J Tuberc Lung Dis. 2010;14(4):495–9. CASPubMed Google Scholar
Nagel JL, Rarus RE, Crowley AW, Alaniz C. Retrospective analysis of azithromycin versus fluoroquinolones for the treatment of Legionella pneumonia. P T. 2014;39(3):203–5. PubMedPubMed Central Google Scholar
Carbon C, Nusrat R. Efficacy of telithromycin in community-acquired pneumonia caused by Legionella pneumophila. Eur J Clin Microbiol Infect Dis. 2004;23(8):650–2. ArticleCASPubMed Google Scholar
Valve K, Vaalasti A, Anttila VJ, Vuento R. Disseminated Legionella pneumophila infection in an immunocompromised patient treated with tigecycline. Scand J Infect Dis. 2010;42(2):152–5. ArticleCASPubMed Google Scholar
Rogozinski LE, Alverson BK, Biondi EA. Diagnosis and treatment of Mycoplasma pneumoniae in children. Minerva Pediatr. 2017;69(2):156–60. PubMed Google Scholar
Principi N, Esposito S. Macrolide-resistant Mycoplasma pneumoniae: its role in respiratory infection. J Antimicrob Chemother. 2013;68(3):506–11. ArticleCASPubMed Google Scholar
Nilsson AC, Jensen JS, Bjorkman P, Persson K. Development of macrolide resistance in _Mycoplasma pneumoniae_-infected Swedish patients treated with macrolides. Scand J Infect Dis. 2014;46(4):315–9. ArticleCASPubMed Google Scholar
To KK, Chan KH, Fung YF, Yuen KY, Ho PL. Azithromycin treatment failure in macrolide-resistant Mycoplasma pneumoniae pneumonia. Eur Respir J. 2010;36(4):969–71. ArticleCASPubMed Google Scholar
Tagliabue C, Techasaensiri C, Torres JP, Katz K, Meek C, Kannan TR, et al. Efficacy of increasing dosages of clarithromycin for treatment of experimental Mycoplasma pneumoniae pneumonia. J Antimicrob Chemother. 2011;66(10):2323–9. ArticleCASPubMedPubMed Central Google Scholar
Kawai Y, Miyashita N, Kubo M, Akaike H, Kato A, Nishizawa Y, et al. Therapeutic efficacy of macrolides, minocycline, and tosufloxacin against macrolide-resistant Mycoplasma pneumoniae pneumonia in pediatric patients. Antimicrob Agents Chemother. 2013;57(5):2252–8. ArticleCASPubMedPubMed Central Google Scholar
Murtha AP, Edwards JM. The role of mycoplasma and ureaplasma in adverse pregnancy outcomes. Obstet Gynecol Clin N Am. 2014;41(4):615–27. Article Google Scholar
Jensen JS. Mycoplasma genitalium infections: diagnosis, clinical aspects, and pathogenesis. Dan Med Bull. 2006;53(1):1–27. PubMed Google Scholar
Maeda S, Tamaki M, Kubota Y, Nguyen PB, Yasuda M, Deguchi T. Treatment of men with urethritis negative for Neisseria gonorrhoeae, Chlamydia trachomatis, Mycoplasma genitalium, Mycoplasma hominis, Ureaplasma parvum and Ureaplasma urealyticum. Int J Urol. 2007;14(5):422–5. ArticlePubMed Google Scholar
Skerk V, Krhen I, Lisic M, Begovac J, Roglic S, Skerk V, et al. Comparative randomized pilot study of azithromycin and doxycycline efficacy in the treatment of prostate infection caused by Chlamydia trachomatis. Int J Antimicrob Agents. 2004;24(2):188–91. ArticleCASPubMed Google Scholar
Skerk V, Schonwald S, Krhen I, Rusinovic M, Strapac Z, Vukovic J. Azithromycin and doxycycline in the treatment of female patients with acute urethral syndrome caused by Ureaplasma urealyticum: significance of duration of clinical symptoms. Drugs Exp Clin Res. 2001;27(4):135–9. CASPubMed Google Scholar
Skerk V, Marekovic I, Markovinovic L, Begovac J, Skerk V, Barsic N, et al. Comparative randomized pilot study of azithromycin and doxycycline efficacy and tolerability in the treatment of prostate infection caused by Ureaplasma urealyticum. Chemotherapy. 2006;52(1):9–11. ArticleCASPubMed Google Scholar
Samra Z, Rosenberg S, Dan M. Susceptibility of Ureaplasma urealyticum to tetracycline, doxycycline, erythromycin, roxithromycin, clarithromycin, azithromycin, levofloxacin and moxifloxacin. J Chemother. 2011;23(2):77–9. ArticleCASPubMed Google Scholar
Kong FY, Tabrizi SN, Law M, Vodstrcil LA, Chen M, Fairley CK, et al. Azithromycin versus doxycycline for the treatment of genital chlamydia infection: a meta-analysis of randomized controlled trials. Clin Infect Dis. 2014;59(2):193–205. ArticleCASPubMed Google Scholar
Schelonka RL, Katz B, Waites KB, Benjamin DK Jr. Critical appraisal of the role of Ureaplasma in the development of bronchopulmonary dysplasia with metaanalytic techniques. Pediatr Infect Dis J. 2005;24(12):1033–9. ArticlePubMed Google Scholar
Hassan HE, Othman AA, Eddington ND, Duffy L, Xiao L, Waites KB, et al. Pharmacokinetics, safety, and biologic effects of azithromycin in extremely preterm infants at risk for Ureaplasma colonization and bronchopulmonary dysplasia. J Clin Pharmacol. 2011;51(9):1264–75. ArticleCASPubMed Google Scholar
Merchan LM, Hassan HE, Terrin ML, Waites KB, Kaufman DA, Ambalavanan N, et al. Pharmacokinetics, microbial response, and pulmonary outcomes of multidose intravenous azithromycin in preterm infants at risk for Ureaplasma respiratory colonization. Antimicrob Agents Chemother. 2015;59(1):570–8. ArticlePubMedCAS Google Scholar
Viscardi RM, Othman AA, Hassan HE, Eddington ND, Abebe E, Terrin ML, et al. Azithromycin to prevent bronchopulmonary dysplasia in Ureaplasma-infected preterm infants: pharmacokinetics, safety, microbial response, and clinical outcomes with a 20-milligram-per-kilogram single intravenous dose. Antimicrob Agents Chemother. 2013;57(5):2127–33. ArticleCASPubMedPubMed Central Google Scholar
Beeton ML, Chalker VJ, Jones LC, Maxwell NC, Spiller OB. Antibiotic resistance among clinical Ureaplasma isolates recovered from neonates in England and Wales between 2007 and 2013. Antimicrob Agents Chemother. 2015;60(1):52–6. ArticlePubMedPubMed CentralCAS Google Scholar
Beeton ML, Spiller OB. Antibiotic resistance among Ureaplasma spp. isolates: cause for concern? J Antimicrob Chemother. 2017;72(2):330–7. ArticleCASPubMed Google Scholar
Tuchscherr L, Heitmann V, Hussain M, Viemann D, Roth J, von Eiff C, et al. Staphylococcus aureus small-colony variants are adapted phenotypes for intracellular persistence. J Infect Dis. 2010;202(7):1031–40. ArticlePubMed Google Scholar
Johns BE, Purdy KJ, Tucker NP, Maddocks SE. Phenotypic and genotypic characteristics of small colony variants and their role in chronic infection. Microbiol Insights. 2015;8:15–23. ArticlePubMedPubMed Central Google Scholar
Tuchscherr L, Medina E, Hussain M, Volker W, Heitmann V, Niemann S, et al. Staphylococcus aureus phenotype switching: an effective bacterial strategy to escape host immune response and establish a chronic infection. EMBO Mol Med. 2011;3(3):129–41. ArticleCASPubMedPubMed Central Google Scholar
Garcia LG, Lemaire S, Kahl BC, Becker K, Proctor RA, Denis O, et al. Antibiotic activity against small-colony variants of Staphylococcus aureus: review of in vitro, animal and clinical data. J Antimicrob Chemother. 2013;68(7):1455–64. ArticleCASPubMed Google Scholar
Tande AJ, Osmon DR, Greenwood-Quaintance KE, Mabry TM, Hanssen AD, Patel R. Clinical characteristics and outcomes of prosthetic joint infection caused by small colony variant staphylococci. MBio. 2014;5(5):e01910–4. ArticleCASPubMedPubMed Central Google Scholar
Moran E, Byren I, Atkins BL. The diagnosis and management of prosthetic joint infections. J Antimicrob Chemother. 2010;65(Suppl. 3):iii45–54. CASPubMed Google Scholar
Peel TN, Buising KL, Choong PF. Diagnosis and management of prosthetic joint infection. Curr Opin Infect Dis. 2012;25(6):670–6. ArticlePubMed Google Scholar
Sendi P, Rohrbach M, Graber P, Frei R, Ochsner PE, Zimmerli W. Staphylococcus aureus small colony variants in prosthetic joint infection. Clin Infect Dis. 2006;43(8):961–7. ArticlePubMed Google Scholar
Viale P, Furlanut M, Scudeller L, Pavan F, Negri C, Crapis M, et al. Treatment of pyogenic (non-tuberculous) spondylodiscitis with tailored high-dose levofloxacin plus rifampicin. Int J Antimicrob Agents. 2009;33(4):379–82. ArticleCASPubMed Google Scholar
Senneville E, Joulie D, Legout L, Valette M, Dezeque H, Beltrand E, et al. Outcome and predictors of treatment failure in total hip/knee prosthetic joint infections due to Staphylococcus aureus. Clin Infect Dis. 2011;53(4):334–40. ArticlePubMedPubMed Central Google Scholar
Niska JA, Shahbazian JH, Ramos RI, Francis KP, Bernthal NM, Miller LS. Vancomycin-rifampin combination therapy has enhanced efficacy against an experimental Staphylococcus aureus prosthetic joint infection. Antimicrob Agents Chemother. 2013;57(10):5080–6. ArticleCASPubMedPubMed Central Google Scholar
Antony SJ. Combination therapy with daptomycin, vancomycin, and rifampin for recurrent, severe bone and prosthetic joint infections involving methicillin-resistant Staphylococcus aureus. Scand J Infect Dis. 2006;38(4):293–5. ArticlePubMed Google Scholar
John AK, Baldoni D, Haschke M, Rentsch K, Schaerli P, Zimmerli W, et al. Efficacy of daptomycin in implant-associated infection due to methicillin-resistant Staphylococcus aureus: importance of combination with rifampin. Antimicrob Agents Chemother. 2009;53(7):2719–24. ArticleCASPubMedPubMed Central Google Scholar
Saleh-Mghir A, Muller-Serieys C, Dinh A, Massias L, Cremieux AC. Adjunctive rifampin is crucial to optimizing daptomycin efficacy against rabbit prosthetic joint infection due to methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2011;55(10):4589–93. ArticleCASPubMedPubMed Central Google Scholar
von Eiff C. Staphylococcus aureus small colony variants: a challenge to microbiologists and clinicians. Int J Antimicrob Agents. 2008;31(6):507–10. ArticleCAS Google Scholar
Meyer RD. Risk factors and comparisons of clinical nephrotoxicity of aminoglycosides. Am J Med. 1986;80(6B):119–25. ArticleCASPubMed Google Scholar
Schmitz C, Hilpert J, Jacobsen C, Boensch C, Christensen EI, Luft FC, et al. Megalin deficiency offers protection from renal aminoglycoside accumulation. J Biol Chem. 2002;277(1):618–22. ArticleCASPubMed Google Scholar
Contrepois A, Brion N, Garaud JJ, Faurisson F, Delatour F, Levy JC, et al. Renal disposition of gentamicin, dibekacin, tobramycin, netilmicin, and amikacin in humans. Antimicrob Agents Chemother. 1985;27(4):520–4. ArticleCASPubMedPubMed Central Google Scholar
Mingeot-Leclercq MP, Tulkens PM. Aminoglycosides: nephrotoxicity. Antimicrob Agents Chemother. 1999;43(5):1003–12. CASPubMedPubMed Central Google Scholar
Schentag JJ, Lasezkay G, Cumbo TJ, Plaut ME, Jusko WJ. Accumulation pharmacokinetics of tobramycin. Antimicrob Agents Chemother. 1978;13(4):649–56. ArticleCASPubMedPubMed Central Google Scholar
Giuliano RA, Verpooten GA, Verbist L, Wedeen RP, De Broe ME. In vivo uptake kinetics of aminoglycosides in the kidney cortex of rats. J Pharmacol Exp Ther. 1986;236(2):470–5. CASPubMed Google Scholar
Olsen KM, Rudis MI, Rebuck JA, Hara J, Gelmont D, Mehdian R, et al. Effect of once-daily dosing vs. multiple daily dosing of tobramycin on enzyme markers of nephrotoxicity. Crit Care Med. 2004;32(8):1678–82. ArticleCASPubMed Google Scholar
Smyth A, Tan KH, Hyman-Taylor P, Mulheran M, Lewis S, Stableforth D, et al. Once versus three-times daily regimens of tobramycin treatment for pulmonary exacerbations of cystic fibrosis: the TOPIC study: a randomised controlled trial. Lancet. 2005;365(9459):573–8. ArticleCASPubMed Google Scholar
Smyth AR, Bhatt J, Nevitt SJ. Once-daily versus multiple-daily dosing with intravenous aminoglycosides for cystic fibrosis. Cochrane Database Syst Rev. 2017;(3):CD002009.
Habib G, Lancellotti P, Antunes MJ, Bongiorni MG, Casalta JP, Del Zotti F, et al. 2015 ESC Guidelines for the management of infective endocarditis: the Task Force for the Management of Infective Endocarditis of the European Society of Cardiology (ESC). Endorsed by: European Association for Cardio-Thoracic Surgery (EACTS), the European Association of Nuclear Medicine (EANM). Eur Heart J. 2015;36(44):3075–128. ArticlePubMed Google Scholar
Baddour LM, Wilson WR, Bayer AS, Fowler VG Jr, Tleyjeh IM, Rybak MJ, et al. Infective endocarditis in adults: diagnosis, antimicrobial therapy, and management of complications: a scientific statement for healthcare professionals from the American Heart Association. Circulation. 2015;132(15):1435–86. ArticleCASPubMed Google Scholar
Bassetti M, Righi E, Crapis M, Cojutti P, Venturini S, Viale P, et al. Gentamicin once-daily in enterococcal endocarditis. Int J Cardiol. 2013;168(5):5033–4. ArticlePubMed Google Scholar
Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315(8):801–10. ArticleCASPubMedPubMed Central Google Scholar
Blot SI, Pea F, Lipman J. The effect of pathophysiology on pharmacokinetics in the critically ill patient: concepts appraised by the example of antimicrobial agents. Adv Drug Deliv Rev. 2014;20(77):3–11. ArticleCAS Google Scholar
Pea F, Viale P. Bench-to-bedside review: appropriate antibiotic therapy in severe sepsis and septic shock: does the dose matter? Crit Care. 2009;13(3):214. ArticlePubMedPubMed Central Google Scholar
Taccone FS, Laterre PF, Spapen H, Dugernier T, Delattre I, Layeux B, et al. Revisiting the loading dose of amikacin for patients with severe sepsis and septic shock. Crit Care. 2010;14(2):R53. ArticlePubMedPubMed Central Google Scholar
Galvez R, Luengo C, Cornejo R, Kosche J, Romero C, Tobar E, et al. Higher than recommended amikacin loading doses achieve pharmacokinetic targets without associated toxicity. Int J Antimicrob Agents. 2011;38(2):146–51. ArticleCASPubMed Google Scholar
Allou N, Bouteau A, Allyn J, Snauwaert A, Valance D, Jabot J, et al. Impact of a high loading dose of amikacin in patients with severe sepsis or septic shock. Ann Intensive Care. 2016;6(1):106. ArticlePubMedPubMed CentralCAS Google Scholar
Roger C, Nucci B, Molinari N, Bastide S, Saissi G, Pradel G, et al. Standard dosing of amikacin and gentamicin in critically ill patients results in variable and subtherapeutic concentrations. Int J Antimicrob Agents. 2015;46(1):21–7. ArticleCASPubMed Google Scholar
Roger C, Nucci B, Louart B, Friggeri A, Knani H, Evrard A, et al. Impact of 30 mg/kg amikacin and 8 mg/kg gentamicin on serum concentrations in critically ill patients with severe sepsis. J Antimicrob Chemother. 2016;71(1):208–12. ArticleCASPubMed Google Scholar
Roberts JA, Taccone FS, Udy AA, Vincent JL, Jacobs F, Lipman J. Vancomycin dosing in critically ill patients: robust methods for improved continuous-infusion regimens. Antimicrob Agents Chemother. 2011;55(6):2704–9. ArticleCASPubMedPubMed Central Google Scholar
Nakano T, Nakamura Y, Takata T, Irie K, Sano K, Imakyure O, et al. Change of teicoplanin loading dose requirement for incremental increases of systemic inflammatory response syndrome score in the setting of sepsis. Int J Clin Pharm. 2016;38(4):908–14. ArticlePubMed Google Scholar
Thallinger C, Buerger C, Plock N, Kljucar S, Wuenscher S, Sauermann R, et al. Effect of severity of sepsis on tissue concentrations of linezolid. J Antimicrob Chemother. 2008;61(1):173–6. ArticleCASPubMed Google Scholar
Ernst EJ, Klepser ME, Klepser TB, Nightingale CH, Hunsicker LG. Comparison of the serum and intracellular pharmacokinetics of azithromycin in healthy and diabetic volunteers. Pharmacotherapy. 2000;20(6):657–61. ArticleCASPubMed Google Scholar
Krasniqi S, Matzneller P, Kinzig M, Sorgel F, Huttner S, Lackner E, et al. Blood, tissue, and intracellular concentrations of erythromycin and its metabolite anhydroerythromycin during and after therapy. Antimicrob Agents Chemother. 2012;56(2):1059–64. ArticleCASPubMedPubMed Central Google Scholar
Garraffo R, Lavrut T, Durant J, Heripret L, Serini MA, Dunais B, et al. In vivo comparative pharmacokinetics and pharmacodynamics of moxifloxacin and levofloxacin in human neutrophils. Clin Drug Investig. 2005;25(10):643–50. ArticleCASPubMed Google Scholar